
Appendix of InfoGAN: Interpretable Representation
Learning by Information Maximizing Generative

Adversarial Nets

Xi Chen†‡, Yan Duan†‡, Rein Houthooft†‡, John Schulman†‡, Ilya Sutskever‡, Pieter Abbeel†‡
† UC Berkeley, Department of Electrical Engineering and Computer Sciences

‡ OpenAI

A Proof of Lemma 5.1

Lemma A.1 For random variables X,Y and function f(x, y) under suitable regularity conditions:
Ex∼X,y∼Y |x[f(x, y)] = Ex∼X,y∼Y |x,x′∼X|y[f(x

′, y)].

Proof

Ex∼X,y∼Y |x[f(x, y)] =

∫
x

P (x)

∫
y

P (y|x)f(x, y)dydx

=

∫
x

∫
y

P (x, y)f(x, y)dydx

=

∫
x

∫
y

P (x, y)f(x, y)

∫
x′
P (x′|y)dx′dydx

=

∫
x

P (x)

∫
y

P (y|x)
∫
x′
P (x′|y)f(x′, y)dx′dydx

= Ex∼X,y∼Y |x,x′∼X|y[f(x
′, y)]

(1)

B Interpretation as “Sleep-Sleep” Algorithm

We note that InfoGAN can be viewed as a Helmholtz machine [1]: PG(x|c) is the generative
distribution and Q(c|x) is the recognition distribution. Wake-Sleep algorithm [2] was proposed to
train Helmholtz machines by performing “wake” phase and “sleep” phase updates.

The “wake” phase update proceeds by optimizing the variational lower bound of logPG(x) w.r.t.
generator:

max
G

Ex∼Data,c∼Q(c|x)[logPG(x|c)] (2)

The “sleep” phase updates the auxiliary distribution Q by “dreaming” up samples from current
generator distribution rather than drawing from real data distribution:

max
Q

Ec∼P (c),x∼PG(x|c)[logQ(c|x)] (3)

Hence we can see that when we optimize the surrogate loss LI w.r.t. Q, the update step is exactly
the “sleep” phase update in Wake-Sleep algorithm. InfoGAN differs from Wake-Sleep when we
optimize LI w.r.t. G, encouraging the generator network G to make use of latent codes c for the
whole prior distribution on latent codes P (c). Since InfoGAN also updates generator in “sleep” phase,
our method can be interpreted as “Sleep-Sleep” algorithm. This interpretation highlights InfoGAN’s
difference from previous generative modeling techniques: the generator is explicitly encouraged
to convey information in latent codes and suggests that the same principle can be applied to other
generative models.

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

C Experiment Setup

For all experiments, we use Adam [3] for online optimization and apply batch normalization [4]
after most layers, the details of which are specified for each experiment. We use an up-convolutional
architecture for the generator networks [5]. We use leaky rectified linear units (lRELU) [6] with
leaky rate 0.1 as the nonlinearity applied to hidden layers of the discrminator networks, and normal
rectified linear units (RELU) for the generator networks. Unless noted otherwise, learning rate is
2e-4 for D and 1e-3 for G; λ is set to 1.

For discrete latent codes, we apply a softmax nonlinearity over the corresponding units in the
recognition network output. For continuous latent codes, we parameterize the approximate posterior
through a diagonal Gaussian distribution, and the recognition network outputs its mean and standard
deviation, where the standard deviation is parameterized through an exponential transformation of
the network output to ensure positivity.

The details for each set of experiments are presented below.

C.1 MNIST

The network architectures are shown in Table 1. The discriminator D and the recognition network Q
shares most of the network. For this task, we use 1 ten-dimensional categorical code, 2 continuous
latent codes and 62 noise variables, resulting in a concatenated dimension of 74.

Table 1: The discriminator and generator CNNs used for MNIST dataset.

discriminator D / recognition network Q generator G
Input 28× 28 Gray image Input ∈ R74

4× 4 conv. 64 lRELU. stride 2 FC. 1024 RELU. batchnorm
4× 4 conv. 128 lRELU. stride 2. batchnorm FC. 7× 7× 128 RELU. batchnorm
FC. 1024 lRELU. batchnorm 4× 4 upconv. 64 RELU. stride 2. batchnorm
FC. output layer for D,
FC.128-batchnorm-lRELU-FC.output for Q 4× 4 upconv. 1 channel

C.2 SVHN

The network architectures are shown in Table 2. The discriminator D and the recognition network Q
shares most of the network. For this task, we use 4 ten-dimensional categorical code, 4 continuous
latent codes and 124 noise variables, resulting in a concatenated dimension of 168.

Table 2: The discriminator and generator CNNs used for SVHN dataset.

discriminator D / recognition network Q generator G
Input 32× 32 Color image Input ∈ R168

4× 4 conv. 64 lRELU. stride 2 FC. 2× 2× 448 RELU. batchnorm
4× 4 conv. 128 lRELU. stride 2. batchnorm 4× 4 upconv. 256 RELU. stride 2. batchnorm
4× 4 conv. 256 lRELU. stride 2. batchnorm 4× 4 upconv. 128 RELU. stride 2.
FC. output layer for D,
FC.128-batchnorm-lRELU-FC.output for Q 4× 4 upconv. 64 RELU. stride 2.

