
A More Details about Experiments
A.1 Datasets and Evaluation Criteria
Datasets:
• synthetic: a small synthetic dataset with n = 16, T = 128. We generate�

x

t

2 R4

: t = 1, . . . , 128

from the autoregressive process with a lag index set L = {1, 8},
randomly generated

�
W (l)

, and an additive white Gaussian noise of � = 0.1. We then randomly

generate a matrix F 2 R16⇥4 and obtain y

t

= Fx

t

+ ✏

t

, where ✏ ⇠ N (0, 0.1).
• electricity3: the electricity usage in kW recorded every 15 minutes, for n = 370 clients. We

convert the data to reflect hourly consumption, by aggregating blocks of 4 columns, to obtain
T = 26, 304. Teh coefficient of variation for electricity is 6.0341.

• traffic4: A collection of 15 months of daily data from the California Department of Transportation.
The data describes the occupancy rate, between 0 and 1, of different car lanes of San Francisco
bay area freeways. The data was sampled every 10 minutes, and we again aggregate the columns
to obtain hourly traffic data to finally get n = 963, T = 10, 560. The coefficient of variation for
traffic is 0.8565.

• walmart-1 & walmart-2: two propriety datasets from Walmart E-commerce contain weekly sale
information of 1,350 and 1,582 items for 187 weeks, respectively. The time-series of sales for each
item start and end at different time points; for modeling purposes we assume one start and end
timestamp by padding each series with missing values. This along with some other missing values
due to out-of-stock reasons lead to 55.3% and 49.3% of entries being missing.

Evaluation Criteria: We compute the normalized deviation (ND) and normalized RMSE (NRMSE).

Normalized deviation (ND):

0

@ 1

|⌦
test

|
X

(i,t)2⌦test

��� ˆY
it

� Y
it

���

1

A
,0

@ 1

|⌦
test

|
X

(i,t)2⌦test

|Y
ij

|

1

A

Normalized RMSE (NRMSE):

vuut 1

|⌦
test

|
X

(i,t)2⌦test

⇣
ˆY
it

� Y
it

⌘
2

,0

@ 1

|⌦
test

|
X

(i,t)2⌦test

|Y
ij

|

1

A

For each method and data set, we perform the grid search over various parameters (such as k, �
values) following a rolling validation approach described in [11]. We search k 2 {2, 4, 8} for
synthetic and 2 {20, 40} for other datasets. For TRMF-AR, SVD-AR(1), TCF, and AR(1), we search
� 2 {50, 5, 0.5, 0.05}
Results with n independent AR models. One naive way for AR models to solve the scalability
issue to handle n-dimension time series is assuming each dimension is independent from each other.
Thus, one can apply an one-dimensional AR model to each dimension. Although this approach is
embarrassingly parallel, it ignores the correlations among time series that we can take into account.
Note that this approach still cannot solve the difficulty of AR models to handle missing values.
Here, we include the forecasting results of this independent AR approach in Table 4. For synthetic,
we learn an independent AR(1) for each dimension, while for electricity and traffic, we learn an
independent AR({1, 24}) for each dimension. We can see that on synthetic and traffic, TRMF-AR
still outperforms this independent AR approach.

Table 4: Forecasting Comparison.

TRMF-AR AR(1) Independent AR Mean
synthetic 0.373/ 0.487 0.928/ 1.401 0.973/ 1.388 1.000/ 1.424
electricity 0.255/ 1.397 0.219/ 1.439 0.206/1.220 1.410/ 4.528
traffic 0.187/ 0.423 0.275/ 0.536 0.294/ 0.591 0.560/ 0.826

3
https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014.

4
https://archive.ics.uci.edu/ml/datasets/PEMS-SF.

