Appendix for Learning Bound for Parameter Transfer Learning

A Appendix: Lemma for Proof of Theorem 1

In this subsection, we omit the subscript 7 for simplicity. In addition, we denote 6 by 8 simply.
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The inequality (4) is obtained by the following lemma.
Lemma 1. The following holds with probability 1 — 6:
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we have the following with probability 1 — §:
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Thus, we obtain (15). [ |

B Appendix: Proof of Sparse Coding Stability

The proof of Theorem 2 is almost the same as that of Theorem 1 in Mehta and Gray (2012). How-
ever, since a part of the proof can not applied to our setting, we provide the full proof of Theorem 2
in this section.

Lemma 2. Lera € R™ and E € RYX™ Then,

Eally < |[El[12/lal]:.

[Proof]
m m m
[Balls = 1> aieills < laillleills < [[Bll2 Y lail = [[Ell1 2]l
i=1 i=1 i=1
|
2
Lemma 3. The sparse representation ¢p(x) satisfies ||¢p (x)]]; < H;/l\b.
[Proof]
1
Mep)ll < Slx=Dep )3 + A e )],
1
= in =|lx — Dz||?
min Ljx - Def3 + ),
1
< ngHg
|

We prepare the following notation:
1
vp (2) = 5% — D25 + Al

Let a* and a* respectively denote the solutions to the LASSO problems for the dictionary D and D:

a" :=argminvp(z), a*:=argminvy(z)
zER™ zER™

Then, the following equation holds due to the subgradient of vp(z) with respect to z (e.g. (2.8) of
7).
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Lemma 4.

Aja*]|; = (x — Da*,Da*).

Let vp and vp be the optimal values of the LASSO problems for the dictionary D and D:

vp = min vp(z) = *||X—D<’:l 13+ Alla* |1,
vp = min vp(z) = gllx—ﬁﬁ*llg + a1

Lemma 5 (Optimal Value Stability). If |D — D||,2 < A, then

1 ||X||2 |D D||12
op vl < 5 (1+ P2 g2 =22,

4

[Proof]
1 Nk (]2 *
vp = llx—Da’lz + A’
1 * N * *
= §\|X—Da + (D — D)a*||3 + M|a*|1
1 * * ™ * ~ * *
< 3(x-Da 15 + 2[|x — Da*[|[|(D — D)a* ||z + [[(D — D)a*||3) + Alla*[
1 . . /3D — D12 1 (|x|3|D = D12
< ZRDaﬁ+AhllHkm<f22A oo (EREE—Zh2
X
< wp+ (1‘1' 2) HXH2HD Dy 2,

where we used

Ix = Da’||2 = /]x — Da*|[> < V/[lx — Da*[] + AMa*| < \/[Ix]3 =

The following lemma 6 is obtained by the proof of Lemma 11 in Mehta and Gray (2012).

Lemma 6 (Stability of Norm of Reconstructor). If |D — D||;.2 < A, then

2\

[1%]2-

iDac[ — D& ] < 2lop —up| ~ (1+ W“)W”D‘W”
Lemma7. If |D — D|,2 < \ then
meﬁ—mau|<nﬂb+mhwﬁlgﬂz
[Proof] First, note that
(5~ D)l < 10D~ D) alla’]s < g 2 Pl

and

IDa*(l; < [|(D—~D)a||2 + |Da* — x|z + [x]|2

ID ~ D1z
I3 =22 + 20l

1
< (glixlla +2) I,
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where we used Lemma 3. Then, we have

[IDa")3 - D&

< 2|(Da", (D -D)a")| + (D - D)a"|
< 2|Da’[l|(D —~ D)a"[l; + | (D — D)a"[3
~ 2
! IxI3ID = Dil12 ) ( IxI3ID — Dz
< 2(= 2 : ;
< (ng+)wm< ) Pl )y (<RIBS
<

3 D-D
(3l + 2) g3 2= Pz,

Combining this fact with Lemma 6, we have

[IDa |3 |Da" ]
MDfﬁ—wDywy+MDym—wD$ﬁ\

) g 3 D~ DBl
(1+ B2 g + (2 + 2) g2 =Pl

D-D
Okm+$HW£——JE
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IA
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Lemma 8 (Reconstructor Stability). If |D — D||;2 < A, then
R ID — D12
Da* — Da*(|3 < 2 (3||x[3 + 9]x]l2 + 2) ||X\|2f
[Proof] We set as a* := 1 (a* + a*). From the optimality of a*, it follows that vp (a*) < vp(a*),
that is,
1 * 112 * 1 =*[12 =%
2 llx =Da’[lz + Alla™[ly < 5llx —Da%[|; + Alla™]]s. (16)

