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Abstract

We consider the problem of community detection or clustering in the labeled
Stochastic Block Model (LSBM) with a finite number K of clusters of sizes
linearly growing with the global population of items n. Every pair of items is
labeled independently at random, and label ` appears with probability p(i, j, `)
between two items in clusters indexed by i and j, respectively. The objective is to
reconstruct the clusters from the observation of these random labels.
Clustering under the SBM and their extensions has attracted much attention recently.
Most existing work aimed at characterizing the set of parameters such that it is
possible to infer clusters either positively correlated with the true clusters, or with
a vanishing proportion of misclassified items, or exactly matching the true clusters.
We find the set of parameters such that there exists a clustering algorithm with
at most s misclassified items in average under the general LSBM and for any
s = o(n), which solves one open problem raised in [2]. We further develop
an algorithm, based on simple spectral methods, that achieves this fundamental
performance limit within O(npolylog(n)) computations and without the a-priori
knowledge of the model parameters.

1 Introduction

Community detection consists in extracting (a few) groups of similar items from a large global
population, and has applications in a wide spectrum of disciplines including social sciences, biology,
computer science, and statistical physics. The communities or clusters of items are inferred from the
observed pair-wise similarities between items, which, most often, are represented by a graph whose
vertices are items and edges are pairs of items known to share similar features.

The stochastic block model (SBM), introduced three decades ago in [13], constitutes a natural
performance benchmark for community detection, and has been, since then, widely studied. In the
SBM, the set of items V = {1, . . . , n} are partitioned into K non-overlapping clusters V1, . . . ,VK ,
that have to be recovered from an observed realization of a random graph. In the latter, an edge
between two items belonging to clusters Vi and Vj , respectively, is present with probability p(i, j),
independently of other edges. The analyses presented in this paper apply to the SBM, but also to the
labeled stochastic block model (LSBM) [12], a more general model to describe the similarities of
items. There, the observation of the similarity between two items comes in the form of a label taken
from a finite set L = {0, 1, . . . , L}, and label ` is observed between two items in clusters Vi and Vj ,
respectively, with probability p(i, j, `), independently of other labels. The standard SBM can be seen
as a particular instance of its labeled counterpart with two possible labels 0 and 1, and where the
edges present (resp. absent) in the SBM correspond to item pairs with label 1 (resp. 0). The problem
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of cluster recovery under the LSBM consists in inferring the hidden partition V1, . . . ,VK from the
observation of the random labels on each pair of items.

Over the last few years, we have seen remarkable progresses for the problem of cluster recovery under
the SBM (see [8] for an exhaustive literature review), highlighting its scientific relevance and richness.
Most recent work on the SBM aimed at characterizing the set of parameters (i.e., the probabilities
p(i, j) that there exists an edge between nodes in clusters i and j for 1 ≤ i, j ≤ K) such that some
qualitative recovery objectives can or cannot be met. For sparse scenarios where the average degree
of items in the graph is O(1), parameters under which it is possible to extract clusters positively
correlated with the true clusters have been identified [5, 20, 18]. When the average degree of the
graph is ω(1), one may predict the set of parameters allowing a cluster recovery with a vanishing (as
n grows large) proportion of misclassified items [25, 19], but one may also characterize parameters
for which an asymptotically exact cluster reconstruction can be achieved [1, 24, 9, 19, 2, 3, 14].

In this paper, we address the finer and more challenging question of determining, under the general
LSBM, the minimal number of misclassified items given the parameters of the model. Specifically,
for any given s = o(n), our goal is to identify the set of parameters such that it is possible to devise a
clustering algorithm with at most s misclassified items. Of course, if we achieve this goal, we shall
recover all the aforementioned results on the SBM.

Main results. We focus on the labeled SBM as described above, and where each item is assigned
to cluster Vk with probability αk > 0, independently of other items. We assume w.l.o.g. that
α1 ≤ α2 ≤ · · · ≤ αK . We further assume that α = (α1, . . . , αK) does not depend on the total
population of items n. Conditionally on the assignment of items to clusters, the pair or edge
(v, w) ∈ V2 has label ` ∈ L = {0, 1, . . . , L} with probability p(i, j, `), when v ∈ Vi and w ∈ Vj .
W.l.o.g., 0 is the most frequent label, i.e., 0 = arg max`

∑K
i=1

∑K
j=1 αiαjp(i, j, `). Throughout the

paper, we typically assume that p̄ = o(1) and p̄n = ω(1) where p̄ = maxi,j,`≥1 p(i, j, `) denotes the
maximum probability of observing a label different than 0. We shall explicitly state whether these
assumption are made when deriving our results. In the standard SBM, the second assumption means
that the average degree of the corresponding random graph is ω(1). This also means that we can hope
to recover clusters with a vanishing proportion of misclassified items. We finally make the following
assumption: there exist positive constants η and ε such that for every i, j, k ∈ [K] = {1, . . . ,K},

(A1) ∀` ∈ L, p(i, j, `)
p(i, k, `)

≤ η and (A2)
∑K
k=1

∑L
`=1(p(i, k, `)− p(j, k, `))2

p̄2
≥ ε.

(A2) imposes a certain separation between the clusters. For example, in the standard SBM with two
communities, p(1, 1, 1) = p(2, 2, 1) = ξ, and p(1, 2, 1) = ζ , (A2) is equivalent to 2(ξ − ζ)2/ξ2 ≥ ε.
In summary, the LSBM is parametrized by α and p = (p(i, j, `))1≤i,j≤K,0≤`≤L, and recall that α
does not depend on n, whereas p does.

For the above LSBM, we derive, for any arbitrary s = o(n), a necessary condition under which
there exists an algorithm inferring clusters with s misclassified items. We further establish that
under this condition, a simple extension of spectral algorithms extract communities with less than s
misclassified items. To formalize these results, we introduce the divergence of (α, p). We denote by
p(i) the K × (L+ 1) matrix whose element on the j-th row and the (`+ 1)-th column is p(i, j, `)
and denote by p(i, j) ∈ [0, 1]L+1 the vector describing the probability distribution of the label of a
pair of items in Vi and Vj , respectively. Let PK×(L+1) denote the set of K × (L+ 1) matrices such
that each row represents a probability distribution. The divergence D(α, p) of (α, p) is defined as
follows: D(α, p) = mini,j:i 6=j DL+(α, p(i), p(j)) with

DL+(α, p(i), p(j)) = min
y∈PK×(L+1)

max

{
K∑
k=1

αkKL(y(k), p(i, k)),

K∑
k=1

αkKL(y(k), p(j, k))

}
where KL denotes the Kullback-Leibler divergence between two label distributions, i.e.,
KL(y(k), p(i, k)) =

∑L
`=0 y(k, `) log y(k,`)

p(i,k,`) . Finally, we denote by επ(n) the number of misclas-
sified items under the clustering algorithm π, and by E[επ(n)] its expectation (with respect to the
randomness in the LSBM and in the algorithm).

We first derive a tight lower bound on the average number of misclassified items when the latter is
o(n). Note that such a bound was unknown even for the SBM [2].
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Theorem 1 Assume that (A1) and (A2) hold, and that p̄n = ω(1). Let s = o(n). If there
exists a clustering algorithm π misclassifying in average less than s items asymptotically, i.e.,
lim supn→∞

E[επ(n)]
s ≤ 1, then the parameters (α, p) of the LSBM satisfy:

lim inf
n→∞

nD(α, p)

log(n/s)
≥ 1. (1)

To state the corresponding positive result (i.e., the existence of an algorithm misclassifying only
s items), we make an additional assumption to avoid extremely sparse labels: (A3) there exists a
constant κ > 0 such that np(j, i, `) ≥ (np̄)κ for all i, j and ` ≥ 1.

Theorem 2 Assume that (A1), (A2), and (A3) hold, and that p̄ = o(1), p̄n = ω(1). Let s = o(n). If
the parameters (α, p) of the LSBM satisfy (1), then the Spectral Partition (SP ) algorithm presented
in Section 4 misclassifies at most s items with high probability, i.e., limn→∞ P[εSP (n) ≤ s] = 1.

These theorems indicate that under the LSBM with parameters satisfying (A1) and (A2), the number
of misclassified items scales at least as n exp(−nD(α, p)(1 + o(1)) under any clustering algorithm,
irrespective of its complexity. They further establish that the Spectral Partition algorithm reaches this
fundamental performance limit under the additional condition (A3). We note that the SP algorithm
runs in polynomial time, i.e., it requires O(n2p̄ log(n)) floating-point operations.

We further establish a necessary and sufficient condition on the parameters of the LSBM for the
existence of a clustering algorithm recovering the clusters exactly with high probability. Deriving
such a condition was also open [2].

Theorem 3 Assume that (A1) and (A2) hold. If there exists a clustering algorithm that does
not misclassify any item with high probability, then the parameters (α, p) of the LSBM satisfy:
lim infn→∞

nD(α,p)
log(n) ≥ 1. If this condition holds, then under (A3), the SP algorithm recovers the

clusters exactly with high probability.

The paper is organized as follows. Section 2 presents the related work and example of application
of our results. In Section 3, we sketch the proof of Theorem 1, which leverages change-of-measure
and coupling arguments. We present in Section 4 the Spectral Partition algorithm, and analyze
its performance (we outline the proof of Theorem 2). All results are proved in details in the
supplementary material.

2 Related Work and Applications

2.1 Related work

Cluster recovery in the SBM has attracted a lot of attention recently. We summarize below existing
results, and compare them to ours. Results are categorized depending on the targeted level of
performance. First, we consider the notion of detectability, the lowest level of performance requiring
that the extracted clusters are just positively correlated with the true clusters. Second, we look at
asymptotically accurate recovery, stating that the proportion of misclassified items vanishes as n
grows large. Third, we present existing results regarding exact cluster recovery, which means that no
item is misclassified. Finally, we report recent work whose objective, like ours, is to characterize the
optimal cluster recovery rate.

Detectability. Necessary and sufficient conditions for detectability have been studied for the binary
symmetric SBM (i.e., L = 1, K = 2, α1 = α2, p(1, 1, 1) = p(2, 2, 1) = ξ, and p(1, 2, 1) =
p(2, 1, 1) = ζ). In the sparse regime where ξ, ζ = o(1), and for the binary symmetric SBM, the main
focus has been on identifying the phase transition threshold (a condition on ξ and ζ) for detectability:
It was conjectured in [5] that if n(ξ − ζ) <

√
2n(ξ + ζ) (i.e., under the threshold), no algorithm

can perform better than a simple random assignment of items to clusters, and above the threshold,
clusters can partially be recovered. The conjecture was recently proved in [20] (necessary condition),
and [18] (sufficient condition). The problem of detectability has been also recently studied in [27]
for the asymmetric SBM with more than two clusters of possibly different sizes. Interestingly, it is
shown that in most cases, the phase transition for detectability disappears.
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The present paper is not concerned with conditions for detectability. Indeed detectability means that
only a strictly positive proportion of items can be correctly classified, whereas here, we impose that
the proportion of misclassified items vanishes as n grows large.

Asymptotically accurate recovery. A necessary and sufficient condition for asymptotically accurate
recovery in the SBM (with any number of clusters of different but linearly increasing sizes) has been
derived in [25] and [19]. Using our notion of divergence specialized to the SBM, this condition is
nD(α, p) = ω(1). Our results are more precise since the minimal achievable number of misclassified
items is characterized, and apply to a broader setting since they are valid for the generic LSBM.

Asymptotically exact recovery. Conditions for exact cluster recovery in the SBM have been also
recently studied. [1, 19, 9] provide a necessary and sufficient condition for asymptotically exact
recovery in the binary symmetric SBM. For example, it is shown that when ξ = a log(n)

n and
ζ = b log(n)

n for a > b, clusters can be recovered exactly if and only if a+b
2 −

√
ab ≥ 1. In [2, 3],

the authors consider a more general SBM corresponding to our LSBM with L = 1. They define
CH-divergence as:

D+(α, p(i), p(j)) =
n

log(n)
max
λ∈[0,1]

K∑
k=1

αk
(
(1− λ)p(i, k, 1) + λp(j, k, 1)− p(i, k, 1)1−λp(j, k, 1)λ

)
,

and show that mini 6=j D+(α, p(i), p(j)) > 1 is a necessary and sufficient condition for asymptotically
exact reconstruction. The following claim, proven in the supplementary material, relates D+ to DL+.

