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Abstract

Decision making under uncertainty is commonly modelled as a process of com-
petitive stochastic evidence accumulation to threshold (the drift-diffusion model).
However, it is unknown how animals learn these decision thresholds. We examine
threshold learning by constructing a reward function that averages over many trials
to Wald’s cost function that defines decision optimality. These rewards are highly
stochastic and hence challenging to optimize, which we address in two ways: first,
a simple two-factor reward-modulated learning rule derived from Williams’ RE-
INFORCE method for neural networks; and second, Bayesian optimization of the
reward function with a Gaussian process. Bayesian optimization converges in fewer
trials than REINFORCE but is slower computationally with greater variance. The
REINFORCE method is also a better model of acquisition behaviour in animals
and a similar learning rule has been proposed for modelling basal ganglia function.

1 Introduction

The standard view of perceptual decision making across psychology and neuroscience is of a
competitive process that accumulates sensory evidence for the choices up to a threshold (bound)
that triggers the decision [1, 2, 3]. While there is debate about whether humans and animals are
‘optimal’, nonetheless the standard psychological model of this process for two-alternative forced
choices (the drift-diffusion model [1]) is a special case of an optimal statistical test for selecting
between two hypotheses (the sequential probability ratio test, or SPRT [4]). Formally, this sequential
test optimizes a cost function linear in the decision time and type I/II errors averaged over many
trials [4]. Thus, under broad assumptions about the decision process, the optimal behaviour is simply
to stop gathering data after reaching a threshold independent of the data history and collection time.

However, there remains the problem of how to set these decision thresholds. While there is consensus
that an animal tunes its decision making by maximizing mean reward ([3, Chapter 5],[5, 6, 7, 8, 9, 10]),
the learning rule is not known. More generally, it is unknown how an animal tunes its propensity
towards making choices while also tuning its overall speed-accuracy balance.

Here we show that optimization of the decision thresholds can be considered as reinforcement learning
over single trial rewards derived from Wald’s trial averaged cost function considered previously.
However, these single trial rewards are highly stochastic and their average has a broad flat peak
(Fig. 1B), constituting a challenging optimization problem that will defeat standard methods. We
address this challenge by proposing two distinct ways to learn the decision thresholds, with one
approach closer to learning rules from neuroscience and the other to machine learning. The first
approach is a learning rule derived from Williams’ REINFORCE algorithm for training neural
networks [11], which we here combine with an appropriate policy for controlling the thresholds for
optimal decision making. The second is a Bayesian optimization method that fits a Gaussian process
to the reward function and samples according to the mean reward and reward variance [12, 13, 14].

We find that both methods can successfully learn the thresholds, as validated by comparison against
an exhaustive optimization of the reward function. Bayesian optimization converges in fewer trials
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Figure 1: (A) Drift-diffusion model, representing a noisy stochastic accumulation until reaching a
threshold when the decision is made. The optimal threshold maximizes the mean reward (equation 5).
(B) Sampled rewards over 1000 trials with equal thresholds θ0 = θ1 (dotted markers); the average
reward function is estimated from Gaussian process regression (red curve). Optimizing the thresholds
is a challenging problem, particularly when the two thresholds are not equal.

(∼102) than REINFORCE (∼103) but is 100-times more computationally expensive with about triple
the variance in the threshold estimates. Initial validation is with one decision threshold, corresponding
to equal costs of type I/II errors. The methods scale well to two thresholds (unequal costs), and we
use REINFORCE to map the full decision performance over both costs. Finally, we compare both
methods with experimental two-alternative forced choice data, and find that REINFORCE gives a
better account of the acquisition (learning) phase, such as converging over a similar number of trials.

2 Background to the drift-diffusion model and SPRT

The drift-diffusion model (DDM) of Ratcliff and colleagues is a standard approach for modeling the
results of two-alternative forced choice (2AFC) experiments in psychophysics [1, 15]. A decision
variable z(t) represents the sensory evidence accumulated to time t from a starting bias z(0) = z0.
Discretizing time in uniform steps (assumed integer without losing generality), the update equation is

z(t+ 1) = z(t) + ∆z, ∆z ∼ N(µ, σ2), (1)
where ∆z is the increment of sensory evidence at time t, which is conventionally assumed drawn
from a normal distribution N(µ, σ2) of mean µ and variance σ2. The decision criterion is that the
accumulated evidence crosses one of two decision thresholds, assumed at −θ0 < 0 < θ1.

