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1 Proof of Proposition 1

Proof. Consider the KL divergence between two distributions parameterized by w̄m and pm, respec-
tively:

D(Pw̄m
‖Ppm) =

∑
i∈Um

w̄mi log
w̄mi
pmi

=
1

Nm

(∑
i∈Um

wmi log w̄mi −
∑
i∈Um

wmi log pmi

)
.

Then L(W )− L(θ,β) =
∑
mNmD(Pw̄m

‖Ppm) ≥ 0, due to the non-negativity of KL divergence.
Now we shall appeal to a standard lower bound for the KL divergence (Cover & Joy, 2006):

D(Pw̄m
‖Ppm) ≥ 1

2

∑
i∈Um

(w̄mi − pmi)2,

and an upper bound via χ2-distance (e.g. see Sayyareh (2011)):

D(Pw̄m‖Ppm) ≤
∑
i∈Um

1

pmi
(w̄mi − pmi)2.

Taking summation of both bounds over m = 1, . . . ,M concludes the proof.

2 Connection between our geometric loss function and other objectives
which arise in subspace learning and k-means clustering problems.

Recall that our geometric objective is:

min
B

G(B) = min
B

M∑
m=1

Nm min
x:x∈B

‖x− w̄m‖22. (1)

We note that this optimization problem can be reduced to two other well-known problems when the
objective function and constraints are suitably relaxed/modified:

• A version of weighted low-rank matrix approximation is min
rank(D̂)≤r

tr((D̂−D)TQ(D̂−D)).

If Q = diag(N1, . . . , NM ), D = W , r = K and D̂ = θβ, the problem looks similar to
the geometric objective without constraints and has a closed form solution (Manton et al.,
2003): D̂ = Q−1/2UΣKV

T , where

Q1/2D = UΣKV
T (2)
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is the singular value decomposition and ΣK is the truncation to K biggest singular values.
Also note that here and further without loss of generality we assume M ≥ V , if M < V for
the proofs to hold we replace Q1/2D with (Q1/2W )T .

• The k-means algorithm involves optimizing the objective (Hartigan & Wong, 1979; Lloyd,
1982; MacQueen, 1967): min

x1,...,xK

∑
m min
i∈{1,...,K}

‖w̄m − xi‖22. Our geometric objective (1)

is quite similar — it replaces the second minimization with minimizing over the convex hull
of {x1, . . . , xK} and includes weight Nms.

• The two problems described above are connected in the following way (Xu et al.,
2003). Define the weighted k-means objective with respect to cluster assignments:∑
k

∑
m∈Ck

Nm‖w̄m − µk‖2, where µk is the centroid of the k-th cluster:

µk =

∑
m∈Ck

Nmw̄m∑
m∈Ck

Nm
. (3)

Let Sk be the optimal indicator vector of cluster k, i.e., m-th element is 1 if m ∈ Ck and 0
otherwise. Define

Yk =
Q1/2Sk
‖Q1/2Sk‖2F

. (4)

If we relax the constraint on Sk to allow any real values instead of only binary values, then
Y can be solved via the following eigenproblem: Q1/2WWTQ1/2Y = λY .

Let us summarize the above observations by the following:

Proposition 2. Given the M ×V normalized word counts matrix W . Let µ1, . . . , µK be the optimal
cluster centroids of the weighted k-means problem given by Eq. (3), and let vks be the columns of V
in the SVD of Eq. (2). Then,

span(µ1, . . . , µK) = span(v1, . . . , vK).

Proof. Following Ding & He (2004), let Pc be an operator projecting any vector onto
span(µ1, . . . , µK): Pc =

∑
k µkµ

T
k . Recall that Sk is the indicator vector of cluster k and Yk de-

fined in Eq. (4). Then µk = W T
QSk

‖Q1/2Sk‖2F
= WTQ1/2Yk, and Pc =

∑
kW

TQ1/2Yk(WTQ1/2Yk)T .

Now, note that Yk’s are the eigenvectors of Q1/2WWTQ1/2, which are also left-singular vectors of
Q1/2W = UΣV T , so

Pc = (Q1/2W )TYk((Q1/2W )TYk)T =
∑
k

λ2
kvkv

T
k ,

which is the projection operator for span(v1, . . . , vK). Hence, the two subspaces are equal.

Prop. 2 and the preceding discussions motivate the GDM algorithm for estimating the topic polytope:
first, obtain an estimate of the underlying subspace based on k-means clustering and then, estimate
the vertices of the polytope that lie on the subspace just obtained.

3 Proofs of technical lemmas

Recall from the main part:
Problem 1. Given a convex polytope A ∈ Rn, a continuous probability density function f(x)

supported by A, find a K-partition A =
K⊔
k=1

Ak that minimizes:

K∑
k

∫
Ak

‖µk − x‖22f(x) dx,

where µk is the center of mass of Ak: µk := 1∫
Ak

f(x) dx

∫
Ak
xf(x) dx.