Claim 4 When p̄ = o(1), we have for all i, j:

DL+(α, p(i), p(j))
n→∞∼ max

λ∈[0,1]

L∑
`=1

K∑
k=1

αk
(
(1− λ)p(i, k, `) + λp(j, k, `)− p(i, k, `)1−λp(j, k, `)λ

)
.

Thus, the results in [2, 3] are obtained by applying Theorem 3 and Claim 4.

In [14], the authors consider a symmetric labeled SBM where communities are balanced (i.e.,
αk = 1

K for all k) and where label probabilities are simply defined as p(i, i, `) = p(`) for all i and
p(i, j, `) = q(`) for all i 6= j. It is shown that nI

log(n) > 1 is necessary and sufficient for asymptotically

exact recovery, where I = − 2
K log

(∑L
`=0

√
p(`)q(`)

)
. We can relate I to D(α, p):

Claim 5 In the LSBM with K clusters, if p̄ = o(1), and for all i, j, ` such that i 6= j, αi = 1
K ,

p(i, i, `) = p(`), and p(j, k, `) = q(`), we have: D(α, p)
n→∞∼ − 2

K log
(∑L

`=0

√
p(`)q(`)

)
.

Again from this claim, the results derived in [14] are obtained by applying Theorem 3 and Claim 5.

Optimal recovery rate. In [6, 21], the authors consider the binary SBM in the sparse regime where
the average degree of items in the graph is O(1), and identify the minimal number of misclassified
items for very specific intra- and inter-cluster edge probabilities ξ and ζ. Again the sparse regime
is out of the scope of the present paper. [26, 8] are concerned with the general SBM corresponding
to our LSBM with L = 1, and with regimes where asympotically accurate recovery is possible.
The authors first characterize the optimal recovery rate in a minimax framework. More precisely,
they consider a (potentially large) set of possible parameters (α, p), and provide a lower bound on
the expected number of misclassified items for the worst parameters in this set. Our lower bound
(Theorem 1) is more precise as it is model-specific, i.e., we provide the minimal expected number
of misclassified items for a given parameter (α, p) (and for a more general class of models). Then
the authors propose a clustering algorithm, with time complexity O(n3 log(n)), and achieving their
minimax recovery rate. In comparison, our algorithm yields an optimal recovery rate O(n2p̄ log(n))
for any given parameter (α, p), exhibits a lower running time, and applies to the generic LSBM.
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2.2 Applications

We provide here a few examples of application of our results, illustrating their versatility. In all
examples, f(n) is a function such that f(n) = ω(1), and a, b are fixed real numbers such that a > b.

The binary SBM. Consider the binary SBM where the average item degree is Θ(f(n)), and repre-
sented by a LSBM with parameters L = 1,K = 2, α = (α1, 1−α1), p(1, 1, 1) = p(2, 2, 1) = af(n)

n ,
and p(1, 2, 1) = p(2, 1, 1) = bf(n)

n . From Theorems 1 and 2, the optimal number of misclassified
vertices scales as n exp(−g(α1, a, b)f(n)(1 + o(1))) when α1 ≤ 1/2 (w.l.o.g.) and where

g(α1, a, b) := max
λ∈[0,1]

(1−α1−λ+ 2α1λ)a+ (α1 +λ− 2αλ)b−α1a
λb(1−λ)− (1−α1)a(1−λ)bλ.

It can be easily checked that g(α1, a, b) ≥ g(1/2, a, b) = 1
2 (
√
a−
√
b)2 (letting λ = 1

2 ). The worst
case is hence obtained when the two clusters are of equal sizes. When f(n) = log(n), we also note
that the condition for asymptotically exact recovery is g(α1, a, b) ≥ 1.

Recovering a single hidden community. As in [10], consider a random graph model with a hidden
community consisting of αn vertices, edges between vertices belonging the hidden community are
present with probability af(n)

n , and edges between other pairs are present with probability bf(n)
n .

This is modeled by a LSBM with parameters K = 2, L = 1, α1 = α, p(1, 1, 1) = af(n)
n , and

p(1, 2, 1) = p(2, 1, 1) = p(2, 2, 1) = bf(n)
n . The minimal number of misclassified items when

searching for the hidden community scales as n exp(−h(α, a, b)f(n)(1 + o(1))) where

h(α, a, b) := α

(
a− (a− b)1 + log(a− b)− log(a log(a/b))

log(a/b)

)
.

When f(n) = log(n), the condition for asymptotically exact recovery of the hidden community is
h(α, a, b) ≥ 1.

Optimal sampling for community detection under the SBM. Consider a dense binary symmetric
SBM with intra- and inter-cluster edge probabilities a and b. In practice, to recover the clusters,
one might not be able to observe the entire random graph, but sample its vertex (here item) pairs as
considered in [25]. Assume for instance that any pair of vertices is sampled with probability δf(n)

n
for some fixed δ > 0, independently of other pairs. We can model such scenario using a LSBM with
three labels, namely ×, 0 and 1, corresponding to the absence of observation (the vertex pair is not
sampled), the observation of the absence of an edge and of the presence of an edge, respectively,
and with parameters for all i, j ∈ {1, 2}, p(i, j,×) = 1 − δf(n)

n , p(1, 1, 1) = p(2, 2, 1) = a δf(n)
n ,

and p(1, 2, 1) = p(2, 1, 1) = b δf(n)
n . The minimal number of misclassified vertices scales as

n exp(−l(δ, a, b)f(n)(1+o(1))) where l := δ(1−
√
ab−

√
(1− a)(1− b)).When f(n) = log(n),

the condition for asymptotically exact recovery is l(α, a+, a−, b+, b−) ≥ 1.

Signed networks. Signed networks [16, 23] are used in social sciences to model positive and negative
interactions between individuals. These networks can be represented by a LSBM with three possible
labels, namely 0, + and -, corresponding to the absence of interaction, positive and negative interaction,
respectively. Consider such LSBM with parameters: K = 2, α1 = α2, p(1, 1,+) = p(2, 2,+) =
a+f(n)
n , p(1, 1,−) = p(2, 2,−) = a−f(n)

n , p(1, 2,+) = p(2, 1,+) = b+f(n)
n , and p(1, 2,−) =

p(2, 1,−) = b−f(n)
n , for some fixed a+, a−, b+, b− such that a+ > b+ and a− < b−. The minimal

number of misclassified individuals here scales as n exp(−m(α, a+, a−, b+, b−)f(n)(1 + o(1)))
where

m(α, a+, a−, b+, b−) :=
1

2

(
(
√
a+ −

√
b+)2 + (

√
a− −

√
b−)2

)
.

When f(n) = log(n), the condition for asymptotically exact recovery is l(α, a+, a−, b+, b−) ≥ 1.

3 Fundamental Limits: Change of Measures through Coupling

In this section, we explain the construction of the proof of Theorem 1. The latter relies on an
appropriate change-of-measure argument, frequently used to identify upper performance bounds in
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online stochastic optimization problems [15]. In the following, we refer to Φ, defined by parameters
(α, p), as the true stochastic model under which all the observed random labels are generated, and
denote by PΦ = P (resp. EΦ[·] = E[·]) the corresponding probability measure (resp. expectation). In
our change-of-measure argument, we construct a second stochastic model Ψ (whose corresponding
probability measure and expectation are PΨ and EΨ[·], respectively). Using a change of measures
from PΦ to PΨ, we relate the expected number of misclassified items EΦ[επ(n)] under any clustering
algorithm π to the expected (w.r.t. PΨ) log-likelihood ratio Q of the observed labels under PΦ and
PΨ. Specifically, we show that, roughly, log(n/EΦ[επ(n)]) must be smaller than EΨ[Q] for n large
enough. Now to identify the appropriate second stochastic model Ψ, we proceed in two steps:

First, we guess the scaling of the lower bound of expected number of misclassified items under any
algorithm, i.e., we identify its connection to the divergence D(α, p).

Second, we find a model Ψ such that EΨ[Q] approximates D(α, p) as n grows large. To that aim,
we build Ψ from Φ using coupling techniques [17]. This (miraculous) coupling is inspired by the
reasoning used in the first step to identify the optimal recovery rate, and is the corner-stone of the
proof.

Putting the arguments together, we show that for any clustering algorithm π, log(n/EΦ[επ(n)]) must
be smaller than D(α, p) as n grows large, which gives Theorem 1. Next, we describe the two steps
of the proof as well as the analysis of Q in more details.

3.1 Guessing the optimal recovery rate

Consider a LSBM with parameters (α, p). The optimal recovery rate is obtained using the following
heuristic argument. Assume that (α, p) are known and that all items have been already correctly
classified except for v ∈ Vi. Then, applying the maximum a posteriori probability (MAP) estimator
constitutes the best way of classifying v. Let e(v,Vk, `) denote the number of item pairs (v, w) such
that w ∈ Vk and with observed label `. Further introduce µ(v,Vk) = [e(v,Vk, `)/|Vk|]0≤`≤L as
the empirical probability vector defined by the label densities between v and Vk. Under the MAP
estimator, v is misclassified and assigned to Vj when

0 > log

(
αi
αj

)
+

K∑
k=1

L∑
`=0

e(v,Vk, `) log

(
p(i, k, `)

p(j, k, `)

)
= log

(
αi
αj

)
+

K∑
k=1

L∑
`=0

|Vk|
e(v,Vk, `)
|Vk|

(
log

(
e(v,Vk, `)/|Vk|

p(j, k, `)

)
− log

(
e(v,Vk, `)/|Vk|

p(i, k, `)

))
= log

(
αi
αj

)
+

K∑
k=1

|Vk| (KL (µ(v,Vk), p(j, k))−KL (µ(v,Vk), p(i, k))) . (2)

Observe that the term log(αi/αj) can be neglected in the r.h.s. of (2) as n grows large. Hence, from
the definition of DL+(α, p(i), p(j)), v is misclassified to Vj (i.e., (2) holds) when the following event
occurs:

K∑
k=1

|Vk|KL (µ(v,Vk), p(i, k)) ≥ nDL+(α, p(i), p(j)).

We can evaluate the probability of this event in the particular case when p̄ = o( 1√
n

) using the
following claim.

Claim 6 When |Vk| = Ω(n), p̄ = o( 1√
n

), np̄ = ω(1), and D = Ω(p̄),

log
(
P
{∑K

k=1 |Vk|KL (µ(v,Vk), p(i, k)) ≥ nD
})

n→∞∼ −nD.

Now by choosing (i, j) = (i?, j?) = arg mini,j:i<j DL+(p(i), p(j)), we can expect, from the
previous claim applied to D = D(α, n), that the probability of misclassifying v ∈ Vi? scales
as exp(−D(α, n)). Since |Vi? | grows linearly with n, this implies that the expected number of
misclassified items scales at least as n exp(−nD(α, P )(1 + o(1))).
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3.2 Construction of ψ

Let (i?, j?) = arg mini,j:i<j DL+(α, p(i), p(j)), and let v? denote the smallest item index that
belongs to cluster i? or j?. If both Vi? and Vj? are empty, we define v? = n. Let q ∈ PK×(L+1)

such that: D(α, p) =
∑K
k=1 αkKL(q(k), p(i?, k)) =

∑K
k=1 αkKL(q(k), p(j?, k)). The existence

of such q is proved in Lemma 8 in the supplementary material. Now to define the stochastic model Ψ,
we couple the generation of labels under Φ and Ψ as follows.

1. We first generate the random clusters V1, . . . ,VK under Φ, and extract i?, j?, and v?. The clusters
generated under Ψ are the same as those generated under Φ. For any v ∈ V , we denote by σ(v) the
cluster of item v.

2. For all pairs (v, w) such that v 6= v? andw 6= v?, the labels generated under Ψ are the same as those
generated under Φ, i.e., the label ` is observed on the edge (v, w) with probability p(σ(v), σ(w), `).