4× 4 upconv. 3 Tanh. stride 2.

C.3 CelebA

The network architectures are shown in Table 3. The discriminator D and the recognition network Q
shares most of the network. For this task, we use 10 ten-dimensional categorical code and 128 noise
variables, resulting in a concatenated dimension of 228.

2

Table 3: The discriminator and generator CNNs used for SVHN dataset.

discriminator D / recognition network Q generator G
Input 32× 32 Color image Input ∈ R228

4× 4 conv. 64 lRELU. stride 2 FC. 2× 2× 448 RELU. batchnorm
4× 4 conv. 128 lRELU. stride 2. batchnorm 4× 4 upconv. 256 RELU. stride 2. batchnorm
4× 4 conv. 256 lRELU. stride 2. batchnorm 4× 4 upconv. 128 RELU. stride 2.
FC. output layer for D,
FC.128-batchnorm-lRELU-FC.output for Q 4× 4 upconv. 64 RELU. stride 2.

4× 4 upconv. 3 Tanh. stride 2.

C.4 Faces

The network architectures are shown in Table 4. The discriminator D and the recognition network Q
shares the same network, and only have separate output units at the last layer. For this task, we use 5
continuous latent codes and 128 noise variables, so the input to the generator has dimension 133.

Table 4: The discriminator and generator CNNs used for Faces dataset.

discriminator D / recognition network Q generator G
Input 32× 32 Gray image Input ∈ R133

4× 4 conv. 64 lRELU. stride 2 FC. 1024 RELU. batchnorm
4× 4 conv. 128 lRELU. stride 2. batchnorm FC. 8× 8× 128 RELU. batchnorm
FC. 1024 lRELU. batchnorm 4× 4 upconv. 64 RELU. stride 2. batchnorm
FC. output layer 4× 4 upconv. 1 sigmoid.

We used separate configurations for each learned variation, shown in Table 5.

Table 5: The hyperparameters for Faces dataset.

Learning rate for D / Q Learning rate for G λ
Azimuth (pose) 2e-4 5e-4 0.2
Elevation 4e-4 3e-4 0.1
Lighting 8e-4 3e-4 0.1
Wide or Narrow learned using the same network as the lighting variation

C.5 Chairs

The network architectures are shown in Table 6. The discriminator D and the recognition network Q
shares the same network, and only have separate output units at the last layer. For this task, we use 1
continuous latent code, 3 discrete latent codes (each with dimension 20), and 128 noise variables, so
the input to the generator has dimension 189.

We used separate configurations for each learned variation, shown in Table 7. For this task, we found
it necessary to use different regularization coefficients for the continuous and discrete latent codes.

References

[1] P. Dayan, G. E. Hinton, R. M. Neal, and R. S. Zemel, “The helmholtz machine,” Neural
computation, vol. 7, no. 5, pp. 889–904, 1995.

[2] G. E. Hinton, P. Dayan, B. J. Frey, and R. M. Neal, “The" wake-sleep" algorithm for unsuper-
vised neural networks,” Science, vol. 268, no. 5214, pp. 1158–1161, 1995.

[3] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” ArXiv preprint
arXiv:1412.6980, 2014.

[4] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing
internal covariate shift,” ArXiv preprint arXiv:1502.03167, 2015.

3

Table 6: The discriminator and generator CNNs used for Chairs dataset.

discriminator D / recognition network Q generator G
Input 64× 64 Gray image Input ∈ R189

4× 4 conv. 64 lRELU. stride 2 FC. 1024 RELU. batchnorm
4× 4 conv. 128 lRELU. stride 2. batchnorm FC. 8× 8× 256 RELU. batchnorm
4× 4 conv. 256 lRELU. stride 2. batchnorm 4× 4 upconv. 256 RELU. batchnorm
4× 4 conv. 256 lRELU. batchnorm 4× 4 upconv. 256 RELU. batchnorm
4× 4 conv. 256 lRELU. batchnorm 4× 4 upconv. 128 RELU. stride 2. batchnorm
FC. 1024 lRELU. batchnorm 4× 4 upconv. 64 RELU. stride 2. batchnorm
FC. output layer 4× 4 upconv. 1 sigmoid.

Table 7: The hyperparameters for Chairs dataset.

Learning rate for D / Q Learning rate for G λcont λdisc

Rotation 2e-4 1e-3 10.0 1.0
Width 2e-4 1e-3 0.05 2.0

[5] A. Dosovitskiy, J. Tobias Springenberg, and T. Brox, “Learning to generate chairs with con-
volutional neural networks,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2015, pp. 1538–1546.

[6] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities improve neural network
acoustic models,” in Proc. ICML, vol. 30, 2013, p. 1.

4

	Proof of Lemma 5.1
	Interpretation as ``Sleep-Sleep'' Algorithm
	Experiment Setup
	MNIST
	SVHN
	CelebA
	Faces
	Chairs

