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1 Bayesian Nonparametric Interpretation

As K → ∞, the component weights and their corresponding feature factor vectors constitute a
draw G =

∑∞
k=1 νk1φk

from a gamma process GamP (G0, β), where β is a scale parameter and
G0 is a finite and continuous base measure over a complete separable metric space Ω [1]. Models
based on the gamma process have an inherent shrinkage mechanism because the number of atoms
with weights greater than ε > 0 follows a Poisson distribution with a finite mean—specifically,
Pois(γ0

∫∞
ε

dν ν−1 exp (−β ν)), where γ0 = G0(Ω) is the total mass under the base measure.

This interpretation enables us to view the priors over Π and Θ as a novel stochastic processes.
Because of the relationship between the Dirichlet and gamma distributions [1], we can equiva-
lently express the prior over the kth column of Π as πk1k =

λk1k∑K
k2=1 λk1k2

for k1 = 1, . . . ,K,

where λkk ∼ Gam(ξ νk, c), and λk1k ∼ Gam(νk1νk, c) for k1 6= k are auxiliary variables. As
K → ∞,

∑∞
k1=1

∑∞
k2=1 λk1k21(φk1

,φk2
) is a draw from a relational gamma process [2] and∑∞

k1=1

∑∞
k2=1 πk1k21(φk1

,φk2
) is a draw from a column-normalized relational gamma process.

Given τ0, Π, and G =
∑∞
k=1 νk 1φk

, the prior over Θ is a recurrent gamma process—a sequence of
gamma processes, each defined over the product space R+ × Ω—defined recursively as follows:

G(t) =
∑∞
k=1θ

(t)
k 1φk

∼ GamP(H(t), τ0) and H(t) =
∑∞
k=1(τ0

∑∞
k2=1πkk2 θ

(t−1)
k2

)1φk
, (1)

where H(1) = τ0G. This recursive sequence of gamma processes will never produce a draw with
infinite mass at some time step t, which would make H(t+1) infinite and violate the entire definition.

Theorem 1: The expected sum of θ(t) is finite and equal to E[
∑∞
k=1 θ

(t)
k ] = γ0

β .

By linearity of expectation, the definition of the recurrent gamma process, and
∑∞
k1=1 πk1k = 1,

E[
∑∞
k=1θ

(t)
k ] =

∑∞
k=1E[θ

(t)
k ] =

∑∞
k=1E[

∑∞
k2=1πkk2 θ

(t−1)
k2

] = E[
∑∞
k=1θ

(t−1)
k=1 ]. (2)

Then, by induction and the definition of the recurrent gamma process,

E[
∑∞
k=1θ

(t−1)
k ] = . . . = E[

∑∞
k=1θ

(1)
k ] = γ0

β . (3)
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2 Proof of Proposition 1

Proposition 1: The backward pass has a fixed point of ζ? = −W−1(− exp (−1− δ
τ0

))− 1− δ
τ0

.

If a fixed point exists, then it must satisfy the following equation:

ζ? = ln (1 + δ
τ0

+ ζ?) (4)

exp (ζ?) = 1 + δ
τ0

+ ζ? (5)

1 = (1 + δ
τ0

+ ζ?) exp (−ζ?) (6)

−1 = (−1− δ
τ0
− ζ?) exp (−ζ?) (7)

− exp (−1− δ
τ0

) = (−1− δ
τ0
− ζ?) exp (−ζ?) exp (−1− δ

τ0
) (8)

− exp (−1− δ
τ0

) = (−1− δ
τ0
− ζ?) exp (−1− δ

τ0
− ζ?). (9)

However, y = x exp (x) is equivalent to x = W(y), so

(−1− δ
τ0
− ζ?) = W(− exp (−1− δ

τ0
)) (10)

ζ? = −W(− exp (−1− δ
τ0

))− 1− δ
τ0
. (11)

There are two branches of the Lambert W function. The lower branch decreases from
W−1 (− exp (−1)) = −1 to W−1 (0) = −∞, while the principal branch increases from
W0 (− exp (−1)) = −1 to W0 (0) = 0 and beyond. Because ζ? must be positive, we therefore have

ζ? = −W−1(− exp (−1− δ
τ0

))− 1− δ
τ0
. (12)

3 MCMC Inference

Definition 1: If y· =
∑N
n=1 yn, where yn ∼ Pois(θn) are independent Poisson-distributed random

variables, then (y1, . . . , yN ) ∼ Mult(y·, ( θ1∑N
n=1 θn

, . . . , θN∑N
n=1 θn

)) and y· ∼ Pois(
∑N
n=1 θn) [3, 4].

Sampling the latent subcounts: Via definition 1,

(y
(t)
v1 , . . . , y

(t)
vK | −) ∼ Mult(y(t)v , (

φv1 θ
(t)
1∑K

k2=1 φvk θ
(t)
k

, . . . ,
φvK θ

(t)
K∑K

k2=1 φvk θ
(t)
k

)) (13)

Sampling Φ: Via Dirichlet–multinomial conjugacy,

(φk | −) ∼ Dir(η0 +
∑T
t=1y

(t)
1k , . . . , η0 +

∑T
t=1y

(t)
V k). (14)

Sampling δ(1), . . . , δ(T ): Via gamma–Poisson conjugacy,

(δ(t) | −) ∼ Gamma(ε0 +
∑V
v=1y

(t)
v , ε0 +

∑K
k=1θ

(t)
k ) (15)

Sampling δ (stationary variant): Also via gamma–Poisson conjugacy,

(δ | −) ∼ Gamma
(
ε0 +

∑T
t=1

∑V
v=1y

(t)
v , ε0 +

∑T
t=1

∑K
k=1 θ

(t)
k

)
. (16)