3. Under Ψ, for any v 6= v?, the observed label on the edge (v, v?) under Ψ is ` with probability
q(σ(v), `).

Let xv,w denote the label observed for the pair (v, w). We introduce Q, the log-likelihood ratio of
the observed labels under PΦ and PΨ as:

Q =

v?−1∑
v=1

log
q(σ(v), xv?,v)

p(σ(v?), σ(v), xv?,v)
+

n∑
v=v?+1

log
q(σ(v), xv?,v)

p(σ(v?), σ(v), xv?,v)
. (3)

Let π be a clustering algorithm with output (V̂k)1≤k≤K , and let E =
⋃

1≤k≤K V̂k \ Vk be the set
of misclassified items under π. Note that in general in our analysis, we always assume without
loss of generality that |

⋃
1≤k≤K V̂k \ Vk| ≤ |

⋃
1≤k≤K V̂γ(k) \ Vk| for any permutation γ, so that

the set of misclassified items is indeed E . By definition, επ(n) = |E|. Since under Φ, items are
interchangeable (remember that items are assigned to the various clusters in an i.i.d. manner), we
have: nPΦ{v ∈ E} = EΦ[επ(n)] = E[επ(n)].

Next, we establish a relationship between E[επ(n)] and the distribution of Q under PΨ. For any
function f(n), we can prove that: PΨ{Q ≤ f(n)} ≤ exp(f(n)) EΦ[επ(n)]

(αi?+αj? )n +
αj?

αi?+αj?
. Using

this result with f(n) = log (n/EΦ[επ(n)]) − log(2/αi?), and Chebyshev’s inequality, we deduce

that: log (n/EΦ[επ(n)])− log(2/αi?) ≤ EΨ[Q] +
√

4
αi?

EΨ[(Q− EΨ[Q])2], and thus, a necessary

condition for E[επ(n)] ≤ s is:

log (n/s)− log(2/αi?) ≤ EΨ[Q] +

√
4

αi?
EΨ[(Q− EΨ[Q])2]. (4)

3.3 Analysis of Q

In view of (4), we can obtain a necessary condition for E[επ(n)] ≤ s if we evaluate EΨ[Q] and
EΨ[(Q− EΨ[Q])2]. To evaluate EΨ[Q], we can first prove that v? ≤ log(n)2 with high probability.
From this, we can approximate EΨ[Q] by EΨ[

∑n
v=v?+1 log

q(σ(v),xv?,v)

p(σ(v?),σ(v),xv?,v) ], which is itself well-
approximated by nD(α, p). More formally, we can show that:

EΨ[Q] ≤
(
n+ 2 log(η) log(n)2

)
D(α, p) +

log η

n3
. (5)

Similarly, we prove that EΨ[(Q − EΨ[Q])2] = O(np̄), which in view of Lemma 9 (refer to the
supplementary material) and assumption (A2), implies that: EΨ[(Q− EΨ[Q])2] = o(nD(α, p)).

We complete the proof of Theorem 1 by putting the above arguments together: From (4), (5) and
the above analysis of Q, when the expected number of misclassified items is less than s (i.e.,
E[επ(n)] ≤ s), we must have: lim infn→∞

nD(α,p)
log(n/s) ≥ 1.

4 The Spectral Partition Algorithm and its Optimality

In this section, we sketch the proof of Theorem 2. To this aim, we present the Spectral Partition (SP)
algorithm and analyze its performance. The main pseudo-code of SP is presented in Algorithm 1. The
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SP algorithm consists in two parts. In the first part, corresponding to Lines 1-4 in the pseudo-code, we
apply a spectral decomposition of the matrix A =

∑L
`=1 w`A

` constructed from the observed labels.
This matrix is first trimmed, and then treated by applying the spectral decomposition algorithm,
whose pseudo-code is presented in Algorithm 2. The second part of the SP algorithm, corresponding
to Lines 5 and 6 in Algorithm 1, consists in improving the clusters initially identified in the first step.

Algorithm 1 Spectral Partition
Input: Observation matrices A` for every label ` (A`uv = 1 if ` is observed between u and v).

1. Estimated average degree. p̃←
∑L
`=1

∑
u,v A

`
uv

n(n−1)

2. Random Weights. A←
∑L
`=1 w`A

` where the weights w`’s are i.i.d and uniformly distributed
on [0, 1].
3. Trimming. Construct AΓ = (Avw)v,w∈Γ, where Γ is the set of nodes obtained after removing
bn exp(−np̃)c nodes having the largest

∑
`

∑
w∈V A

`
vw.

4. Spectral Decomposition. Run Algorithm 2 with input AΓ, p̃, and output (Sk)k=1,...,K̂ .

5. Estimated parameters. p̂(i, j, `)←
∑
u∈Si

∑
v∈Sj

A`uv

|Si||Sj | for all 1 ≤ i, j ≤ K̂ and 0 ≤ ` ≤ L.
6. Improvement.
S

(0)
k ← Sk, for all k

for t = 1 to log n do
S

(t)
k ← ∅, for all k

for v ∈ V do
Find k? = arg max1≤k≤K̂{

∑K̂
i=1

∑
w∈S(t−1)

i

∑L
`=0A

`
vw log p̂(k, i, `)} (tie broken uni-

formly at random)
S

(t)
k? ← S

(t)
k? ∪ {v}

end for
end for
V̂k ← S

(logn)
k , for all k

Output: (V̂k)k=1,...,K̂ .

The first part of the algorithm can be interpreted as an initialization for its second part, and consists in
applying a spectral decomposition of a n× n random matrix A constructed from the observed labels.
More precisely, A =

∑L
`=1 w`A

`, where A` is the binary matrix identifying the item pairs with
observed label `, i.e., for all v, w ∈ V , A`vw = 1 if and only if (v, w) has label `. The weight w` for
label ` ∈ {1, . . . , L} is generated uniformly at random in [0, 1], independently of other weights. From
the spectral decomposition of A, we estimate the number of communities and provide asymptotically
accurate estimates S1, . . . , SK of the hidden clusters asymptotically accurately, i.e., we show that
when np̄ = ω(1), with high probability, K̂ = K and there exists a permutation γ of {1, . . . ,K}
such that 1

n

∣∣∪Kk=1Vk \ Sγ(k)

∣∣ = O
(

log(np̄)2

np̄

)
. This first part of the SP algorithm is adapted from

algorithms proposed for the standard SBM in [4, 25] to handle the additional labels in the model
without the knowledge of the number K of clusters.

The second part is novel, and is critical to ensure the optimality of the SP algorithm. It con-
sists in first constructing an estimate p̂ of the true parameters p of the model from the matrices
(A`)1≤`≤L and the estimated clusters S1, . . . , SK provided in the first part of SP. We expect p to
be well estimated since S1, . . . , SK are asymptotically accurate. Then our cluster estimates are
iteratively improved. We run blog(n)c iterations. Let S(t)

1 , . . . , S
(t)
K denote the clusters estimated

after the t-th iteration, initialized with (S
(0)
1 , . . . , S

(0)
K ) = (S1, . . . , SK). The improved clusters

S
(t+1)
1 , . . . , S

(t+1)
K are obtained by assigning each item v ∈ V to the cluster maximizing a log-

likelihood formed from p̂, S(t)
1 , . . . , S

(t)
K , and the observations (A`)1≤`≤L: v is assigned to S(t+1)

k?

where k? = arg maxk{
∑K
i=1

∑
w∈S(t−1)

i

∑L
`=0A

`
vw log p̂(k, i, `)}.

Part 1: Spectral Decomposition. The spectral decomposition is described in Lines 1 to 4 in
Algorithm 1. As usual in spectral methods, the matrixA is first trimmed (to remove lines and columns
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Algorithm 2 Spectral decomposition
Input: AΓ, p̃
1. Iterative Power Method with singular value thresholding
(Initialization) χ← n, k ← 0, and Û ← 0n×1

while χ ≥
√
np̃ log(np̃) do

k ← k + 1, U0 ← n× 1 Gaussian random vector
(Iterative power method) Ut ← (AΓ)d2 log(n)eU0

(Orthonormalizing Ut) Ûk ←
Ut−Û1:k−1(Û>1:k−1Ut)

‖Ut−Û1:k−1(Û>1:k−1Ut)‖2

(Estimating the k-th singular value) χ← ‖AΓÛk‖2
end while
K̃ ← k − 1, V̂ ← Û>

1:K̃
AΓ

2. Clustering
VR ← a subset of Γ obtained by randomly selecting dlog(n)e items of Γ

Qv ← {w ∈ Γ : ‖V̂w − V̂v‖22 ≤
np̃2

log(np̃)} for all v ∈ VR
(Initialization) S0 ← ∅, k ← 0, and ρ← |Γ|
while ρ ≥ log(np̃)4

p̃ do
k ← k + 1, v?k ← arg maxv∈VR |Qv \

⋃k−1
l=0 Sl|, Sk ← Qv?k \

⋃k−1
l=0 Sl and ρ← |Sk|.

end while
K̂ ← k − 1

for v ∈ Γ \
⋃K̂
k=1 Sk do

k? ← arg mink ‖V̂v?k − V̂v‖2, Sk? ← Sk? ∪ {v}
end for
Output: (Sk)k=1,...,K̂ .

corresponding to items with too many observed labels – as they would perturb the spectral analysis).
To this aim, we estimate the average number of labels per item, and use this estimate, denoted by p̃ in
Algorithm 1, as a reference for the trimming process. Γ and AΓ denote the set of remaining items
after trimming, and the corresponding trimmed matrix, respectively.

If the number of clusters K is known and if we do not account for time complexity, the two step
algorithm in [4] can extract the clusters from AΓ: first the optimal rank-K approximation A(K) of
AΓ is derived using the SVD; then, one applies the k-mean algorithm to the columns of A(K) to
reconstruct the clusters. The number of misclassified items after this two step algorithm is obtained
as follows. Let M ` = E[A`Γ], and M =

∑L
`=1 w`M

` (using the same weights as those defining
A). Then, M is of rank K. If v and w are in the same cluster, Mv = Mw and if v and w do not
belong to the same cluster, from (A2), we must have with high probability: ‖Mv−Mw‖2 = Ω(p̄

√
n).

Thus, the k-mean algorithm misclassifies v only if ‖A(K)
v − Mv‖2 = Ω(p̄

√
n). By leveraging

elements of random graph and random matrix theories, we can establish that
∑
v ‖A

(k)
v −Mv‖22 =

‖A(k) −M‖2F = O(np̄) with high probability. Hence the algorithm misclassifies O(1/p̄) items with
high probability.

Here the number of clusters K is not given a-priori. In this scenario, Algorithm 2 estimates the rank
of M using a singular value thresholding procedure. To reduce the complexity of the algorithm, the
singular values and singular vectors are obtained using the iterative power method instead of a direct
SVD. It is known from [11] that with Θ (log(n)) iterations, the iterative power method find singular
values and the rank-K approximation very accurately. Hence, when np̄ = ω(1), we can easily
estimate the rank of M by looking at the number of singular values above the threshold

√
np̃ log(np̃),

since we know from random matrix theory that the (K + 1)-th singular value of AΓ is much less
than

√
np̃ log(np̃) with high probability. In the pseudo-code of Algorithm 2, the estimated rank of

M is denoted by K̃.

The rank-K̃ approximation of AΓ obtained by the iterative power method is Â = Û V̂ = Û Û>AΓ.
From the columns of Â, we can estimate the number of clusters and classify items. Almost every
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column of Â is located around the corresponding column of M within a distance 1
2

√
np̃2

log(np̃) , since∑
v ‖Âv −Mv‖22 = ‖Â −M‖2F = O(np̄ log(np̄)2) with high probability (we rigorously analyze

this distance in the supplementary material Section C.2). From this observation, the columns can be
categorised into K groups. To find these groups, we randomly pick log(n) reference columns and for

each reference column, search all columns within distance
√

np̃2

log(np̃) . Then, with high probability,
each cluster has at least one reference column and each reference column can find most of its cluster
members. Finally, the K groups are identified using the reference columns. To this aim, we compute
the distance of n log(n) column pairs Âv, Âw. Observe that ‖Âv − Âw‖2 = ‖V̂v − V̂w‖2 for any
u, v ∈ Γ, since the columns of Û are orthonormal. Now V̂v is of dimension K̃, and hence we can
identify the groups using O(nK̃ log(n)) operations.