Wald’s sequential probability ratio test (SPRT) optimally determines whether one of two hypotheses
H0, H1 is supported by gathering samples x(t) until a confident decision can be made [4]. It is
optimal in that it minimizes the average sample size among all sequential tests to the same error
probabilities. The SPRT can be derived from applying Bayes’ rule recursively to sampled data, from
when the log posterior ratio log PR(t) passes one of two decision thresholds −θ0 < 0 < θ1:

log PR(t+ 1) = log PR(t) + log LR(t), PR(t) =
p(H1|x(t))

p(H0|x(t))
, LR(t) =

p(x(t)|H1)

p(x(t)|H0)
, (2)

beginning from priors at time zero: PR(0) = p(H1)/p(H0). The right-hand side of equation (2) can
also be written as a log likelihood ratio log LR(t) summed over time t (by iterative substitution).

The DDM is recognized as a special case of SPRT by setting the likelihoods as two equi-variant
Gaussians N(µ1, σ), N(µ0, σ), so that

log
p(x|H1)

p(x|H0)
= log

e−(x−µ1)
2/2σ2

e−(x−µ0)2/2σ2 =
∆µ

σ2
x+ d, ∆µ = µ1 − µ0, d =

µ2
0 − µ2

1

2σ2
. (3)

The integrated evidence z(t) in (1) then coincides with the log posterior ratio in (2) and the increments
∆z with the log likelihood ratio in (2).

3 Methods to optimize the decision threshold

3.1 Reinforcement learning for optimal decision making

A general statement of decision optimality can be made in terms of minimizing the Bayes risk [4].
This cost function is linear in the type I and II error probabilities α1 = P (H1|H0) = E1(e) and
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α0 = P (H0|H1) = E0(e), where the decision error e = {0, 1} for correct/incorrect trials, and is
also linear in the expected stopping times for each decision outcome 1

Crisk := 1
2 (W0α0 + cE0[T ]) + 1

2 (W1α1 + cE1[T ]), (4)
with type I/II error costs W0,W1 > 0 and cost of time c. That the Bayes risk Crisk has a unique
minimum follows from the error probabilities α0, α1 monotonically decreasing and the expected
stopping times E0[T ],E1[T ] monotonically increasing with increasing threshold θ0 or θ1. For each
pair (W0/c,W1/c), there is thus a unique threshold pair (θ∗0 , θ

∗
1) that minimizes Crisk.

We introduce reward into the formalism by supposing that an application of the SPRT with thresholds
(θ0, θ1) has a penalty proportional to the stopping time T and decision outcome

R =

{ −W0 − cT, incorrect decision of hypothesis H0

−W1 − cT, incorrect decision of hypothesis H1

−cT, correct decision of hypothesis H0 or H1.
(5)

Over many decision trials, the average reward is thus 〈R〉 = −Crisk, the negative of the Bayes risk.

Reinforcement learning can then be used to find the optimal thresholds to maximize reward and thus
optimize the Bayes risk. Over many trials n = 1, 2, . . . , N with reward R(n), the problem is to
estimate these optimal thresholds (θ∗0 , θ

∗
1) while maintaining minimal regret: the difference between

the reward sum of the optimal decision policy and the sum of the collected rewards

ρ(N) = −NCrisk(θ∗0 , θ
∗
1)−

∑N
n=1R(n). (6)

This is recognized as a multi-armed bandit problem with a continuous two-dimensional action space
parametrized by the threshold pairs (θ0, θ1).

The optimization problem of finding the thresholds that maximize mean reward is highly challenging
because of the stochastic decision times and errors. Standard approaches such as gradient ascent fail
and even state-of-the-art approaches such as cross-entropy or natural evolution strategies are ineffec-
tive. A successful approach must combine reward averaging with learning (in a more sophisticated
way than batch-averaging or filtering). We now consider two distinct approaches for this.