10

B Extensions to Incorporate Extra Information
In the same vein as matrix factorization approaches, TRMF (7) can be extended to incorporate
additional information:
• Known features for time series: In many applications, one is given additional features along

with the observed time series. Specifically, given a set of feature vectors
�
a

i

2 Rd

for each row

of Y , we can look to solve
min

F,X,⇥

X

(i,t)2⌦

�
Y
it

� a

>
i

Fx

t

�
2

+ �
f

R
f

(F)

+ �
x

TM(X | ⇥) + �
✓

R
✓

(⇥). (15)
That is, the observation Y

it

is posited to be a bilinear function of the feature vector a
i

and the
latent vector x

t

. Such an inductive framework has two advantages: we can generalize TRMF
to a new time series without any observations up to time T (i.e., a new row i0 of Y without any
observations). As long as the feature vector a

i

0 is available, the model learned by TRMF can be
used to estimate Y

i

0
t

= a

>
i

0Fx

t

, 8t. Furthermore, prediction can be significantly sped up when
d ⌧ n, since the dimension of F is reduced from n ⇥ k to d ⇥ k. Such methods for standard
multi-label learning and matrix completion have been previously considered in [6, 24, 25].

• Graph information among time series: Often, separate features for the time series are not known,
but other relational information is available. When a graph that encodes pairwise interactions
among multiple time series is available, one can incorporate this graph in our framework using the
graph regularization approach (2). Such cases are common in inventory and sales tracking, where
sales of one item is related to sales of other items. Given a graph Gf describing the relationship
among multiple time series, we can formulate a graph regularized problem:

min

F,X,⇥

X

(i,t)2⌦

�
Y
it

� f

>
i

x

t

�
2

+ �
f

G
�
F | Gf , ⌘

�

+ �
x

TM(X | ⇥) + �
✓

R
✓

(⇥), (16)
where G

�
F | Gf , ⌘

�
is the graph regularizer defined in (2) capturing pairwise interactions between

time series. Graph regularized matrix completion methods have been previously considered in
[15, 27].

• Temporal-regularized tensor factorization: Naturally, TRMF can be easily extended to analyze
temporal collaborative filtering applications [19, 23], where the targeted data is a tensor with
certain modes evolving over time. For example, consider Y 2 Rm⇥n⇥T be a 3-way tensor with
Y
ijt

encoding the rating of the i-th user for the j-th item at time point t. We can consider the
following temporal regularization tensor factorization (TRTF) with TM(X | ⇥) as follows:

min

P,Q,X,⇥

X

(i,j,t)2⌦

(Y
ijt

� hp
i

, q
j

,x
t

i)2 + �
p

R
p

(P)

+R
q

(Q) + TM(X | ⇥) +R
✓

(⇥), (17)
where P = [p

1

, · · · ,p
m

]

> 2 Rm⇥k and Q = [q

1

, · · · , q
n

]

> 2 Rn⇥k are the latent embeddings
for the m users and n items, respectively, and with some abuse of notation, we define hp

i

, q
j

,x
t

i =P
k

r=1

p
ir

q
jr

x
tr

.

C Proofs
C.1 Proof of Theorem 1
Proof. In this proof, we use the notations and summation manipulation techniques introduced by
Knuth [4]. To prove (11), it suffices to prove that

X

mtT

0

@
X

l2 ¯L

w
l

x
t�l

1

A
2

=

X

1tT

X

1dL

GAR
t,t+d

(x
t

� x
t+d

)

2

+

¯

x

>D¯

x. (18)

11

The LHS of the (18) can be expanded and regrouped as follows.

X

mtT

0

@
X

l2 ¯L

w
l

x
t�l

1

A
2

=

X

mtT

0

@
X

l2 ¯L

w2

l

x2

t�l

+

X

1dL

X

l2�(d)

2w
l

w
l�d

x
t�l

x
t�l+d

1

A

=

X

mtT

0

@
X

l2 ¯L

w2

l

x2

t�l

+

X

1dL

X

l2�(d)

⇣
�w

l

w
l�d

(x
t�l

� x
t�l+d

)

2

+ w
l

w
l�d

�
x2

t�l

+ x2

t�l+d

�⌘
1

A

=

X

mtT

X

1dL

X

l2�(d)

�w
l

w
l�d

(x
t�l

� x
t�l+d

)

2

| {z }
G(¯x)