Theorem 7 Assume that (A1) and (A2) hold, and that np̄ = ω(1). After Step 4 (spectral decom-
position) in the SP algorithm, with high probability, K̂ = K and there exists a permutation γ of
{1, . . . ,K} such that:

∣∣∪Kk=1Vk \ Sγ(k)

∣∣ = O
(

log(np̄)2

p̄

)
.

Part 2: Successive clusters improvements. Part 2 of the SP algorithm is described in Lines 5 and
6 in Algorithm 1. To analyze the performance of each improvement iteration, we introduce the set
of items H as the largest subset of V such that for all v ∈ H: (H1) e(v,V) ≤ 10ηnp̄L; (H2) when
v ∈ Vk,

∑K
i=1

∑L
`=0 e(v,Vi, `) log p(k,i,`)

p(j,i,`) ≥
np̄

log(np̄)4 for all j 6= k; (H3) e(v,V \H) ≤ 2 log(np̄)2,

where for any S ⊂ V and `, e(v, S, `) =
∑
w∈S A

`
vw, and e(v, S) =

∑L
`=1 e(v, S, `). Condition

(H1) means that there are not too many observed labels ` ≥ 1 on pairs including v, (H2) means that
an item v ∈ Vk must be classified to Vk when considering the log-likelihood, and (H3) states that v
does not share too many labels with items outside H .

We then prove that |V \ H| ≤ s with high probability when nD(α, p) − np̄
log(np̄)3 ≥ log(n/s) +√

log(n/s). This is mainly done using concentration arguments to relate the quantity∑K
i=1

∑L
`=0 e(v,Vi, `) log p(k,i,`)

p(j,i,`) involved in (H2) to nD(α, p).

Finally, we establish that if the clusters provided after the first part of the SP algorithm are asymptoti-
cally accurate, then after log(n) improvement iterations, there is no misclassified items in H . To that
aim, we denote by E(t) the set of misclassified items after the t-th iteration, and show that with high
probability, for all t, |E

(t+1)∩H|
|E(t)∩H| ≤

1√
np̄

. This completes the proof of Theorem 2, since after log(n)

iterations, the only misclassified items are those in V \H .
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A Properties of the divergence D(α, p) and related quantities

In this section, we prove the two claims of Section 2, as well as other results on the divergence
D(α, p) that will be instrumental in the proofs of Theorems.

A.1 Proof of Claim 4

DL+(p(i), p(j)) is the minimum of the objective function of the following convex optimization
problem:

min
y∈PK×(L+1)

K∑
k=1

αk

(
L∑
`=1

y(k, `) log

(
y(k, `)

p(i, k, `)

)
+ (1−

L∑
`=1

y(k, `)) log

(
1−

∑L
`=1 y(k, `)

1−
∑L
`=1 p(i, k, `)

))

s.t.
K∑
k=1

αkKL(y(k), p(i, k)) ≥
K∑
k=1

αkKL(y(k), p(j, k)).

(6)

Note that we define y(k, 0) = 1 −
∑L
`=1 y(k, `) for all k. Since p̄ = o(1), one can easily check

that the solution of (6) has to be
∑L
`=1 y(k, `) = o(1) for all k. The objective function converges to

infinity when
∑L
`=1 y(k, `) = Ω(1), while it has o(p̄) when y(k, `) = p(j, k, `) for all k and `. Thus,

we consider
∑L
`=1 y(k, `) = o(1). The associated Lagrangian is:

g(y, λ) =

K∑
k=1

αk

(
L∑
`=1

y(k, `) log

(
y(k, `)

p(i, k, `)

)
+ (1−

L∑
`=1

y(k, `)) log

(
1−

∑L
`=1 y(k, `)

1−
∑L
`=1 p(i, k, `)

))
+

K∑
k=1

αkλ

(
L∑
`=1

y(k, `) log

(
p(i, k, `)

p(j, k, `)

)
+ (1−

L∑
`=1

y(k, `)) log

(
1−

∑L
`=1 p(i, k, `)

1−
∑L
`=1 p(j, k, `)

))
.

(7)

The derivative of g(y, λ) w.r.t. y(k, `) is computed as follows:

∂g(y, λ)

∂y(k, `)
=αk

(
log

(
y(k, `)

p(i, k, `)

)
− log

(
1−

∑L
m=1 y(k,m)

1−
∑L
m=1 p(i, k,m)

))
+

αkλ

(
log

(
p(i, k, `)

p(j, k, `)

)
− log

(
1−

∑L
m=1 p(i, k,m)

1−
∑L
m=1 p(j, k,m)

))
.

Observe that, since (A1) holds, p̄ = o(1) and
∑L
`=1 y(k, `) = o(1), as n grows large,

log
(

1−
∑L
m=1 y(k,m)

1−
∑L
m=1 p(i,k,m)

)
and log

(
1−

∑L
m=1 p(i,k,m)

1−
∑L
m=1 p(j,k,m)

)
converges to 0. Thus, (7) is minimized at

y(k, `) = p(i, k, `)

(
p(j, k, `)

p(i, k, `)

)λ
(1 + o(1)). (8)

When we put (8) onto (7) and use the approximation limx→0 log(1 + x) = x (again using p̄ = o(1)),

min
y∈PK×{0,1}

g(y, λ)

= min
y∈PK×{0,1}

K∑
k=1

L∑
`=1

αk (o(p̄)+

(1−
L∑
`=1

y(k, `)) log

(
1−

∑L
`=1 y(k, `)

1−
∑L
`=1 p(i, k, `)

)(
1−

∑L
`=1 p(i, k, `)

1−
∑L
`=1 p(j, k, `)

)λ
= min

y∈PK×{0,1}

K∑
k=1

L∑
`=1

αk (o(p̄)−
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L∑
`=1

y(k, `)(1 + o(1)) + (1− λ)

L∑
`=1

p(i, k, `)(1 + o(1)) + λ

L∑
`=1

p(j, k, `)(1 + o(1))

)
.

Therefore, the minimum value of (6) is equivalent to

max
λ∈[0,1]

K∑
k=1

L∑
`=1

αk
(
(1− λ)p(i, k, `) + λp(j, k, `)− p(i, k, 1)1−λp(j, k, `)λ

)
+ o(p̄).

A.2 Proof of Claim 5

When p̄ = o(1), for all i 6= j, αi = 1
K , p(i, i, `) = p(`), and p(i, j, `) = q(`), from Claim 4,

DL+(α, p(i), p(j)) = max
λ∈[0,1]

K∑
k=1

L∑
`=1

αk
(
(1− λ)p(i, k, `) + λp(j, k, `)− p(i, k, `)1−λp(j, k, `)λ

)
=

1

K
max
λ∈[0,1]

L∑
`=1

(
p(`) + q(`)− p(`)1−λq(`)λ − p(`)λq(`)1−λ)

=
1

K

L∑
`=1

(
p(`) + q(`)− 2

√
p(`)q(`)

)
. (9)

Now, since
√

1 + x = 1 + x
2 (1 + o(1)) and log(1 + x) = x(1 + o(1)) when x = o(1),

− 2

K
log

(
L∑
`=0

√
p(`)q(`)

)
= − 2

K
log

(√
p(0)q(0) +

L∑
`=1

√
p(`)q(`)

)

= − 2

K
log

(
1−

∑L
`=1 p(`) + q(`)

2
(1 + o(1)) +

L∑
`=1

√
p(`)q(`)

)

=
2

K

(∑L
`=1 p(`) + q(`)

2
−

L∑
`=1

√
p(`)q(`)

)
(1 + o(1)). (10)

The claim follows from (9) and (10).

A.3 Other properties

Lemma 8 Let (i?, j?) = arg mini,j DL+(p(i), p(j)) and i? < j?. Then, there exists q ∈ PK×(L+1)

such that

D(α, p) =

K∑
k=1

αkKL(q(k), p(i?, k)) =

K∑
k=1

αkKL(q(k), p(j?, k)).

Proof. We check by contradiction that such a q exists. Indeed, assume that

D(α, p) =

K∑
k=1

αkKL(q(k), p(i?, k)) >

K∑
k=1

αkKL(q(k), p(j?, k)).

Then there exists k0 such that KL(q(k0), p(i?, k0)) > KL(q(k0), p(j?, k0)). Observe
that by positivity of the KL divergence, q(k0) 6= p(i?, k0). Hence by continuity of
the KL divergence, we can construct q′ such that q(k) = q′(k) for all k 6= k0, and
such that: KL(q(k0), p(i?, k0)) − ε < KL(q′(k0), p(i?, k0)) < KL(q(k0), p(i?, k0)) and
KL(q′(k0), p(j?, k0)) < KL(q(k0), p(j?, k0)) + ε for some 0 < ε < (KL(q(k0), p(i?, k0)) −
KL(q(k0), p(j?, k0)))/2. With this choice of q′, we get:

D(α, p) >

K∑
k=1

αkKL(q′(k), p(i?, k)) >

K∑
k=1

αkKL(q′(k), p(j?, k)),

which contradicts the definition of D(α, p). �
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Lemma 9 When p̄ = o(1),

lim
n→∞

D(α, p)∑K
k=1

αk
2

(∑L
`=1(

√
p(i?, k, `)−

√
p(j?, k, `))2

) ≥ 1.

Proof. Let (i?, j?) = arg mini,j DL+(α, p(i), p(j)) and i? < j?. From Lemma 8, there exists q
satisfying that

D(α, p) =

K∑
k=1

αkKL(q(k), p(i?, k)) =

K∑
k=1

αkKL(q(k), p(j?, k)).

Then,

nD(α, p) = n

∑K
k=1 (αkKL(q(k), p(i?, k)) + αkKL(q(k), p(j?, k)))

2

= −n
K∑
k=1

αk

L∑
`=0

q(k, `) log

(√
p(i?, k, `)p(j?, k, `)

q(k, `)

)

≥ n

K∑
k=1

αk

L∑
`=0

(
q(k, `)−

√
p(i?, k, `)p(j?, k, `)

)
= n

K∑
k=1

αk

(∑L
`=1(p(i?, k, `) + p(j?, k, `))

2
−

L∑
`=1

√
p(i?, k, `)p(j?, k, `)

)
(1− o(1))

= n

K∑
k=1

αk
2

(
L∑
`=1

(
√
p(i?, k, `)−

√
p(j?, k, `))2

)
(1− o(1)) .

�

Lemma 10 Under condition (A1), when p̄ = o(1), lim supn→∞
D(α,p)
ηp̄L ≤ 1.

Proof. From the definition of D(α, p), for any i 6= j,

D(α, p) ≤ max

{
K∑
k=1

αkKL(p(i, k), p(i, k)),

K∑
k=1

αkKL(p(i, k), p(j, k))

}

=

K∑
k=1

αkKL(p(i, k), p(j, k))

≤
K∑
k=1

αk

L∑
`=1

(p(i, k, `)− p(j, k, `))2

p(j, k, `)
(1 + o(1))

≤
K∑
k=1

αk

L∑
`=1

ηp̄(1 + o(1))

= ηp̄L(1 + o(1)),

where we use log(1 + x) = x(1 + o(1)) when x = o(1). �

B Proof of Theorem 1

The proof consists in an appropriate change-of-measure argument. The originality of the proof stems
from the fact that the change of measures is obtained by a judicious coupling argument [17]. In the
following, we refer to Φ as the true stochastic model under which all the observed random labels are
generated, and denote by PΦ = P (resp. EΦ[·] = E[·]) the corresponding probability measure (resp.
expectation). We recall that Φ is defined by the parameters (α, p), and that under Φ, the nodes are first
attached to the various clusters according to the distribution α, and the labels between two nodes are
then generated using distributions p. The proof consists in constructing a perturbed stochastic model

15



Ψ coupling the labels generated under Φ with those generated under Ψ. We denote by PΨ (resp.
EΨ[·] = E[·]) the probability measure (resp. expectation) under the perturbed model Ψ. We then
relate the proportion of misclassified nodes under any given clustering algorithm π to the distribution
under PΨ of a quantity Q that resembles the log-likelihood ratio of the observed labels under PΦ and
PΨ. The analysis of the likelihood ratio finally provides the desired lower bound on the expected
misclassified nodes under π. Next, we detail each step of the proof.