We denote as ¢ := [|D — D12, ex i= (1+ 212 ) x| and ¢ = ((x]lz + 3) x]3
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By the convexity of the [;-norm, the RHS of (16) obeys:

2

1 * =% * <k
x_p a”+a £ a*+a
2 2 ) 2 |,
1 1 3 ~ %k ? >\ * )\ ~ok
< 3 x—i(Da +Da") 2‘*‘§||51 H1+§Ha Il
1 ) 1 i 1 o)A X
_ - ) (D * D * D * D * - * - *
5 (113 -2 (x 5(Da" + Da") ) + a4 D[ ) + Sl + 51l
1 2 1 * 1 Sk 1 * (|12 ~* |12 * oK
= SIxI3— 5 b Da’) — 5 (xDa’) + (IDa’ [ + D&’} + 2(Da’, Da’))
2 aty + 2
2 179 !
1 1 ! R I I
< §HX||§ - §<X7Da ) — §<X7Da >+1\|Da ||§+1<Da ,Da")
et + dpargy + &
At s €
2 1Ty IS
1 1 1 1 1
= 5”"”% 3 (x,Da*) — 3 (x,Da*) + ZHDa*H% + 1<Da*7D5*>
+ L x—Da*,Da") + L(x - Da*, Da") 4 = (17)
— (X — a a — (X — a a —_—
2 ’ 2 ’ 8\
1 1 1 1 1
< L3~ L D) - L (xDa") + L D3 + L (Dar, Da")

1 * 1 * 1 )5 * 1 * Ce | Cx\ €
+3(x,Da’) — 5 |Da’[[3 + 5 (x, Da") — || Da’ |} + (8 + 4) ¢
1

1 3.
= SlxIE - IDa’lE +

1, - 49
(Da*, D&") + - (x, (D - D)a") + (cx; C") ;

where we used Lemma 4 in (17).
Now, taking the (expanded) LHS of (16) and the newly derived upper bound of the RHS of (16)
yields the inequality:
]. 2 * ]- * (12 *
5 lIxll2 = {x, Da%) + S [[Da’|3 + Alla™||,
1 3 . 1 | - - e+ 2cx \ €
< I~ e + (Da D)+ x (D - D)+ (EEE) S

Replacing A||a*||; with (x — Da*, Da*) by Lemma 4 yields:

1
—(x,Da*) + §||Da*H§ + (x — Da",Da")

3 1 1 - / 2,
< —Z||Da*||§ + Z(Da*7Dé*> + §<x7 (D —D)a*) + <W> ;

B 8
Hence,
|Da*|]3 < (Da*,Dé*>+2<x7(]j_D)é*>+((:;—1—220,(>;
~ x|[3e o+ 2cx )\ €
< (Dw Dat) 250y (B2 ) S
~ (Da",Da’)+ (Ci«+26x2+2||x||§) :
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Then, we obtain
|Da* — Da*||;
[Da*(3 + |[Da* |3 — 2(Da*, Da*)

* * € * €
1Da* |3 + (IIDa” I3 + ci ) + (—20IDa’[§ + (¢ + 26 + 2[xI13) 5 )

IN

€
< okt et XIS

|
Lemma 9. [Preservation of Sparsity] If
X ~ D-D
M%) > (14 22 jxap - B2 + \/ 2@xl3 + 9l + 2) x5 =Pz g
then
e (x) — ¢p(x)[lo < k. (19)
[Proof] In this proof, we denote ¢p (x) and o5 (x) by a* = [a],...,a},] " anda* = [a],..., a7, ",

respectively. When D =D, Lemma 9 obviously holds. In the following, we assume D # D. Since
M (D,x) > 0 from (18), there is a Z C [m] with |Z| = m — k such that for all s € Z:

0 < Mp(D,x) <A —|(d;,x —Da")|. (20)
To obtain (19), it is enough to show that af = 0 and a] = O forall: € 7.
First, we show a; = 0 for all ¢ € Z. From the optimality conditions for the LASSO (?), we have
(dj,x — Da*) =sign(a})\ if aj #0,
[(d;,x —Da")| < X otherwise.
Note that the above optimality conditions imply that if a} # 0 then
|(dj,x —Da")| = \. (21)
Combining (21) with (20), it holds that @] = 0 forall ¢ € Z.
Next, we show a; = 0 for all ¢ € Z. To do so, it is sufficient to show that
l(d;, x — Da*)| < A (22)
for all 7 € Z. Note that
(d;,x —Da*)| = |(d; +d; —d;,x — Da")|

< |{di,x — Da")| + [|d; — dy|2[|x — Da*|»
< [(di,x—Da")| + D — Dl[12][x]2
and
(di,x—Da")] = [(d;x—(D+D-D)a")|
< |{di,x — Da")| + [(d;, (D — D)a")|
< [(di,x —Da*)| + D = D1 o[a*:.
Hence,
~ = o X ~
(@x=Da)| < [(dx-Da)l+ (14 52 ) fxlaD - Dl
Now,
[(d;;,x —Da*)|] = |(d;,x —Da* + Da* —Da")|
< |{d;,x — Da*)| + |(d;, Da* — Da")|
< A= Mi(D,x) + ||Da* — Da*||;
D-D
< A= Mp(D,x) + \/2 (3113 + 9l1xl|2 + 2) \\XH%”%, (23)
where (23) is due to Lemma 8. Then, (22) is obtained by (18). |

14



Here, we prepare the following lemma.

Lemma 10. When a dictionary D is u-incoherent, then the following bound holds for an arbitrary
k-sparse vector b:

k
b"D Db > (1 - /f/g) b2

[Proof] We set as G := D "D — I, where I is the m x m identity matrix. Since D is p-incoherent,
the absolute value of each component of G is less than or equal to p/ V/d, and thus, b'Gb >
—u/\/d||b||3. Then, we obtain

k
b'™D'Db = bT(I+G)b > |b]2 - Lo|b|? > (1—“) b2, 24
( )b > [|b|3 \/g” (= 7 b2 (24)

where we used the inequality ||b||; < v/k||b||2 for the k-sparse vector b in the last inequality. B

Remark 1. We mention the relation with the k-incoherence of a dictionary, which is the assumption
of the sparse coding stability in Mehta and Gray (2013). For k € [m] and D € D, the k-incoherence
sk(D) is defined as

sk(D) = (min{gu(Da)[A C [m],[A] = k})?,
where i, (D) is the k-th singular value of Dy = [d;,, . ..,d;, ] for A = {i1, ..., ix}. From Lemma

10, when a dictionary D is p-incoherent, the k-incoherence of D satisfies

wk
Sk(D) Z 1— ﬁ

Thus, a p-incoherent dictionary has positive k-incoherence when d > (uk)?. On the other hand,
when k > 2, if a dictionary D has positive k-incoherence si(D), there is > 0 such that the
dictionary is p-incoherent.

[Proof of Theorem 2]

Following by the notations of Mehta and Gray (2012), we denote yp(x) and ¢p (x) by 2, and t,,
respectively. From (23) of Mehta and Gray (2012), we have

(ze —t,) ' DTD(2, —t,)
(2o — )T ((bTD ~D'D)t. +2(D — ﬁ)Tx)

IA

= (z—t)"(D'D-D'D)t, +2(z. —t,) " (D-D) x. (25)
We evaluate the second term in (25) ¥. We have the following by the definition of z,:
%Hx — D3 + Alltull > %nx = Dzf3 + Az,
and thus,
2z, —t,) ' D'x > 2D Dz, — t] D Dt, + 2X(||ze]l1 — |It«]1).
Similarly, we have
20t, —2,) D x>t/ D'Dt, — 2] D Dz, + 2\(||t.|l1 — ||z« ]|1)-
Summing up the above inequalities and multiplying —1, we obtain
2z —t.)"(D-D)"x
< —z/D'Dz,+t/D'Dt, —t/D'Dt, + 2/ DDz,
= 2/ (D'D-D'D)z +t/(D'D-D'D)t,
= (z—t)"(D'D-D'D)z, — (2, —t,) (D'D-D'D)t, (26)
3The following bound in Mehta and Gray (2012) is not used in this paper:
2z —t.) (D -D) x < 2D~ Dli2vklz — tul]x]2-
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When E := D — D, from (25) and (26),
(2 — t*)TDTD(z* —ty)