3.2 REINFORCE method

The first approach to optimize the decision threshold is a standard 2-factor learning rule derived
from Williams’ REINFORCE algorithm for training neural networks [11], but modified to the novel
application of continuous bandits. From a modern perspective, the REINFORCE algorithm is seen as
an example of a policy gradient method [16, 17]. These are well-suited to reinforcement learning with
continuous action spaces, because they use gradient descent to optimize continuously parameterized
policies with respect to cumulative reward.

We consider the decision thresholds (θ0, θ1) to parametrize actions that correspond to making a
single decision with those thresholds. Here we use a policy that expresses the threshold as a linear
combination of binary unit outputs, with fixed coefficients specifying the contribution of each unit

θ0 =

ns∑
j=1

sjyj , θ1 =

2ns∑
j=ns+1

sjyj . (7)

Exponential coefficients were found to work well (equivalent to binary encoding), scaled to give a
range of thresholds from zero to θmax:

sj = sns+j =
(1/2)j

1− (1/2)ns
θmax, (8)

where here we use ns = 10 units per threshold with maximum threshold θmax = 10. The benefit
of this policy (7,8) is that the learning rule can be expressed in terms of the binary unit outputs
yj = {0, 1}, which are the variables considered in the REINFORCE learning rule [11].

Following Williams, the policy choosing the threshold on a trial is stochastic by virtue of the binary
unit outputs yj = {0, 1} being distributed according to a logistic function of weights wj , such that

yj ∼ p(yj |wj) = f(wj)yj + (1− f(wj))(1− yj), f(wj) =
1

1 + e−wj
. (9)

1The full expression has prior probabilities for the frequency of each outcome, which are here assumed equal.
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The REINFORCE learning rule for these weights is determined by the reward R(n) on trial n

∆wj = β [yj(t)− f(wj)]R(n), (10)

with learning rate β (here generally taken as 0.1). An improvement to the learning rule can be
made with reinforcement comparison, with a reference reward R̄(n) = γR(n) + (1− γ)R̄(n− 1)
subtracted from R(n); a value γ = 0.5 was found to be effective, and is used in all simulations using
the REINFORCE rule in this paper.

The power of the REINFORCE learning rule is that the weight change is equal to the gradient of
the expected return J(www) = E[R{θ}] over all possible threshold sequences {θ}. Thus, a single-trial
learning rule performs like stochastic gradient ascent averaged over many trials. Note also that the
neural network input xi of the original formalism [11] is here set to x1 = 1, but a non-trivial input
could be used to aid learning recall and generalization (see discussion). Overall, the learning follows
a reward-modulated two-factor rule that recruits units distributed according to an exponential size
principle, and thus resembles models of biological motor learning.

3.3 Bayesian optimization method

The second approach is to use Bayesian optimization to find the optimal thresholds from iteratively
building a probabilistic model of the reward function that is used to guide future sampling [12, 13, 14].
Bayesian optimization typically uses a Gaussian process model, which provides a nonlinear regression
model both of the mean reward and the reward variance with decision threshold. This model can then
be used to guide future threshold choice via maximising an acquisition function of these quantities.

The basic algorithm for Bayesian optimization is as follows:

Algorithm Bayesian optimization applied to optimal decision making
for n=1 to N do

New thresholds from optimizing acquisition function (θ0, θ1)n = argmax
(θ0,θ1)

α(θ0, θ1;Dn−1)

Make the decision with thresholds (θ0, θ1)n to find reward R(n)
Augment data by including new samples Dn = (Dn−1; (θ0, θ1)n, R(n))
Update the statistical (Gaussian process) model of the rewards

end for

Following other work on Bayesian optimization, we model the reward dependence on the decision
thresholds with a Gaussian process

R(θ0, θ1) ∼ GP[m(θ0, θ1), k(θ0, θ1; θ′0, θ
′
1)], (11)

with mean m(θ0, θ1) = E[R(θ0, θ1)] and covariance modelled by a squared-exponential function

k(θ0, θ1; θ′0, θ
′
1) = σ2

f exp
(
−λ2 ||(θ0, θ1)− (θ′0, θ

′
1)||2

)
. (12)

The fitting of the hyperparameters σ2
f , λ used standard methods [18] (GPML toolbox and a quasi-

Newton optimizer in MATLAB). In principle, the two thresholds could each have distinct hyperpa-
rameters, but we use one to maintain the symmetry θ0 ↔ θ1 of the decision problem.