+

X

mtT

0

@
X

l2 ¯L

w2

l

x2

t�l

+

X

1dL

X

l2�(d)

w
l

w
l�d

�
x2

t�l

+ x2

t�l+d

�
1

A

| {z }
D(¯x)

Let’s look at the first term G(¯x):
G(¯x) =

X

1dL

X

l2�(d)

X

mtT

�w
l

w
l�d

(x
t�l

� x
t�l+d

)

2

=

X

1dL

X

l2�(d)

X

m�ltT�l

�w
l

w
l�d

(x
t

� x
t+d

)

2

=

X

1dL

X

l2�(d)

X

1tT

�w
l

w
l�d

(x
t

� x
t+d

)

2

[m� l  t  T � l]

=

X

1tT

X

1dL

0

@
X

l2�(d)

�w
l

w
l�d

[m� l  t  T � l]

1

A
(x

t

� x
t+d

)

2

=

X

1tT

X

1dL

0

BB@
X

l2�(d)

mt+lT

�w
l

w
l�d

1

CCA

| {z }
Gt,t+d

(x
t

� x
t+d

)

2

,

where we can see that G(¯x) is equivalent to the first term of RHS of (18).
Now, we consider the second term D(

¯

x):

D(

¯

x) =

X

mtT

0

@
X

l2 ¯L

w2

l

x2

t�l

+

X

1dL

X

l2�(d)

w
l

w
l�d

�
x2

t�l

+ x2

t�l+d

�
1

A

=

X

mtT

X

l2 ¯L

w2

l

x2

t�l

| {z }
D1(¯x)

+

X

mtT

X

1dL

X

l2�(d)

w
l

w
l�d

x2

t�l

| {z }
D2(¯x)

+

X

mtT

X

1dL

X

l2�(d)

w
l

w
l�d

x2

t�l+d

| {z }
D3(¯x)

12

D
1

(

¯

x) =

X

l2 ¯L

X

mtT

w2

l

x2

t�l

=

X

l2 ¯L

X

m�ltT�l

w2

l

x2

t

=

X

1tT

0

@
X

l2 ¯L

w2

l

[m  t+ l  T]

1

Ax2

t

=

X

1tT

0

@
X

l,l

02 ¯L

w
l

w
l

0
[m  t+ l  T][l0 = l]

1

Ax2

t

D
2

(

¯

x) =

X

mtT

X

1dL

X

l2�(d)

w
l

w
l�d

x2

t�l

=

X

1tT

0

@
X

1dL

X

l2�(d)

w
l

w
l�d

[m  t+ l  T]

1

Ax2

t

=

X

1tT

0

@
X

l,l

02 ¯L

w
l

w
l

0
[m  t+ l  T][l0 < l]

1

Ax2

t

D
3

(

¯

x) =

X

mtT

X

1dL

X

l2�(d)

w
l

w
l�d

x2

t�l+d

=

X

1tT

0

@
X

1dL

X

l2�(d)

w
l

w
l�d

[m  t+ l � d  T]

1

Ax2

t

=

X

1tT

0

@
X

l

0
,l2 ¯L

w
l

w
l

0
[m  t+ l  T][l0 > l]

1

Ax2

t

Let D 2 RT⇥T be a diagonal matrix with D
tt

be the coefficient associated with x2

t

in D(

¯

x).
Combining the results of D

1

(

¯

x),D
2

(

¯

x), and D
3

(

¯

x), D
t

can be written as follows.

D
tt

=

0

@
X

l2 ¯L

w
l

1

A

0

@
X

l2 ¯L

w
l

[m  t+ l  T]

1

A 8t.

It is clear that D(

¯

x) =

¯

x

>D¯

x. Note that 8t = m, . . . , T � L, D
tt

=

�P
l2 ¯L w

l

�
2.

C.2 Proof of Corollary 1
Proof. It is well known that graph regularization can be written in the quadratic form [18] as follows.

1

2

X

t⇠s

G
ts

(x
t

� x
s

)

2

=

¯

x

> Lap(G)

¯

x,

where Lap(G) is the T ⇥ T graph Laplacian for G defined as:

Lap(G)

ts

=

8
<

:

P
j

G
tj

, t = s

�G
ts

, t 6= s and there is an edge t ⇠ s

0, otherwise.
Based on the above fact and the results from Theorem 1, we obtain the quadratic form for
TAR(¯x |L, ¯w, ⌘) as follows.