< (z—t,)"(D'D-D'D)z,

< |(z+—t.) (E'D+D'E+E'E)z|

< |z« —t) TE" Dz | 4 (20 — t) ' DTEz| + (2, — t.) "ETEz,]

< E(z — t)[l2lDzill2 + Dz = t) |2 Ezullz + 1 B(z. — t)l|2]| B2 o

< (IEl12Dll12llz<llr + D[l 21El12llz<ll1 + [[E[l1,2|El12llz][1) |22 — t«ll1
<I3IENL: | IxI31ElLz | XI5

< ) ) ) k « _t*

< < ) + S + 3 V|2 2
4||x||2

< (LY avie, - ol @

where we used ||E||1,2 < 2 in the last inequality.

We note that the assumption (18) of Lemma 9 follows from (5). Then, since ||z, — t.|lo < k from
Lemma 9, we have the following lower bound of (25) from the p-incoherence of D and Lemma 10:

(2o —t,) ' D'D(z, —t,) > (1 — \“/Ig) | 2e — ta|2. (28)
By (27) and (28), we obtain
4(x|12vE ~
||Z* - t*||2 < ||¢HD - D||1,2'
(1 — pk/Vd)A
|
C Appendix: Proof of Margin Bound
In this proof, we set as
20 (1- t)zd)\2>
(5 = (S - 9
1 (1—t)\/E)\ Xp( 80'2
5 20m o _df)\2
2 A \/a)\ Xp 80’2 I
5 e Aok o (_ C2d(1 — uk/ﬁ))
= 2
CrJd(1 — uk/V/d) 8o
n_ 8o(d—k) _d2)\2
% = T P\ Tage )
(;3 = 5é + (s:o’/

Then, 0; )\ = 01 + 62 + J3.

The column vectors for a p-incoherent dictionary are in general position. Thus, a solution of LASSO
for a p-incoherent dictionary is unique due to Lemma 3 in Tibshirani et al. (2013).

The following notions are introduced in Zhao and Yu (2006). Let a be a k-sparse vector. With-

out loss of generality, we assume that a = [ay,...,a,0,...,0]T. Then, we denote as a(1) =

[a1,...,a;]", D(1) = [d1,...,dg] and D(2) = [dj41,...,d,]. Then, we define as C;; :=

éD'(?)TD(j). for i, € {1,2}. When a dictionary D is p-incoherent and (uk)?/d < 1, Cqy is

positive definite due to Lemma 10 and especially invertible.

Definition 6 (Strong Irrepresentation Condition). There exists a positive vector 1) such that
|C21Cy'sign(a(1))] < 1 -,

where sign(a(1)) maps positive entry of a(1) to 1, negative entry to —1 and 010 0, 1 is the (d—k) x 1

vector of 1’s and the inequality holds element-wise.
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Then, the following lemma is derived by modifying the proof of Corollary 2 of Zhao and Yu (2006).

Lemma 11 (Strong Irrepresentation Condition). When a dictionary D is p-incoherent and d >
{u(2k — 1)}? holds, the strong irrepresentation condition holds withn = (1 — u(2k — 1)/v/d)1.

Lemma 12. Under Assuptions 1-4, when D is p-incoherent and d > p(2k—1), the following holds:
Pr[|supp(a — ¢p(x))| < k] > 1 — 3.
[Proof] The following inequality obviously holds:

Pr[supp(a — ¢p(x))| <k] > Prisign(a) = sign(ep(x))].