Sampling β: Via gamma–gamma conjugacy,

(β | −) ∼ Gamma(ε0 + γ0, ε0 +
∑K
k=1νk). (17)

Sampling ν and ξ: To obtain closed-form conditional posteriors for νk and ξ, we start with

(l
(·)
1k , . . . , l

(·)
kk , . . . , l

(·)
Kk) ∼ DirMult(l(·)·k , (ν1νk, . . . , ξνk, . . . , νKνk)), (18)

where l(·)k1k =
∑T
t=1 l

(t)
k1k

and l(·)·k =
∑T
t=1

∑K
k1=1 l

(t)
k1k

. As noted previously by Zhou [5], when
augmented with a beta-distributed auxiliary variable, the Dirichlet–multinomial distribution is propor-
tional to the negative binomial distribution. We therefore draw a beta-distributed auxiliary variable:

qk ∼ Beta(l
(·)
·k , νk (ξ +

∑
k1 6=kνk1)). (19)
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Conditioned on qk, we then have

l
(·)
kk ∼ NB(ξ νk, qk) and l

(·)
k1k
∼ NB(νk1νk, qk) (20)

for k1 6= k. Next, we introduce the following auxiliary variables:

hkk ∼ CRT(l
(·)
kk , ξ νk) and hk1k ∼ CRT(l

(·)
k1k

, νk1νk) (21)

for k1 6= k. We can then re-express the joint distribution over the variables in equations 20 and 21 as

l
(·)
kk ∼ SumLog(hkk, qk) and l

(·)
k1k
∼ SumLog(hk1k, qk) (22)

and

hkk ∼ Pois(−ξ νk ln (1− qk)) and hk1k ∼ Pois(−νk1νk ln (1− qk)). (23)

Then, via gamma–Poisson conjugacy,

(ξ | − \Θ,πk) ∼ Gam(γ0K +
∑K
k=1hkk, β −

∑K
k=1νk ln (1− qk)). (24)

Next, because l(1)k· ∼ Pois(ζ(1) τ0 νk) also depends on νk, we introduce

nk = hkk +
∑
k1 6=khk1k +

∑
k2 6=khkk2 + l

(1)
k· . (25)

Then, via definition 1, we have

nk ∼ Pois(νk ρk), (26)

where

ρk = − ln (1− qk) (ξ +
∑
k1 6=kνk1)−

∑
k2 6=k ln (1− qk2) νk2 + ζ(1)τ0. (27)

Finally, via gamma–Poisson conjugacy,

(νk | − \Θ,πk) ∼ Gam(
γ0
β

+ nk, β + ρk). (28)

4 Additional Results

Polyphonic music (PM): To test the models’ predictive performance for binary observations, we used
a polyphonic music sequence data set [6]. We created binary matrices for the first forty-four songs in
this data set. Each matrix has one column per time step and one row for each key on the piano—i.e.,
T = 111 to 3, 155 and V = 88. A single observation b(t)v = 1 means that key v was played at time t.

Table 1: Smoothing scores (higher
is better) for the binary matrices.

AUC

Mask LDS GP-DPFA PGDS

PM 10% 0.94 0.92 0.93
PM 20% 0.93 0.91 0.93
PM 30% 0.93 0.91 0.92

For each matrix, we created six masks indicating some subset
of columns (10%, 20%, and 30%, randomly selected) to
treat as held-out data. We only tested the models’ smoothing
performance because the last time steps are often empty. For
each matrix, mask, and model combination, we ran inference
and imputed the missing data, as described in section 4 of
the main paper. For both the PGDS and GP-DPFA, we used
the Bernoulli–Poisson distribution to link the observations
to latent Poisson counts [2]. We applied the LDS directly;
despite being misspecified, the LDS often performs well for
binary data [7]. We used AUC [8] to compute the the models’
smoothing scores (higher is better) for each inference run, and
then averaged the scores over the runs, the masks with the same percentage of held-out data, and
the matrices. We report our results in table 1. For the LDS, we only report the scores for the best-
performing value of K. For all three models, performance degraded as we held out more data. The
LDS and the PGDS, both of which have an expressive transition structure, outperformed GP-DPFA.
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Table 2: Results for the smoothing (“S”) and forecasting (“F”) tasks using all the features. Lower
values are better. We also report the number of time steps T and the burstiness B̂ of each data set.

Mean Relative Error Mean Absolute Error

T B̂ Task PGDS GP-DPFA PGDS GP-DPFA

GDELT 365 1.71 S 0.428 ±0.06 0.617 ±0.06 1.491 ±0.22 1.599 ±0.21

F 0.432 ±0.09 0.494 ±0.08 1.224 ±0.19 1.263 ±0.21

ICEWS 365 1.26 S 0.334 ±0.02 0.372 ±0.01 1.003 ±0.13 1.021 ±0.14

F 0.299 ±0.05 0.313 ±0.05 0.646 ±0.13 0.673 ±0.14

SOTU 225 1.49 S 0.216 ±0.00 0.226 ±0.00 0.365 ±0.00 0.374 ±0.00

F 0.172 ±0.00 0.169 ±0.00 0.295 ±0.00 0.289 ±0.00

DBLP 14 1.73 S 0.370 ±0.00 0.356 ±0.00 0.604 ±0.00 0.591 ±0.00

F 0.370 ±0.00 0.408 ±0.00 0.778 ±0.00 0.790 ±0.00

NIPS 17 0.89 S 2.133 ±0.00 1.199 ±0.00 9.375 ±0.00 7.893 ±0.00

F 1.173 ±0.00 0.949 ±0.00 15.065 ±0.00 12.445 ±0.00
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