TAR(¯x |L, ¯w, ⌘) =
1

2

¯

x

>

0

@Lap
�
GAR�

+D + ⌘I| {z }
diagonal

1

A
¯

x.

Because D+ ⌘I is diagonal, the non-zero pattern of the off-diagonal entries of the inverse covariance
⌃

�1

AR for TAR(¯x |L, ¯w, ⌘) is determined by Lap
�
GAR

�
which shares the same non-zero pattern as

GAR.

C.3 Details for Corollary 2
We use results developed in [15] to arrive at our result. Assume we are given the matrix B. We first
define the following quantities:

↵ :=

p
nT

kZ?Bk1
kZ?Bk

F

� :=

kZ?Bk⇤
kZ?Bk

F

(19)

where the k · k1 norm is taken element-wise. Note that, the above quantities capture the “simplicity”
of the matrix Z. For example, a small value of ↵ implies that the matrix ZB is not overly spiky,

13

meaning that the entries of the matrix are well spread out in magnitude. Next, define the set

C :=

(
Z : ↵�  C

s
N

log(n+ T)

)
, (20)

with C being a constant that depends on ↵.
Finally, we assume the following observation model: for each i, j 2 ⌦, suppose we observe

Y
ij

= Z?

ij

+

�p
nT

⌘
ij

⌘
ij

⇠ N (0, 1)

Then, we can see that the setup is identical to that considered in [15] with the difference being that
there is no graph present that relates the rows of Z?. Hence, setting A = I in Theorem 1 in the
aforementioned paper yields our result.

D Details: Scalability Issue of R-DLM package
In this section, we show the source code demonstrating that R-DLM fails to handle high-dimensional
time series even with n = 32. Interested readers can run the following R code to see that the
dlmMLE() function in R-DLM is able to run on a 16-dimensional time series. However, when we
increase the dimension to 32, dlmMLE() crashes the entire R program.

library(dlm)

builderFactory <- function(n,k) {

n = n;

k = k;

init = c(rep(0,k), rep(0.1,3),0.1

*

rnorm(n

*

k), 0.1

*

rnorm(k

*

k))

build = function(x) {

m0 = x[1:k]

C0 = (abs(x[k+1]))

*

diag(k)

V = (abs(x[k+2]))

*

diag(n)

W = (abs(x[k+3]))

*

diag(k)

FF = matrix(nrow=n,ncol=k, data=x[(k+3+1):(k+3+n

*

k)])

GG = matrix(nrow=k,ncol=k, data=x[(k+3+n

*

k+1):(k+3+n

*

k+k

*

k)])

return (dlm(m0=m0, C0=C0, FF=FF, GG=GG, V=V, W=W))

}

return (list(n=n,k=k,init=init,build=build))

}

Rdlm_train <- function(Y, k, maxit) {

if(missing(maxit)) { maxit=10 }

if(ncol(Y)==3) {

Ymat = matrix(nrow=max(Y(,1)),ncol=max(Y(,2)))

Ymat[cbind(Y(,1),Y(,2))] = Y(,3)

} else {

Ymat = Y;

}

n = nrow(Ymat)

TT = ncol(Ymat)

dlm_builder = builderFactory(n, k)

mle = dlmMLE(Ymat,dlm_builder$init,build=dlm_builder$build,

control=list(maxit=10))

dlm = dlm_builder$build(mle$par)

dlm_filt = dlmFilter(Ymat,dlm)

return (dlm_filt)

}

tmp = t(as.matrix(Nile));

tmp=rbind(tmp,tmp); tmp=rbind(tmp,tmp);

tmp=rbind(tmp,tmp); tmp=rbind(tmp,tmp);

print(nrow(tmp))

14

Rdlm_train(tmp,4);

print(’works’)

tmp=rbind(tmp,tmp);

print(nrow(tmp))

Rdlm_train(tmp,4);

15