Coupling and the perturbed stochastic model Ψ. Let (i?, j?) = arg mini,j:i<j DL+(p(i), p(j)),
and let v? denote the smallest node index that belongs to cluster i? or j?. If both Vi? and Vj? are
empty, we define v? = n. Let q ∈ [0, 1]K×(L+1) satisfy:

D(α, p) =

K∑
k=1

αkKL(q(k), p(i?, k)) =

K∑
k=1

αkKL(q(k), p(j?, k)).

There exists such a q from Lemma 8. Now to define the perturbed stochastic model Ψ, we couple the
generation of labels under Φ and Ψ as follows.

1. We first generate construct the random clusters V1, . . . ,VK under Φ, and extract i?, j?, and
v?. The clusters generated under Ψ are the same as those generated under Φ. For any v ∈ V ,
we denote by σ(v) the cluster of node v.

2. For all nodes v, w 6= v?, the labels generated under Ψ are the same as those generated under
Φ, i.e., the label ` is observed on the edge (v, w) with probability p(σ(v), σ(w), `).

3. Under Ψ, for any v 6= v?, the observed label on the edge (v, v?) under Ψ is `with probability
q(σ(v), `).

The log-likelihood ratio and its connection to the expected number of misclassified nodes. Let
xv,w denote the label observed on the edge (v, w). We introduce Q, referred to as the pseudo-log-
likelihood ratio of the observed labels under PΦ and PΨ) as:

Q =

v?−1∑
v=1

log
q(σ(v), xv?,v)

p(σ(v?), σ(v), xv?,v)
+

n∑
v=v?+1

log
q(σ(v), xv?,v)

p(σ(v?), σ(v), xv?,v)
. (11)

Let π denote a clustering algorithm with output (V̂k)1≤k≤K , and let E =
⋃

1≤k≤K V̂k \ Vk be the set
of misclassified nodes under π. Note that in general in our proofs, we always assume without loss of
generality that |

⋃
1≤k≤K V̂k \ Vk| ≤ |

⋃
1≤k≤K V̂γ(k) \ Vk| for any permutation γ, so that the set of

misclassified nodes is really E . We denote by επ(n) = |E|. Since under Φ, nodes are interchangeable
(remember that nodes are assigned to the various clusters in an i.i.d. manner), we have:

nPΦ{v ∈ E} = EΦ[επ(n)] = E[επ(n)].

Next, we establish a relationship between E[επ(n)] and the distribution of Q under PΨ. For any
function f(n), we have:

PΨ{Q ≤ f(n)} = PΨ{Q ≤ f(n), v? ∈ E}+ PΨ{Q ≤ f(n), v? /∈ E}. (12)

Using Q, we get:

PΨ{Q ≤ f(n), v? ∈ E} =

∫
{Q≤f(n),v?∈E}

dPΨ

=

∫
{Q≤f(n),v?∈E}

exp(Q)dPΦ

≤ exp(f(n))PΦ{Q ≤ f(n), v? ∈ E}
≤ exp(f(n))PΦ{v? ∈ E}

≤ exp(f(n))
EΦ[επ(n)]

(αi? + αj?)n
, (13)

where the last inequality is obtained from the fact that we cannot distinguish between v? and any
other v ∈ Vσ(v?). Indeed,

PΦ{v? ∈ E} = PΦ{v ∈ E|v ∈ Vi? ∪ Vj?}
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=
PΦ{v ∈ E , v ∈ Vi? ∪ Vj?}

PΦ{v ∈ Vi? ∪ Vj?}

≤ PΦ{v ∈ E}
PΦ{v ∈ Vi? ∪ Vj?}

=
EΦ[επ(n)]

(αi? + αj?)n
.

Furthermore, since under the stochastic model Ψ, the observed labels do not depend on whether v?
belongs to cluster i? or j?, we have:

PΨ{v? ∈ V̂i? |v? ∈ Vi?} = PΨ{v? ∈ V̂i? |v? ∈ Vj?} and
PΨ{v? ∈ V̂j? |v? ∈ Vi?} = PΨ{v? ∈ V̂j? |v? ∈ Vj?}.

Finally, since PΨ{v? ∈ V̂i? |v? ∈ Vi?}+ PΨ{v? ∈ V̂j? |v? ∈ Vi?} ≤ 1, we also have:

PΨ{Q ≤ f(n), v? /∈ E}
≤ PΨ{v? /∈ E}
=

αi?

αi? + αj?
PΨ{v? ∈ V̂i? |v? ∈ Vi?}+

αj?

αi? + αj?
PΨ{v? ∈ V̂j? |v? ∈ Vj?}

=
αi?

αi? + αj?
PΨ{v? ∈ V̂i? |v? ∈ Vi?}+

αj?

αi? + αj?
PΨ{v? ∈ V̂j? |v? ∈ Vi?}

≤ αj?

αi? + αj?
. (14)

Combining (12), (13), and (14), we conclude that:

PΨ{Q ≤ f(n)} ≤ exp(f(n))
EΦ[επ(n)]

(αi? + αj?)n
+

αj?

αi? + αj?
. (15)

The previous equation provides the desired generic relationship between EΦ[επ(n)] and PΨ{Q ≤
f(n)} from which can deduce a necessary condition for E[επ(n)] ≤ s. Applying (15) with
f(n) = log (n/EΦ[επ(n)])− log(2/αi?), we have:

PΨ{Q ≤ log (n/EΦ[επ(n)])− log(2/αi?)} ≤ 1− αi?

2
< 1− αi?

4
. (16)

In addition, from Chebyshev’s inequality,

PΨ

{
Q ≤ EΨ[Q] +

√
4

αi?
EΨ[(Q− EΨ[Q])2]

}
≥ 1− αi?

4
. (17)

From (16) and (17), we deduce that:

log (n/EΦ[επ(n)])− log(2/αi?) ≤ EΨ[Q] +

√
4

αi?
EΨ[(Q− EΨ[Q])2],

and thus, a necessary condition for E[επ(n)] ≤ s is:

log (n/s)− log(2/αi?) ≤ EΨ[Q] +

√
4

αi?
EΨ[(Q− EΨ[Q])2]. (18)

Analysis of the log-likelihood ratio. In view of (18), we can obtain a necessary condition for
E[επ(n)] ≤ s if we evaluate EΨ[Q] and EΨ[(Q− EΨ[Q])2].

(i) We first compute EΨ[Q]. Note that in view of the definition of v?, a node whose index is smaller
than v? cannot be in Vi? or Vj? , whereas a node whose index v is larger than v? can be in any cluster
(and the cluster of such a v is drawn according to the distribution α independently of other nodes).
This slightly complicates the computation of the expectation of the two sums defining Q in (11). To
circumvent this problem, we can observe that v? is rather small, i.e., less log(n)2 with high probability,
and that hence, we can approximate EΨ[Q] by EΨ[

∑n
v=v?+1 log

q(σ(v),xv?,v)

p(σ(v?),σ(v),xv?,v) ], which is itself
well-approximated by nD(α, p). More formally, since P{v? ≤ m} = 1− (1− αi? − αj?)m,

P{v? ≤ log(n)2} ≥ 1− 1

n4
. (19)
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Hence from condition (A1), (19), and the definition of Q,

EΨ[Q] = P{v? > log(n)2}EΨ[Q|v? > log(n)2] + P{v? ≤ log(n)2}EΨ[Q|v? ≤ log(n)2]

≤ log η

n3
+ EΨ[Q|v? ≤ log(n)2]

≤ log η

n3
+ EΨ

[
v?−1∑
v=1

log
q(σ(v), xv?,v)

p(σ(v?), σ(v), xv?,v)
|v? ≤ log(n)2

]
+ nD(α, p)

≤ log η

n3
+ EΨ

(v? − 1)
∑

k/∈{i?,j?}

αkKL(q(k), p(σ(v?, k)))

1− αi? − αj?
|v? ≤ log(n)2

+ nD(α, p)

≤
(
n+ 2 log(n)2 log η

)
D(α, p) +

log η

n3
, (20)

where the last inequlaity stems from the fact that 2KL(q(i), p(σ(v?, i))) log η ≥
KL(q(j), p(σ(v?, j))) for all i and j from condition (A1).

(ii) To compute EΨ[(Q− EΨ[Q])2], we evaluate EΨ[(Q− nD(α, p))2|σ(v?) = i?] and EΨ[(Q−
nD(α, p))2|σ(v?) = j?]. From condition (A1), (19), and the definition of Q,

EΨ[(Q− nD(α, p))2|σ(v?) = i?]
= P{v? ≤ log(n)2}EΨ[(Q− nD(α, p))2|σ(v?) = i?, v? ≤ log(n)2]

+P{v? > log(n)2}EΨ[(Q− nD(α, p))2|σ(v?) = i?, v? > log(n)2]
≤ EΨ[(Q− nD(α, p))2|σ(v?) = i?, v? ≤ log(n)2]

+
1

n4
EΨ[(Q− nD(α, p))2|σ(v?) = i?, v? > log(n)2]

= O(np̄).

To derive the above inequality, we have used:

EΨ

( n∑
v=v?+1

(
log

q(σ(v), xv?,v)

p(σ(v?), σ(v), xv?,v)
−D(α, p)

))2

|σ(v?) = i?


=

n∑
v=v?+1

EΨ

[(
log

q(σ(v), xv?,v)

p(i?, σ(v), xv?,v)
−D(α, p)

)2

|σ(v?) = i?

]
= O(np̄) and

EΨ

(v?−1∑
v=1

(
log

q(σ(v), xv?,v)

p(σ(v?), σ(v), xv?,v)
−D(α, p)

))2

|σ(v?) = i?


= O(v?p̄+ (v?p̄)2),

where we use (A1) and the fact that every label is generated independently. Using the same approach,
we can also conclude that EΨ[(Q− nD(α, p))2|σ(v?) = j?] = O(np̄). In summary, we have:

EΨ[(Q− EΨ[Q])2] = O(np̄). (21)

We are ready to complete the proof of Theorem 1. From (18), (20), (21), and Lemma 9, when the
expected number of misclassified nodes is less than s (i.e., E[επ(n)] ≤ s ), we must have:

lim inf
n→∞

nD(α, p)

log (n/s)
≥ 1.

�

C Performance of the SP Algorithm – Proof of Theorem 2

Notations. We use the standard matrix norm ‖A‖ = sup
x:‖x‖2=1

‖Ax‖2. We denote by M ` the

expectation of the matrix of A`, i.e., M `
u,v = p(i, j, `) when u ∈ Vi and v ∈ Vj . Let M =

18



∑L
`=1 w`M

`. We define AΓ to denote the adjacency matrix obtained after trimming (Step 3 in
Algorithm 1). For any matrix R ∈ Rn×n, we define the matrix RΓ the square matrix formed
by the lines and columns of R whose indexes are in Γ. Hence, we can define A`Γ, M `

Γ, and
MΓ where Γ is the set of items obtained after the trimming process (Line 3) in the SP algorithm
(when taking the expectation to get for example MΓ, we condition on Γ). We introduce the noise
matrices X`

Γ = A`Γ −M `
Γ and XΓ =

∑L
`=1 w`X

`
Γ. We also denote by e(v, S, `) =

∑
w∈S A

`
vw

the total number of item pairs with observed label ` including the item v and an item from S

and µ(v, S, `) = e(v,S,`)
|S| the empirical density of label `. Let e(v, S) =

∑L
`=1 e(v, S, `) and

µ(v, S) = [µ(v, S, `)]0≤`≤L. In what follows, e(v,V) is referred to as the degree of item v (the
number of observed labels different than 0 of pairs of items including v).

Outline of the proof. To analyze the performance of the SP algorithm, we first state preliminary
lemmas. Lemma 11 is concerned with the concentration of the degree of the various items. Lemma 12
provides an upper bound of the matrix norm of random noise matrix X`

Γ. From these two lemmas,
we analyze the performance of the first part of the SP algorithm, and prove Theorem 7. To analyze
the second part of the SP algorithm consisting of log(n) improvement iterations, we introduce an
appropriate set of items H such that that V \H is of cardinality less than s with high probability
under the condition that nD(α, p)− np̄

log(np̄)3 ≥ log(n/s) +
√

log(n/s). We further bound the rate
of improvement of our cluster estimates in each iteration when restricted to the set of items H , and
deduce that after log(n) iterations, no item in H is misclassified.