The choice of decision thresholds is viewed as a sampling problem, and represented by maximizing
an acquisition function of the decision thresholds that trades off exploration and exploitation. Here we
use the probability of improvement, which guides the sampling towards regions of high uncertainty
and reward by maximizing the chance of improving the present best estimate:

(θ0, θ1)n = argmax
(θ0,θ1)

α(θ0, θ1), α(θ0, θ1) = Φ

(
m(θ0, θ1)−R(θ∗0 , θ

∗
1)

k(θ0, θ1; θ0, θ1)

)
, (13)

where (θ∗0 , θ
∗
1) are the threshold estimates that have given the greatest reward and Φ is the normal

cumulative distribution function. Usually one would include a noise parameter for exploration, but
because the decision making is stochastic we use the noise from that process instead.
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Figure 2: REINFORCE learning (exponential coefficients) of the two decision thresholds over a
single learning episode. Decision costs c = 0.05, W0 = 0.1 and W1 = 1. Plots are smoothed over 50
trials. The red curve is the average accuracy by trial number (fitted to a cumulative Weibull function).
Optimal values (from exhaustive optimization) are shown as dashed lines.
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Figure 3: Bayesian optimization of the two decision thresholds over a single learning episode. Other
details are the same as in Fig. 2, other than only 500 trials were used with smoothing over 20 trials.

4 Results

4.1 Single learning episode

The learning problem is to find the pair of optimal decision thresholds (θ∗0 , θ
∗
1) that maximize the

reward function (5), which is a linear combination of penalties for delays and type I and II errors.
The reward function has two free parameters that affect the optimal thresholds: the costs W0/c and
W1/c of making type I and II errors relative to time. The methods apply generally, although for
concreteness we consider a drift-diffusion model equivalent to the SPRT with distribution means
µ0 =−µ1 =1/3 and standard deviation σ = 1.

Both the REINFORCE method and Bayesian optimization can converge to approximations of the
optimal decision thresholds, as shown in Figures 2D,3D above for a typical learning episode. The
decision error e, decision time T and reward R are all highly variable from the stochastic nature of
the evidence, although displayed plots have their variance reduced by smoothing over 50 trials (to
help interpret the results). There is a gradual convergence towards near optimal decision performance.

Clearly the main difference between the REINFORCE method and the Bayesian optimization method
is the speed of convergence to the decision thresholds (c.f. Figures 2D vs 3D). REINFORCE gradually
converges over ∼5000 trials whereas Bayesian optimization converges in . 500 trials. However,
there are other differences between the two methods that are only revealed for multiple learning
episodes, which act to balance the pros and cons across the two methods.

4.2 Multiple learning episodes: one decision threshold

For validation purposes, we reduce the learning problem to the simpler case where there is only
one decision threshold θ0 = θ1, by setting costs equal for type I and II errors W0/c = W1/c so
that the error probabilities are equal α0 = α1. This will allow us to compare the two methods
in a representative scenario that is simpler to visualize and can be validated against an exhaustive
optimization of the reward function (which takes too long to calculate for two thresholds).
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Figure 4: REINFORCE learning of one decision threshold (for equal thresholds θ1 = θ0) over 200
learning episodes with costs c/W1 = c/W0 sampled uniformly from [0, 0.1]. Results are after 5000
learning trials (averaged over 100 trials). The mean and standard deviation of these results (red line
and shaded region) are compared with an exhaustive optimization over 106 episodes (blue curves).

Figure 5: Bayesian optimization of one decision threshold (for equal thresholds θ1 = θ0) over 200
learning episodes with costs c/W1 = c/W0 sampled uniformly from [0, 0.1]. Results are after 500
learning trials (averaged over 100 trials). The mean and standard deviation of these results (red line
and shaded region) are compared with an exhaustive optimization over 106 episodes (blue curves).