Due to Lemma 11 and Proofs of Theorems 3 and 4 in Zhao and Yu (2006), there exist sub-Gaussian
random variables {2;}_, and {¢;}%=F such that their variances are bounded as E[2?] < ¢2/d(1 —

pk/Vd) < o?/d(1 — pk//d) and E[¢?] < 02 /d? and
Prsign(a) = sign(¢p(x))]

> FEPﬂm>f<m (’fNﬂ 2?ﬁm> Y

=1
When X\ < (1 — pk/v/d)Cd/Vk, the inequality |a;| — 2(1_‘[% > C/2 holds since |a;| > C.
Then, since 1 — u(2k — 1) /d > 1/2 holds, we obtain
kA
Pr|lal 2 Va (ol - — 2V <pefla 2 0] <a,
2(1 — pk/\/d)d
(1 p(2k — 1)/d)A
P fjg > L2 <peficl> 25] <,
where we used that z; and (; are sub-Gaussian. Thus the proof is completed. |

Lemma 13. Let D be a dictionary. When & satisfies Assumption 4, the following holds:
Pr[\ > 2|D7¢||o] <1 — do,

[Proof] Let £ be a 1-dimensional sub-Gaussian with parameter o/ V/d. Then, it holds that for ¢ > 0

2
exp (—d)\) . 29)

202

Pri¢] > A <

o
VA
Note that (d;, &) is sub-Gaussian with parameter o/+/d because ||d;||» = 1 for every j € [m] and

components of ¢ are independent and sub-Gaussian with parameter o/ V/d. Thus,

P\ < 2[D 7€) = Pr (U7 (A < 20, 1)) < 37 PrfA < 20y, €)] < b,

j=1
where we used (29) in the last inequality. |
Lemma 14. Under Assuptions 1-4, then
3k
Prilla—¢px)|, < ————=A| > 1—09—ds.
> 7 (11— pk/Vd)

[Proof] By Assumption 1, x = Da + £&. We denote ¢p(x) by a* and a — a* by A. We have the
following inequality by the definition of a*:

1 X R 1
5l =Da’[l3 + Ala”[li < 5 [x - Dal3 + Allal:.
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Substituting x = Da + &, we have
1 .
g\lDAH% < —(D7EA)+ A(llally — [la*]l1)
ID 7€l Al + Allalls — [[a*[2). (30)

IN

Let Ay be the vector whose i-th component equals that of A if 7 is in the support of a and equals 0
otherwise. In addition, let Aﬁ = A —Ag. Using A = A, + Aé‘, we have

la*[l = lla+ Ay + Axll > [lally + | Ag [l = | Ak]h
Substituting the above inequality into (30), we have

1
DA < [IDTEloo A1+ A(IAKL = A7 1)
The inequality A > 2||D T £|| holds with with probability 1 — 5 due to Lemma 13, and then, the

following inequality holds:

1
0 < SIDAJE < SAUAKIL + 1A% ) + AU Akl = A7 ]1)-

N

Thus,

Af [l < 3)A] and
15 3 1., 1. _3 3 \VE
SIDAIZ < SN[kl = SAIAE | < SAIAKI < SAVEIALL.

Thus, we have
DA < 3AVE|Agl2 < 3AVE[ A2

Here, ||supp(A)||o < k with probability 1 — d3 due to Lemma 12 and the following inequality holds
by the p-incoherence of the dictionary D:

(1 — pk/VA)|A]3 < |DAJS3,

and thus,

3IWk

[Proof of Theorem 3] From Assumption 1, an arbitrary sample x is represented as x = D*a + &.
Then,

(dj;x =D¢p(x)) = (d;;§+D"(a-¢p(x)))
= (d;,€) + (D*"dj,a - ¢p(x)).
Then, we evaluate the probability that the first and second terms is bounded above by %)\.

We evaluate the probability for the first term. Since ||d;|| = 1 by the definition and £ is drawn from
a sub-Gaussian distribution with parameter o2 / Vd, we have

1-t
Pr |:<dj7£> S 2)\:| 2 1-— 51.
With probability 1 — 5 — J3, the second term is evaluated as follows:

(D*7dj,a—¢p(x)) = ((di,d)),. ., (dm,d;)]",a - pp(x))
<(1SUPP(3*LPD(X)) o[(d1,dj), .., <dm>dj>DTva — ¢p(x))

< (Lsupp(acpp o) © (1), (don, d)) T[l2]l2 = op ()12
< é%%@mma—wM@Mh—@Dwmz

< T o
< %/\, (32)
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2
where we used Lemmas 12 and 14 in (31) and d > { (1 + ﬁ) uk} in (32). Thus, with proba-
bility 1 — (51 + 0o + (53) =1—10¢ 2,

M p-(x) > A —(d;,x — D*pp(x)) > tA.

Thus, the proof of Theorem 3 is completed. |
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