C.1 Preliminary lemmas

Lemma 11 For every v ∈ V and c ≥ 1, we have

P{e(v,V) ≥ 10cnp̄L} ≤ exp(−10cnp̄L).

Proof. From Markov inequality,

P{e(v,V) ≥ 10np̄L} ≤ inf
θ>0

∏K
k=1 E [exp(θe(v,Vk))]

exp(θ10cnp̄L)

≤ inf
θ>0

∏K
k=1

(
1 + p̄L(exp(θ)− 1)

)αkn
exp(θ10cnp̄L)

≤ inf
θ>0

∏K
k=1

(
exp(p̄L(exp(θ)− 1))

)αkn
exp(θ10cnp̄L)

≤ exp(−10cnp̄L),

where we derive the last inequality choosing θ = 2. �

Lemma 12 (Lemma 8.5 of [4]) When e(v,V, `) ≤ ∆ for all v ∈ Γ, with high probability,

‖X`
Γ‖ = O(

√
np̄+ ∆).

The proof of Lemma 12 relies on arguments used in the spectral analysis of random graphs, see [7]
and [4].

Lemma 13 For all v ∈ Vk and D ≥ 0,

P

{(
K∑
i=1

|Vi|KL(µ(v,Vi), p(k, i)) ≥ nD

)
∩
(
e(v,V) ≤ 10ηnp̄L

)}

≤ exp

(
−nD +KL log(10ηLnp̄) +

100η2np̄2L2

α1

)
.
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Proof. Let X be a set of K × (L+ 1) matrices such that

X =

{
x ∈ ZK×(L+1) :

K∑
i=1

L∑
`=1

xi,` ≤ 10ηnp̄L, and
L∑
`=0

xi,` = |Vi| for all 1 ≤ i ≤ K

}
.

For notational simplicity, we use [
xi,`
|Vi| ] instead of [

xi,`
|Vi| ]0≤`≤L to represent the probability mass vector

on labels defined by xi. With a slight abuse of notation, we denote by e(v) the K × (L+ 1) matrix
whose (i, `) element is e(v,Vi, `). Then, for v ∈ Vk,

P

{(
K∑
i=1

|Vi|KL(µ(v,Vi), p(k, i)) ≥ nD

)
∩
(
e(v,V) ≤ 10np̄L

)}

=
∑
x∈X

P {e(v) = x}P

{
K∑
i=1

|Vi|KL(µ(v,Vi), p(k, i)) ≥ nD
∣∣∣∣e(v) = x

}

≤
∑
x∈X

P{e(v) = x}
exp

(∑K
i=1 |Vi|KL([

xi,`
|Vi| ], p(k, i))

)
exp(nD)

≤
∑
x∈X

P{e(v) = x}

∏K
i=1

∏L
`=0

(
xi,`

|Vi|p(k,i,`)

)xi,`
exp(nD)

(a)

≤ 1

exp(nD)

∑
x∈X

K∏
i=1

((
1−

∑L
`=1 xi,`
|Vi|

)xi,0
exp(

L∑
`=1

xi,`)

)

=
1

exp(nD)

∑
x∈X

K∏
i=1

exp

(
(|Vi| −

L∑
`=1

xi,`) log

(
1−

∑L
`=1 xi,`
|Vi|

)
+

L∑
`=1

xi,`

)

≤ 1

exp(nD)

∑
x∈X

K∏
i=1

exp

(
(
∑L
`=1 xk,`)

2

|Vi|

)

≤ (10ηnp̄L)KL exp(100η2np̄2L2/α1)

exp(nD)

= exp

(
−nD +KL log(10ηLnp̄) +

100η2np̄2L2

α1

)
,

where (a) stems from the following inequality:

P{e(v,Vi, `) = xi,` for all i, `}

≤
K∏
i=1

(
p(k, i, 0)xi,0

L∏
`=1

(
|Vi|
xi,`

)
p(k, i, `)xk,`

)

≤
K∏
i=1

(
p(k, i, 0)xi,0

L∏
`=1

(
e|Vi|
xi,`

)xi,`
p(k, i, `)xi,`

)
.

�

C.2 Part 1 of the SP algorithm – Proof of Theorem 7

Recall that Â = Û V̂ = Û Û>AΓ and ‖Âu − Âv‖ = ‖V̂u − V̂v‖. We can bound the number of
misclassified items as follows:

• with high probability, we have

‖Â−MΓ‖2F =
∑
v∈Γ

‖Âv −Mv,Γ‖22 = O(np̄ log(np̄)2); (22)
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• with high probability, every item pair u and v satisfies that when σ(v) represents the cluster
of v and Mv,Γ denotes the column vector of MΓ on v,

‖Mu,Γ −Mv,Γ‖22 = Ω
(
np̄2
)

when σ(u) 6= σ(v), (23)

since every w` is generated uniformly at random in [0, 1] and (A2) holds;
• (23) suggests that if v is misclassified by Algorithm 2, then we should have:

‖Âv −Mv,Γ‖22 = Ω
(
np̄2
)

; (24)

• from (22) and (24), with high probability,∣∣∣∣∣
K⋃
k=1

(Vk \ Sk)

∣∣∣∣∣ = O

(
log(np̄)2

p̄

)
.

Next, we prove (22) and (24).

Proof of (22). First observe that from the definition of Γ,

P
{

max
v∈Γ

e(v,V) ≥ 10np̄L

}
= P {|{v : e(v,V) ≥ 10np̄L}| > bn exp(−np̃)c}

≤ n exp(−10np̄L)

bn exp(−np̃)c+ 1
≤ exp(−5np̄L),

where the first inequality stems from Lemma 11 and Markov inequality. Therefore, with high
probability,

max
v∈Γ

e(v,V) ≤ 10np̄L. (25)

When the degrees of items are bounded, the standard matrix norm of each noise matrix X`
Γ can be

bounded using Lemma 12. From (25) and Lemma 12,

‖XΓ‖ ≤
L∑
`=1

w`‖X`
Γ‖

=

L∑
`=1

O(w`
√
np̄+ 10np̄L)

= O(
√
np̄). (26)

Let K̃ be the number of columns of Û . Since Â is the K̃-rank approximation of AΓ obtained by the
iterative power method with 2 log(n) iterations, from Theorem 9.1 and Theorem 9.2 in [11], with
high probability,

1

2
sk(AΓ) ≤ ‖AΓÛk‖ ≤ sk(AΓ) and ‖AΓ(I − Û1:kÛ

>
1:k)‖ ≤ 2sk+1(AΓ). (27)

Since ‖AΓÛK‖ ≤ sK+1(AΓ) ≤ ‖XΓ‖ = O(
√
np̄) from Lemma 12 and (27), K̃ ≤ K and thus the

rank of (Â−MΓ) is less than 2K. Therefore,

‖Â−MΓ‖2F ≤ 2K‖Â−MΓ‖2

≤ 4K
(
‖Â−AΓ‖2 + ‖AΓ −MΓ‖2

)
≤ O(np̄ log(np̄)2), (28)

where the last inequality stems from the fact that ‖AΓ−MΓ‖ = ‖XΓ‖ = O(
√
np̄) and ‖Â−AΓ‖ ≤

2sK̃+1(AΓ) = O(
√
np̄ log(np̄)) from (27).

Proof of (24). Define the following sets:

Ik = {v ∈ Vk ∩ Γ : ‖Âv −Mk
Γ‖2 ≤

1

4

np̃2

log(np̃)
}

O = {v ∈ Γ : ‖Âv −Mk
Γ‖2 ≥ 4

np̃2

log(np̃)
for all 1 ≤ k ≤ K}.

These sets are designed so that
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(i) |(∪Kk=1Ik) ∩Qv| = 0 for all v ∈ O ∩ VR, since ‖Âv − Âw‖2 ≥ 1
2‖Âv −M

k
Γ‖2 − ‖Âw −

Mk
Γ‖2 >

np̃2

log(np̃) for all w ∈ Ik;

(ii) |Γ \ (∪Kk=1Ik)| ≤ ‖Â−MΓ‖2F
min

v∈Γ\(∪K
k=1

Ik)
‖Âv−Mk

Γ‖2
= O

(
log(np̄)3

p̄

)
;

(iii) Ik ⊂ Qv for all v ∈ Ik∩VR, since ‖Âv−Âw‖2 ≤ 2‖Âv−Mk
Γ‖2+2‖Âw−Mk

Γ‖2 ≤
np̃2

log(np̃)

for all w ∈ Ik;
(iv) If |Qv ∩ Ik| ≥ 1, |Qv ∩ Ij | = 0 for all j 6= k, since ‖Mk

Γ −M
j
Γ‖ = Ω(np̄2) is much larger

than the radius np̃2

log(np̃) = O( np̄2

log(np̄) );

From the properties of Ik and O, we state the following results.

• From (i) and (ii), we deduce that

|Qv| = O

(
log(np̄)3

p̄

)
for all v ∈ O ∩ VR, (29)

since every w ∈ (∪Kk=1Ik) is outside of Qv (i.e., w ∈ Γ \ (∪Kk=1Ik) is necessary for
w ∈ Qv);

• since αk is a constant for all k and |Γ\(∪
K
k=1Ik)|
|Γ| = o(1) from (ii), with high probability,

|Ik ∩ VR| ≥ 1 for all 1 ≤ k ≤ K; (30)

• The properties (ii), (iii), and (iv) and (30) imply that

|Qv \ ∪k−1
l=0 Sl| ≥ mk, ∃v ∈ (∪Km=1Ik ∩ VR) \ (∪k−1

l=0 Sl), (31)

where mk is the k-th largest value among {|I1|, . . . , |IK |} ;
• since |Ik| ≥ |Vk ∩ (Γ \ O)| ≥ αkn(1− o(1)) from (ii) and (iii),

|Ik| ≥ |Vk ∩ (Γ \ O)| ≥ αkn(1− o(1)). (32)

Thus, we can conclude that K̂ = K from (31) and (32) and the property (ii); and from (29),
there exists a permutation γ such that ‖Âv?k −M

γ(k)
Γ ‖2 ≤ 4 np̃2

log(np̃) for all k. Hence from (23),

‖Âv −Mv,Γ‖2 = Ω
(
np̄2
)

when v is misclassified. �

C.3 Proof of Theorem 2

From Chernoff bound, with high probability,

||Vk| − αkn| ≤
√
n log(n) for all k. (33)

In what follows, we hence just prove the theorem assuming that (33) holds.

Let H be the largest set of items v ∈ V satisfying:

(H1) e(v,V) ≤ 10ηnp̄L,

(H2) When v ∈ Vk,
∑K
i=1

∑L
`=0 e(v,Vi, `) log p(k,i,`)

p(j,i,`) ≥
np̄

log(np̄)4 for all j 6= k.

(H3) e(v,V \H) ≤ 2 log(np̄)2.

(H1) regularizes degrees, (H2) means that v ∈ H is correctly classified when using the log-likelihood
estimate, and (H3) means that v does not share too many labels with items outside H .

The proof of the theorem follows from the following propositions. The first provides an upper bound
of |V \H|, and the second provides the rate at which our estimated clusters improve in each iteration
when we restrict our attention to items in H .

Proposition 14 When nD(α, p) − np̄
log(np̄)3 ≥ log(n/s) +

√
log(n/s), |V \ H| ≤ s with high

probability.
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Proposition 15 If |
⋃K
k=1(S

(0)
k \ Vk) ∩H|+ |V \H| = O(1/p̄), with high probability, the follow-

ing statement holds

|
⋃K
k=1(S

(t+1)
k \ Vk) ∩H|

|
⋃K
k=1(S

(t)
k \ Vk) ∩H|

≤ 1√
np̄

for all t ≥ 0.