2



Proof of Lemma 1

Proof. The proof follows from a sequence of results of Du et al. (1999), which we now summarize.
First, if the K-partition (A1, . . . , AK) is a minimizer of Problem 1, then Aks are the Voronoi regions
corresponding to the µks. Second, Problem 1 can be restated in terms of the µks to minimize
K(µ1, . . . , µK) =

∑
k

∫
Âk
‖µk − x‖22f(x) dx, where Âks are the Voronoi regions corresponding

to their centers of mass µks. Third, K(µ1, . . . , µK) is a continuous function and admits a global
minimum. Fourth, the global minimum is unique if the distance function in K is strictly convex
and the Voronoi regions are convex. Now, it can be verified that the squared Euclidean distance is
strictly convex. Moreover, Voronoi regions are intersections of half-spaces with the convex polytope
A, which can also be represented as an intersection of half-spaces. Therefore, the Voronoi regions of
Problem 1 are convex polytopes, and it follows that the global minimizer is unique.

Proof of Lemma 2

Proof. Since f is a symmetric Dirichlet density, the center of mass of A coincides with its centroid.
Let n = 3. In an equilateral triangle, the centers of mass µ1, µ2, µ3 form an equilateral triangle C.
An intersection point of the Voronoi regions A1, A2, A3 is the circumcenter and the centroid of C,
which is also a circumcenter and centroid of A. Therefore, µ1, µ2, µ3 are located on the medians of A
with exact positions depending on the α. The symmetry and the property of circumcenter coinciding
with centroid carry over to the general n-dimensional equilateral simplex (Westendorp, 2013).

4 Proof of consistency theorem

Proof. For part (a), let (µ̂1, . . . , µ̂K) be the minimizer of the k-means problem
min

µ1,...,µK

∑
m min
i∈{1,...,K}

‖pm − µi‖22. Let µ̃1, . . . , µ̃K be the centers of mass of the solution

of Problem 1 applied to B and the Dirichlet density. By Lemma 1, these centers of mass are unique,
as they correspond to the unique optimal K-partition. Accordingly, by the strong consistency of
k-means clustering under the uniqueness condition (Pollard, 1981), as M →∞,

Conv(µ̂1, . . . , µ̂K)→ Conv(µ̃1, . . . , µ̃K) a.s.,

where the convergence is assessed in either Hausdorff or the minimum matching distance for convex
sets (Nguyen, 2015). Note that C = 1

M

∑
m pm is a strongly consistent estimate of the centroid

C0 of B, by the strong law of large numbers. Lemma 2 shows that µ̃1, . . . , µ̃K are located on the
corresponding medians. To complete the proof, it remains to show that R̂ := max

1≤m≤M
‖C − pm‖2

is a weakly consistent estimate of the circumradius R0 of B. Indeed, for a small ε > 0 define the
event Ekm = {pm ∈ Bε(βk) ∩ B}, where Bε(βk) is an ε-ball centering at vertex βk. Since B is
equilateral and the density over it is symmetric and positive everywhere in the domain, P(E1

m) =
. . . = P(EKm ) =: bε > 0. Let Em =

⋃
k

Ekm, then P(Em) = bεK. We have

lim sup
M→∞

P(|R̂−R0| > 2ε) = lim sup
M→∞

P( max
1≤m≤M

‖C0 − pm‖2 < R0 − ε) <

< lim sup
M→∞

P(

M⋂
m=1

E{
m) = lim sup

M→∞
(1− bεK)M = 0.

A similar argument allows us to establish that each Rk is also a weakly consistent estimate of R0.
This completes the proof of part (a). For a proof sketch of part (b), for each α > 0, let (µα1 , . . . , µ

α
K)

denote the K means obtained by the k-means clustering algorithm. It suffices to show that these
estimates converge to the vertices of B. Suppose this is not the case, due to the compactness of B,
there is a subsequence of the K means, as α→ 0, that tends to K limit points, some of which are
not the vertices of B. It is a standard fact of Dirichlet distributions that as α→ 0, the distribution of
the pm converges weakly to the discrete probability measure

∑K
k=1

1
K δβk

. So the k-means objective
function tends to M

K

∑
k mini∈{1,...,K} ‖βk − µαi ‖22, which is strictly bounded away from 0, leading

to a contradiction. This concludes the proof.
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5 Tuned GDM

In this section we discuss details of the extension parameters tuning. Recall that GDM requires
extension scalar parameters m1, . . . ,mK as part of its input. Our default choice is

mk =
Rk

‖C − µk‖2
for k = 1, . . . ,K, (5)

where Rk = max
m∈Ck

‖C − w̄m‖2 and Ck is the set of indices of documents belonging to cluster

k. In some situations (e.g. outliers making extension parameters too big) tuning of the extension
parameters can help to improve the performance, which we called tGDM algorithm. Recall the
geometric objective (1) and let

Gk(B) :=
∑
m∈Ck

Nm min
x:x∈B

‖x− w̄m‖22, (6)

which is simply the geometric objective evaluated at the documents of cluster k. For each k =
1, . . . ,K we used line search procedure (Brent, 2013) optimization of Gk(B) in an interval from 1
up to default mk as in (5). Independent tuning for each k gives an approximate solution, but helps to
reduce the running time.