We consider REINFORCE over 5000 trials and Bayesian optimization over 500 trials, which are
sufficient for convergence (Figures 2,3). Costs were considered over a range W/c > 10 via random
uniform sampling of c/W over the range [0, 0.1]. Mean decision errors e, decision times T , rewards
and thresholds are averaged over the final 50 trials, combining the results for both choices.

Both the REINFORCE and Bayesian optimization methods estimate near-optimal decision thresholds
for all considered cost parameters (Figures 4,5; red curves) as verified from comparison with an
exhaustive search of the reward function (blue curves) over 106 decision trials (randomly sampling
the threshold range to estimate an average reward function, as in Fig 1B). In both cases, the exhaustive
search lies within one standard deviation of the decision threshold from the two learning methods.

There are, however, differences in performance between the two methods. Firstly, the variance of the
threshold estimates is greater for Bayesian optimization than for REINFORCE (c.f. Figures 4D vs
5D). The variance of the decision thresholds feeds through into larger variances for the decision error,
time and reward. Secondly, although Bayesian optimization converges in fewer trials (500 vs 5000),
it comes at the expense of greater computational cost of the algorithm (Table 1).

The above results were checked for robustness across reasonable ranges of the various meta-
parameters for each learning method. For REINFORCE, the results were not appreciably affected by
having any learning rate β within the range 0.1-1; similarly, increasing the unit number n did not
affect the threshold variances, but scales the computation time.

4.3 Multiple learning episodes: two decision thresholds

We now consider the learning problem with two decision thresholds (θ0, θ1) that optimize the reward
function 5 with differing W0/c and W1/c values. We saw above that REINFORCE produces the
more accurate estimates relative to the computational cost, so we concentrate on that method only.
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Figure 6: Reinforcement learning of two decision thresholds. Method same as Figure 4 except that
2002 learning episodes are considered with costs (c/W0, c/W1) sampled from [0, 0.1]× [0, 0.1]. The
threshold θ0 results are just reflections of those for θ1 in the axis c/W0 ↔ c/W1 and thus not shown.

Table 1: Comparison of threshold learning methods. Results for one decision threshold, averaging
over the data in Figures 4,5. (Benchmarked on an i7 2.7GHz CPU.)

REINFORCE Bayesian Exhaustive
method optimization optimization

computation time 0.5 sec (5000 trials) 50 sec (500 trials) 44 sec (106 trials)
computation time/trial 0.1 msec/trial 100 msec/trial 0.04 msec/trial
uncertainty, ∆θ (1 s.d.) 0.23 0.75 0.01

The REINFORCE method can find the two decision thresholds (Figure 6), as demonstrated by
estimating the thresholds over 2002 instances of the reward function with (c/W0, c/W1) sampled
uniformly from [0, 0.1]×[0, 0.1]. Because of the high compute time, we cannot compare the results
to those from an exhaustive search, apart from that the plot diagonals (W0/c = W1/c) reduce to the
single threshold results which matched an exhaustive optimization (Figure 4).

Figure 6 is of general interest because it maps the drift-diffusion model (SPRT) decision performance
over a main portion of its parameter space. Results for the two decision thresholds (θ0, θ1) are
reflections of each other about W0 ↔W1, while the decision error, time and reward are reflection
symmetric (consistent with these symmetries of the decision problem). All quantities depend on both
weight parameters (W0/c,W1/c) in a smooth but non-trivial manner. To our knowledge, this is the
first time the full decision performance has been mapped.

4.4 Comparison with animal learning

The relation between reward and decision optimality is directly relevant to the psychophysics of two
alternative forced choice tasks in the tradeoff between decision accuracy and speed [3]. Multiple
studies support that the decision threshold is set to maximize reward [7, 8, 9]. However, the mechanism
by which subjects learn the optimal thresholds has not been addressed. Our two learning methods are
candidate mechanisms, and thus should be compared with experiment.