From Proposition 15, after log(n) iterations (remember that np̄ = ω(1), so when n is large enough
1/
√
np̄ ≤ e−2), no item in H can be misclassified with high probability. Hence the number of

misclassified items cannot exceed |V \H| ≤ s, nD(α, p)− np̄
log(np̄)3 ≥ log(n/s) +

√
log(n/s). The

proof is completed by remarking that if the previous condition on D(α, p) holds, then

1 ≤ lim
n→∞

nD(α, p)− np̄
log(np̄)3

log(n/s) +
√

log(n/s)
= lim
n→∞

nD(α, p)

log(n/s)
,

where we used D(α, p) = Ω(p̄) from condition (A2) and Lemma 9. �

C.3.1 Proof of Proposition 14 – Size of V \H

We compute the number of items satisfying (H1), (H2), and (H3) in (34), (35), and Lemma 16,
respectively.

Number of items satisfying (H1): From Lemma 11, we get:

P{e(v,V) ≤ 10ηnp̄L} ≥ 1− exp(−10ηnp̄L). (34)

Number of items satisfying (H2): We shall prove that when v satisfies (H1), v satisfies (H2) as well
with probability at least

1− exp

(
−nD(α, p) +

np̄

2 log(np̄)3

)
. (35)

To this aim, we first establish that if v satisfies

K∑
i=1

|Vi|KL(µ(v,Vi), p(k, i)) ≤
(

1− log(n)2

√
n

)
nD(α, p)− np̄

log(np̄)4
, (36)

then v satisfies (H2). Indeed, assume that (36) holds, then

(i)
∑K
i=1 αinKL(µ(v,Vi), p(k, i)) ≤

(
1 + log(n)2

√
n

)∑K
i=1 |Vi|KL(µ(v,Vi), p(k, i)) <

nD(α, p), since ||Vi| − αin| ≤
√
n log(n) and (36) holds;

(ii)
∑K
i=1 αinKL(µ(v,Vi), p(j, i)) ≥ nD(α, p), since

max
{∑K

i=1 αiKL(µ(v,Vi), p(j, i)),
∑K
i=1 αiKL(µ(v,Vi), p(k, i))

}
≥ D(α, p) and∑K

i=1 αiKL(µ(v,Vi), p(k, i)) < D(α, p);

(iii)
∑K
i=1 |Vi|KL(µ(v,Vi), p(j, i)) ≥

(
1− log(n)2

√
n

)
nD(α, p), from ii) and the fact that

||Vi| − αin| ≤
√
n log(n);

(iv) from (36) and iii), for all j 6= i,

K∑
i=1

L∑
`=0

e(v,Vi, `) log
p(k, i, `)

p(j, i, `)
=

K∑
i=1

|Vi| (KL(µ(v,Vi), p(j, i))−KL(µ(v,Vi), p(k, i)))

≥ np̄

log(np̄)4
.

Hence v satisfies (H2). It remains to evaluate the probability of the event (36), which is done by
applying Lemma 13 and proves (35).
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Number of items satisfying (H3): From (34), (35), and the Markov inequality, we deduce that with

probability at least 1− exp
(
−
√

log(n/s)
)

, the number of items that do not satisfy either (H1) or

(H2) is less than s/3 when nD(α, p)− np̄
log(np̄)3 ≥ log(n/s) +

√
log(n/s), since

E{The number of items that do not satisfy either (H1) or (H2)}
s/3

≤
n exp(−10ηnp̄L) + n exp

(
−nD(α, p) + np̄

2 log(np̄)3

)
s/3

≤ n

s
exp

(
−nD(α, p) +

np̄

log(np̄)3

)
≤ exp

(
−
√

log(n/s)
)
, (37)

where we have used Lemma 10 for the last inequality. Lemma 16 allows us to complete the proof of
Proposition. �

Lemma 16 When the number of items that do not satisfy either (H1) or (H2) is less than s/3,
|V \H| ≤ s, with high probability.

Proof. Let e(S, S) =
∑
v∈S e(S, S). Next we prove the following intermediate claim: there is no

subset S ⊂ V such that e(S, S) ≥ s log(np̄)2 and |S| = s with high probability. For any subset
S ∈ V such that |S| = s, by Markov inequality,

P{e(S, S) ≥ s log(np̄)2} ≤ inf
t≥0

E[exp(e(S, S)t)]

st log(np̄)2

≤ inf
t≥0

∏s2/2
i=1 (1 + Lp̄ exp(t))

st log(np̄)2

≤ inf
t≥0

exp

(
s2Lp̄

2
exp(t)− st log(np̄)2

)
≤ exp

(
−np̄s

(
log np̄− sL

2n
exp(

np̄

log np̄
)
))

≤ exp

(
−np̄s log np̄

2

)
, (38)

where, in the last two inequalities, we have set t = np̄
lognp̄ and used the fact that: n

s ≥ exp( np̄
lognp̄ ),

which comes from the assumptions made in the theorem. Since the number of subsets S ⊂ V with
size s is

(
n
s

)
≤ ( ens )s, from (38), we deduce:

E[|{S : e(S, S) ≥ s log(np̄)2 and |S| = s}|] ≤ (
en

s
)s exp

(
−np̄s log np̄

2

)
= exp

(
−s(np̄ log np̄

2
− log

en

s
)

)
≤ exp

(
−np̄s log np̄

4

)
.

Therefore, by Markov inequality, we can conclude that there is no S ⊂ V such that e(S, S) ≥
s log(np̄)2 and |S| = s with high probability.

To conclude the proof of the lemma, we build the following sequence of sets. Let Z1 denote the set
of items that do not satisfy at least one of (H1) and (H2). Let {Z(t) ⊂ V}1≤t≤t? be generated as
follows:

• Z(0) = Z1.

• For t ≥ 1, Z(t) = Z(t − 1) ∪ {vt} if there exists vt ∈ V such that e(vt, Z(t − 1)) >
2 log(np̄)2 and vt /∈ Z(t− 1). If such an item does not exist, the sequence ends.
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The sequence ends after the construction of Z(t?). We show that if we assume that the cardinality of
items that do not satisfy (H3) is strictly larger than s/2, then one the set of the sequence {Z(t) ⊂
V}1≤t≤t? contradicts the claim we just proved.

Assume that the number of items do not satisfy (H3) is strictly larger than s/2, then these items
will be at some point added to the sets Z(t), and by definition, each of these node contributes with
more than 2 log(np̄)2 in e(Z(t), Z(t)). Hence if starting from Z1, we add s/2 items not satisfying
(H3), we get a set Z(t) of cardinality less than s/3 + s/2 and such that e(Z(t), Z(t)) > s log(np̄)2.
We can further add arbitrary items to Z(t) so that it becomes of cardinality s, and the obtained set
contradicts the claim. �

C.3.2 Proof of Proposition 15

Recall that {S(t)
j }1≤j≤K is the partition after the t-th improvement iteration. Also recall that with

loss of generality, we assume that the set of misclassified items in H after the t-th step is E(t) =(
∪k(S

(t)
k \ Vk)

)
∩ H (it should be defined through an appropriate permutation γ of {1, . . . ,K}

by E(t) = (∪k(S
(t)
k \ Vγ(k))) ∩H , but we omit γ). With this notational convention, we can define

E(t)
jk = (S

(t)
j ∩ Vk) ∩ H and E(t) =

⋃
j,k:j 6=k E

(t)
jk . At each improvement step, items move to the

most likely cluster (according to the log-likelihood defined in the SP algorithm). Thus, for all i,

0 ≤
∑

j,k:j 6=k

∑
v∈E(t+1)

jk

K∑
i=1

L∑
`=0

e(v, S
(t)
i , `) log

p̂(j, i, `)

p̂(k, i, `)

≤
∑

j,k:j 6=k

∑
v∈E(t+1)

jk

K∑
i=1

L∑
`=0

e(v, S
(t)
i , `) log

p(j, i, `)

p(k, i, `)
+ |E(t+1)|(np̄)1−κ log(np̄)3 (39)

≤
∑

j,k:j 6=k

∑
v∈E(t+1)

jk

K∑
i=1

L∑
`=0

e(v,Vi, `) log
p(j, i, `)

p(k, i, `)

+
∑

w∈E(t+1)

e(w, E(t)) log(2η) + 2|E(t+1)|(np̄)1−κ log(np̄)3 (40)

≤− np̄

log(np̄)4
|E(t+1)|+

∑
w∈E(t+1)

e(w, E(t), `) log(2η) + 2|E(t+1)|(np̄)1−κ log(np̄)3 (41)

≤− np̄

log(np̄)4
|E(t+1)|+

√
|E(t)||E(t+1)|np̄ log np̄+ 3|E(t+1)|(np̄)1−κ log(np̄)3. (42)

Therefore, from the above inequalities, we conclude that

|E(t+1)|
|E(t)|

≤ log(np̄)10

np̄
≤ 1√

np̄
.

Next we prove all the steps of the previous analysis.

Proof of (39): From log(1 + x) ≤ x, when p(j, i, `)− |p̂(j, i, `)− p(j, i, `)| > 0,∣∣∣∣log
p̂(j, i, `)

p(j, i, `)

∣∣∣∣ ≤ |p̂(j, i, `)− p(j, i, `)|
p(j, i, `)− |p̂(j, i, `)− p(j, i, `)|

.

Thus, we just provide an upper bound of |p̂(j, i, `) − p(j, i, `)| to show (39). From the triangle
inequality,

|p̂(j, i, `)− p(j, i, `)|

=

∣∣∣e(S(0)
i , S

(0)
j , `)− p(j, i, `)|S(0)

i ||S
(0)
j |
∣∣∣

|S(0)
i ||S

(0)
j |

≤

∣∣∣e(S(0)
i , S

(0)
j , `)− E[e(S

(0)
i , S

(0)
j , `)]

∣∣∣+
∣∣∣E[e(S

(0)
i , S

(0)
j , `)]− p(j, i, `)|S(0)

i ||S
(0)
j |
∣∣∣

|S(0)
i ||S

(0)
j |

.(43)
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We first find an upper bound of
∣∣∣e(S(0)

i , S
(0)
j , `)− E[e(S

(0)
i , S

(0)
j , `)]

∣∣∣. Let S be the of partitions
such that ∣∣∪Kk=1Vk \ Sk

∣∣ ≤ ξ = O

(
log(np̄)2

p̄

)
for all {Sk}1≤k≤K ∈ S.

Then,

|S| ≤
(
n

ξ

)
Kξ

≤
(
ken

ξ

)ξ
= exp

(
O

(
log(np̄)3

p̄

))
. (44)

For all {Sk}1≤k≤K ∈ S and for all ` ≥ 1 and 1 ≤ i, j ≤ K, e(Si, Sj , `) is the sum of |Si||Sj |
(or |Si|

2

2 when i = j) independent Bernoulli random variables. Since the variance of e(Si, Sj , `) is
always less than n2p̄, by Chernoff inequality (e.g., Theorem 2.1.3 in [22]), with probability at least
1− exp

(
−Θ

(
log(np̄)4

p̄

))
,

|e(Si, Sj , `)− E[e(Si, Sj , `)]| ≤ n log(np̄)2 for all i, j, `. (45)

From (44) and (45), with high probability,

|e(Si, Sj , `)− E[e(Si, Sj , `)]| ≤ n log(np̄)2 for all i, j, ` and {Sk}1≤k≤K ∈ S.

Since {S(0)
k }1≤k≤K ∈ S, from the above inequality,∣∣∣e(S(0)

i , S
(0)
j , `)− E[e(S

(0)
i , S

(0)
j , `)]

∣∣∣ ≤ n log(np̄)2 for all i, j, `. (46)

We now devote to the remaining part of (43). Since |E(0)| = O
(

log(np̄)2

p̄

)
from Theorem 7,

∣∣∣E[e(S
(0)
i , S

(0)
j , `)]− |S(0)

i ||S
(0)
j |p(i, j, `)

∣∣∣ ≤ η|E(0)|np(i, j, `) = O(n log(np̄)2). (47)

From (43), (46) and (47), with high probability,

|p̂(j, i, `)− p(j, i, `)| = O(log(np̄)2/n) for all i, j, `,

which implies that:∣∣∣∣log
p̂(j, i, `)

p(j, i, `)

∣∣∣∣ ≤ |p̂(j, i, `)− p(j, i, `)|
p(j, i, `)− |p̂(j, i, `)− p(j, i, `)|

= O

(
log(np̄)2

np(j, i, `)

)
for all i, j, `.