6 Performance evaluation

Here we present some additional simulation results and NIPS topics.

Nonparametric analysis with DP-means. Based on simulations we show how nGDM can be used
when number of topics is unknown and compare it against DP-means utilizing KL divergence (KL
DP-means) by Jiang et al. (2012). We analyze settings with α ranging from 0.01 to 2. Recall that
KL DP-means assumes α → 0. V = 1200, M = 2000, Nm = 3000, η = 0.1, true K = 15. For
each value of α average over 5 repetitions is recorded and we plot the perplexity of 100 held-out
documents. Fig. 1 supports our argument - for small values of α both methods perform equivalently
well (KL DP-means due to variance assumption being satisfied and nGDM due to part (b) of Theorem
1), but as α gets bigger, we see how our geometric correction leads to improved performance.
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Figure 1: Perplexity for varying α

Documents of varying size. Until this point all documents are of the same length. Next, we
evaluate the improvement of our method when document length varies. The lengths are randomly
sampled from 50 to 1500 and the experiment is repeated 20 times. The weighted GDM uses document
lengths as weights for computing the data center and training k-means. In both performance measures
(Fig. 2 left and center) the weighted version consistently outperforms the unweighted one, while the
tuned weighted version stays very close to Gibbs sampling results.
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Effect of the document topic proportions prior. Recall that topic proportions are sampled from
the Dirichlet distribution θm|α ∼ DirK(α). We let α increase from 0.01 to 2. Smaller α implies that
samples are close to the extreme points, and hence GDM estimates topics better. This also follows
from Theorem 1(b) of the paper. We see (Fig. 2 right) that our solution and Gibbs sampling are
almost identical for small α, while VEM is unstable. With increased α Gibbs sampling remains the
best, while our algorithm remains better than VEM. We also note that increasing α causes error of all
methods to increase.
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Figure 2: Minimum-matching Euclidean distance: varying Nm (left); increasing α (right). Perplexity
for varying Nm (center).

Projection estimate analysis. Our objective function (1) motivates the estimation of document
topic proportions by taking the barycentric coordinates of the projection of the normalized word
counts of a document onto the topic polytope. To do this we utilized the projection algorithm of
Golubitsky et al. (2012). Note that some algorithms (RecoverKL in particular) do not have a built
in method for finding topic proportions of the unseen documents. Our projection based estimate
can solve this issue, as it can find topic proportions of a document only based on the topic polytope.
Fig. 3 shows that perplexity with projection estimates closely follows corresponding results and
outperforms VEM on the short documents (Fig. 3 (right)).
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Figure 3: Projection method: increasing Nm, M = 1000 (left); increasing M , Nm = 1000 (center);
increasing M , Nm = 50 (right).
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Top 10 words (columns) of each of the 10 learned topics of NIPS dataset

GDM topics

analog regress. reinforc. nodes speech image mixture neurons energy rules
circuit kernel policy node word images experts neuron characters teacher
memory bayesian action classifier hmm object missing cells boltzmann student
chip loss controller classifiers markov visual mixtures cell character fuzzy
theorem posterior actions tree phonetic objects expert synaptic hopfield symbolic
sources theorem qlearning trees speaker face gating spike temperature saad
polynom. hyperp. reward bayes acoustic pixel posterior activity annealing membership
separation bounds sutton rbf phoneme pixels tresp firing kanji rulebased
recurrent monte robot theorem hmms texture loglikel. visual adjoint overlaps
circuits carlo barto boolean hybrid motion ahmad cortex window children

Gibbs sampler topics

neurons rules mixture reinforc. memory speech image analog theorem classifier
cells language bayesian policy energy word images circuit regress. nodes
cell recurrent posterior action neurons hmm visual chip kernel node
neuron node experts robot neuron auditory object voltage loss classifiers
activity tree entropy motor capacity sound motion neuron bounds tree
synaptic memory mixtures actions hopfield phoneme objects vlsi proof clustering
firing nodes markov controller associative acoustic spatial circuits polynom. character
spike symbol separation trajectory recurrent hmms face digital lemma rbf
stimulus symbols sources arm attractor mlp pixel synapse teacher cluster
cortex grammar principal reward boltzmann segment. pixels gate risk characters

RecoverKL topics

entropy reinforc. classifier loss ensemble neurons penalty mixture validation image
image controller classifiers theorem energy neuron rules missing regress. visual
kernel policy speech bounds posterior spike regress. recurrent bayesian motion
energy action nodes proof bayesian synaptic bayesian bayesian crossvalid. cells
ica actions word lemma speech cells energy posterior risk neurons
images memory node polynom. boltzmann firing theorem image stopping images
separation robot image neurons student cell analog markov tangent receptive
clustering trajectory tree regress. face activity regulariz. speech image circuit
sources sutton character nodes committee synapses recurrent images kernel spatial
mixture feedback memory neuron momentum stimulus perturb. object regulariz. object
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