We have found a couple of studies showing data over the acquisition phase of two-alternative forced
choice behavioural experiments: one for rodent whisker vibrotactile discrimination [19, Figure 4] and
the other for bat echoacoustic discrimination [20]. Studies detailing the acquisition phase are rare
compared to those of the proficient phase, even though they are a necessary component of all such
behavioural experiments (and successful studies rest on having a well-designed acquisition phase).

In both behavioural studies, the animals acquired proficient decision performance after 5000-10000
trials: in rodent, this was after 25-50 sessions of ∼200 trials [19, Figure 4]; and in bat, after about
6000 trials for naive animals [20, Figure 4]. The typical progress of learning was to begin with
random choices (mean decision error e = 0.5) and then gradually converge on the appropriate balance
of decision time vs accuracy. There was considerable variance in final performance across different
animals (in rodent, mean decision errors were e ∼ 0.05-0.15).
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That acquisition takes 5000 or more trials is consistent with the REINFORCE learning rule (Figure 2),
and not with Bayesian optimization (Figure 3). Moreover, the shape of the acquisition curve for the
REINFORCE method resembles that of the animal learning, in also having a good fit to a cumulative
Weibull function over a similar number of trials (red line, Figure 2). That being said, the animals begin
making random choices and gradually improve in accuracy with longer decision times, whereas both
artificial learning methods (Figures 2,3) begin with accurate choices and then decrease in accuracy
and decision time. Taken together, this evidence supports that the REINFORCE learning rule is a
plausible model of animal learning, although further theoretical and experimental study is required.

5 Discussion

We examined how to learn decision thresholds in the drift-diffusion model of perceptual decision
making. A key step was to use single trial rewards derived from Wald’s trial-averaged cost function
for the equivalent sequential probability ratio test, which took the simple form of a linear weighting of
penalties due to time and type I/II errors. These highly stochastic rewards are challenging to optimize,
which we addressed with two distinct methods to learn the decision thresholds.

The first approach for learning the thresholds was based on a method for training neural networks
known as Williams’ REINFORCE rule [11]. In modern terminology, this can be viewed as a
policy gradient method [16, 17] and here we proposed an appropriate policy for optimal decision
making. The second method was a modern Bayesian optimization method that samples and builds
a probabilistic model of the reward function to guide further sampling [12, 13, 14]. Both learning
methods converged to nearby the optimum decision thresholds, as validated against an exhaustive
optimization (over 106 trials). The Bayesian optimization method converged much faster (∼500
trials) than the REINFORCE method (∼5000 trials). However, Bayesian optimization is three-times
as variable in the threshold estimates and 40-times slower in computation time. It appears that the
faster convergence for Bayesian optimization leads to less averaging over the stochastic rewards, and
hence greater variance than with the REINFORCE method.

We expect that both the REINFORCE and Bayesian optimization methods used here can be improved
to compensate for some of their individual drawbacks. For example, the full REINFORCE learning
rule has a third factor corresponding to the neural network input, which could represent a context
signal to allow recall and generalization over past learnt thresholds; also, information on past trial
performance is discarded by REINFORCE, which could be partially retained to improve learning.
Bayesian optimization could be improved in computational speed by updating the Gaussian process
with just the new samples after each decision, rather than refitting the entire Gaussian process; also,
the variance of the threshold estimates may improve with other choices of acquisition function for
sampling the rewards or other assumptions for the Gaussian process covariance function. In addition,
the optimization methods may have broader applicability when the optimal decision thresholds vary
with time [10], such as tasks with deadlines or when there are multiple (three or more) choices.

Several more factors support the REINFORCE method as a model of reward-driven learning during
perceptual decision making. First, REINFORCE is based on a neural network and is thus better
suited as a connectionist model of brain function. Second, the REINFORCE model results (Fig. 2)
resemble acquisition data from behavioural experiments in rodent [19] and bat [20] (Sec. 4.4). Third,
the site of reward learning would plausibly be the basal ganglia, and a similar 3-factor learning rule
has already been used to model cortico-striatal plasticity [21]. In addition, multi-alternative (MSPRT)
versions of the drift-diffusion model offer a model of action selection in the basal ganglia [22, 23],
and so the present REINFORCE model of decision acquisition would extend naturally to encompass
a combined model of reinforcement learning and optimal decision making in the brain.
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