Since e(v, S(t)
i , `) ≤ e(v,V) ≤ 10ηnp̄L from (H1) and np(j, i, `) ≥ (np̄)κ from (A3), we deduce

that, for all v ∈ Γ and i, j, k,

L∑
`=0

e(v, S
(t)
i , `)

∣∣∣∣log
p̂(j, i, `)

p̂(k, i, `)
− log

p(j, i, `)

p(k, i, `)

∣∣∣∣ = O
(
log(np̄)2(np̄)1−κ) .
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Proof of (40): Since log p(j,i,0)
p(k,i,0) = O(p̄) for all i, j, k and |E(t)| = O(log(np̄)2/p̄),

K∑
i=1

L∑
`=0

e(v, S
(t)
i , `) log

p(j, i, `)

p(k, i, `)

=

K∑
i=1

(
|S(t)
i | log

p(j, i, 0)

p(k, i, 0)
+

L∑
`=1

e(v, S
(t)
i , `) log

p(j, i, `)p(k, i, 0)

p(k, i, `)p(j, i, 0)

)

≤
K∑
i=1

(
|Vi| log

p(j, i, 0)

p(k, i, 0)
+

L∑
`=1

e(v, S
(t)
i , `) log

p(j, i, `)p(k, i, 0)

p(k, i, `)p(j, i, 0)

)
+ log(np̄)3

≤
K∑
i=1

L∑
`=0

e(v,Vi, `) log
p(j, i, `)

p(k, i, `)
+

K∑
i=1

L∑
`=1

e(v,Vi \ S(t)
i , `) log(2η) + log(np̄)3

=

K∑
i=1

L∑
`=0

e(v,Vi, `) log
p(j, i, `)

p(k, i, `)
+
(
e(v, E(t)) + e(v,V \H)

)
log(2η) + log(np̄)3

≤
K∑
i=1

L∑
`=0

e(v,Vi, `) log
p(j, i, `)

p(k, i, `)
+ log(2η)e(v, E(t)) + 2 log(np̄)3,

where the last inequality stems from (H3), i.e., from e(v,V \H) ≤ 2 log(np̄)2 when v ∈ H .

Proof of (41): Since E(t+1) ⊂ H and every v ∈ H satisfies (H2), every v ∈ E(i+1)
jk satisfies:

K∑
i=1

L∑
`=0

e(v,Vi, `) log
p(j, i, `)

p(k, i, `)
≤ − np̄

log(np̄)4
.

Proof of (42): Let Γ̄ = {v : e(v,V) ≤ 10ηnp̄L} and A`
Γ̄

be the trimmed matrix of A` whose
elements in rows and columns corresponding to w /∈ Γ̄ are set to 0. Γ̄ is the set of all items that
satisfy (H1) and H ⊂ Γ̄. Let XΓ̄ =

∑L
`=1(A`

Γ̄
−M `

Γ̄
). We have:∑

v∈E(t+1)

(e(v, E(t))− E[e(v, E(t))]) ≤ 1TE(t) ·XΓ̄ · 1E(t+1) ,

where 1S is the vector whose v-th component is equal to 1 if v ∈ S and to 0 otherwise. Since
E[e(v, E(t))] ≤ p̄L|E(t)| and ‖XΓ̄‖2 ≤

√
np̄ log np̄ with high probability from Lemma 12,∑

v∈E(t+1)

e(v, E(t)) =
∑

v∈E(t+1)

(
e(v, E(t))− E[e(v, E(t))]

)
+ p̄L|E(t)||E(t+1)|

≤ ‖1TE(t) ·XΓ̄ · 1E(t+1)‖2 + |E(t+1)| log(np̄)

≤ ‖1TE(t)‖2‖XΓ̄‖2‖1E(t+1)‖2 + |E(t+1)| log(np̄)

≤
√
|E(t)||E(t+1)|np̄ log(np̄) + |E(t+1)| log(np̄).

�

D Proof of Theorem 3

The positive result is obtained by applying Theorem 2 to s = 1
2 . When lim infn→∞

nD(α,p)
log(n) ≥ 1, SP

algorithm find clusters exactly with high probability. Thus, it suffices to show the negative result.

We prove the negative part by contradiction. Consider a maximum a posteriori (MAP) estimation
with full parameter information. When we observe a labeld information A, the MAP estimates the
clusters as follows:

(Ŝk)k=1,...,k = arg max
(Sk)k=1,..,K

P {(Sk)k=1,..,K |α, p,K,A} . (48)
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Let εMAP denote the number of misclassified nodes by the MAP estimation. From the definition of
the MAP estimation, for any clustring algorithm π, we have

P {επ ≥ 1} ≥ P
{
εMAP ≥ 1

}
. (49)

Thus, in what follows, we show that when lim infn→∞
nD(α,p)
log(n) < 1, the MAP estimation is failed to

find the exact clusters with high probability.

We start by Lemma 17 which finds a large deviation inequality for edge connections.

Lemma 17 Let x ∈ ZK×(L+1) whose (k, ` + 1) element is xk,`, and such that
∑L
`=0 xk,` = |Vk|

for all 1 ≤ k ≤ K,
∑L
`=1 xk,` = Θ(np̄) for all k, and

K∑
k=1

|Vk|KL(µ(v,Vk), p(i, k)) = nD when e(v) = x,

where we denote by e(v) the K × (L+ 1) matrix whose (k, `+ 1) element is e(v,Vk, `). Then,

log (P {e(v) = x}) ≥ −nD(1 + o(1)) when v ∈ Vi and D = Ω(p̄).

Proof. When using the convention
∑b
`=a as 0 when a > b, we have

log (P {e(v) = x})

=

K∑
k=1

((
|Vk| −

L∑
`=1

xk,`

)
log (p(i, k, 0)) +

L∑
`=1

log

(
p(i, k, `)xk,`

(
|Vk| −

∑`−1
m=1 xk,m

xk,`

)))

≥
K∑
k=1

(|Vk| − L∑
`=1

xk,`

)
log (p(i, k, 0)) +

L∑
`=1

log

p(i, k, `)xk,`
(
|Vk| −

∑L
m=1 xk,m

)xk,`
xk,`!


(a)

≥
K∑
k=1

((
|Vk| −

L∑
`=1

xk,`

)
log (p(i, k, 0)) +

L∑
`=1

log

((
p(i, k, `)e

xk,`
|Vk|−

∑L
m=1 xk,m

)xk,`
1

e
√
xk,`

))
(b)
=

K∑
k=1

((
|Vk| −

L∑
`=1

xk,`

)
log (p(i, k, 0)) +

L∑
`=1

log

(
p(i, k, `)e

xk,`
|Vk|−

∑L
m=1 xk,m

)xk,`)
− o

(
K∑
k=1

L∑
`=1

xk,`

)
(c)

≥
K∑
k=1

(
|Vk| −

L∑
`=1

xk,`

)
log

(
p(i, k, 0)

(
1 +

∑L
`=1 xk,`

|Vk| −
∑L
`=1 xk,`

))

+

K∑
k=1

(
L∑
`=1

xk,` log

(
p(i, k, `)
xk,`

|Vk|−
∑L
m=1 xk,m

))
− o

(
K∑
k=1

L∑
`=1

xk,`

)

=

K∑
k=1

(
|Vk| −

L∑
`=1

xk,`

)
log

(
p(i, k, 0)

(|Vk| −
∑L
`=1 xk,`)/|Vk|

)
+

K∑
k=1

(
L∑
`=1

xk,` log

(
p(i, k, `)

xk,`/|Vk|

))

+

K∑
k=1

(
L∑
`=1

xk,` log

(
|Vk| −

∑L
m=1 xk,m
|Vk|

))
− o

(
K∑
k=1

L∑
`=1

xk,`

)
(d)

≥ − nD − o

(
K∑
k=1

L∑
`=1

xk,`

)
(e)

≥ − nD(1 + o(1)),

where (a) is obtained from n! ≤ e
√
n
(
n
e

)n
; (b) stems from

∑K
k=1

∑L
`=1 xk,` = ω(1); to derive

(c), we use e
∑L
`=1 xk,` ≥

(
1 +

∑L
`=1 xk,`

|Vk|−
∑L
`=1 xk,`

)|Vk|−∑L
`=1 xk,`

since e ≥ (1 + 1/x)x for all x > 0; to
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prove (d), we use the definition of x and the following inequality:

L∑
`=1

xk,` log

(
|Vk|

|Vk| −
∑L
m=1 xk,m

)
=

(∑L
`=1 xk,`

)2

|Vk| −
∑L
`=1 xk,`

(1 + o(1)) = o(

L∑
`=1

xk,`);

and (e) is obtained from the definition of x that
∑L
`=1 xk,` = Θ(np̄) for all k. �

Assume that there exists a constant η > 0 such that nD(α,p)
log(n) < 1− η.

Let (i?, j?) = arg mini,j:i<j DL+(p(i), p(j)) (i.e., it is the hardest case to discriminate cluster i?
and cluster j?). When n→∞, one can easily check using the continuity of the KL divergence that
there exists x? such that when e(v) = x?,

η

2
log n+

K∑
k=1

|Vk|KL(µ(v,Vk), p(j?, k)) <

K∑
k=1

|Vk|KL(µ(v,Vk), p(i?, k)) and (50)

K∑
k=1

|Vk|KL(µ(v,Vk), p(i?, k)) ≤ (1− η/2) log(n). (51)

Let Ve = {v ∈ Vi? : e(v) = x?}. From (51) and Lemma 17, E[|Ve|] ≥ nη/4. Thus, from Markov
inequality, with probability at least 1− n−η/4, Ve is not empty (i.e., |Ve| ≥ 1).

Let v? ∈ Ve be a node in Ve. We denote by Φ the original partition and define a slightly modified
partition Ψ as follows:

V̂i? = Vi? \ {i?}, V̂j? = Vj? ∪ {i?}, and V̂k = Vk otherwise.
Then, Ψ is a more likely partition than Φ from (50), i.e.,

P {Φ|α, p,K,A} ≥ P {Ψ|α, p,K,A} (52)
which means that the MAP estimator does not select the exact partition when Ve is not empty.
Therefore, from (49), every clustering algorithm π has the error probability that

E {επ ≥ 1} ≥ 1− n−η/4

when there exists a constant η > 0 such that nD(α,p)
log(n) < 1− η. �

E Proof of Claim 6

When p̄ = o( 1√
n

), we have from Lemmas 11 and 13:

lim
n→∞

log
(
P
{∑K

k=1 |Vk|KL (µ(v,Vk), p(i, k)) ≥ nD
})

nD

≤ lim
n→∞

log
(
P
{∑K

k=1 |Vk|KL (µ(v,Vk), p(i, k)) ≥ nD, e(v,V) ≤ 10ηnp̄L
}

+ P{e(v,V) ≥ 10ηnp̄L}
)

nD

≤ lim
n→∞

log (exp (−nD(1− o(1))) + exp(−10ηnp̄L))

nD
≤− 1.

Thus, to prove the result, it suffices to show that:

lim
n→∞

log
(
P
{∑K

k=1 |Vk|KL (µ(v,Vk), p(i, k)) ≥ nD
})

nD
≥ −1.

Next, we denote by e(v) the K × (L + 1) matrix whose (k, ` + 1) element is e(v,Vk, `). Let
x ∈ ZK×(L+1) whose (k, `+ 1) element is xk,`, and such that

∑L
`=0 xk,` = |Vk| for all 1 ≤ k ≤ K,∑L

`=1 xk,` = Θ(np̄) for all k, and
K∑
k=1

|Vk|KL(µ(v,Vi), p(i, k)) = nD(1 + o(1)) when e(v) = x.
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We can easily check using the continuity of the KL divergence that such a choice for x is possible.
Then, from Lemma 17,

log

(
P

{
K∑
k=1

|Vk|KL (µ(v,Vk), p(i, k)) ≥ nD

})
≥ log (P {e(v) = x})

≥ − nD(1 + o(1)).

�
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