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Abstract

We develop a classification algorithm for estimating posterior distributions from
positive-unlabeled data, that is robust to noise in the positive labels and effective
for high-dimensional data. In recent years, several algorithms have been proposed
to learn from positive-unlabeled data; however, many of these contributions re-
main theoretical, performing poorly on real high-dimensional data that is typically
contaminated with noise. We build on this previous work to develop two practical
classification algorithms that explicitly model the noise in the positive labels and
utilize univariate transforms built on discriminative classifiers. We prove that these
univariate transforms preserve the class prior, enabling estimation in the univari-
ate space and avoiding kernel density estimation for high-dimensional data. The
theoretical development and parametric and nonparametric algorithms proposed
here constitute an important step towards wide-spread use of robust classification
algorithms for positive-unlabeled data.

1 Introduction

Access to positive, negative and unlabeled examples is a standard assumption for most semi-
supervised binary classification techniques. In many domains, however, a sample from one of the
classes (say, negatives) may not be available, leading to the setting of learning from positive and
unlabeled data (Denis et al., 2005). Positive-unlabeled learning often emerges in sciences and com-
merce where an observation of a positive example (say, that a protein catalyzes reactions or that a
social network user likes a particular product) is usually reliable. Here, however, the absence of a
positive observation cannot be interpreted as a negative example. In molecular biology, for example,
an attempt to label a data point as positive (say, that a protein is an enzyme) may be unsuccessful for
a variety of experimental and biological reasons, whereas in social networks an explicit dislike of a
product may not be possible. Both scenarios lead to a situation where negative examples cannot be
actively collected.

Fortunately, the absence of negatively labeled examples can be tackled by incorporating unlabeled
examples as negatives, leading to the development of non-traditional classifiers. Here we follow the
terminology by Elkan and Noto (2008) that a traditional classifier predicts whether an example is
positive or negative, whereas a non-traditional classifier predicts whether the example is positive or
unlabeled. Positive vs. unlabeled (non-traditional) training is reasonable because the class posterior
— and also the optimum scoring function for composite losses (Reid and Williamson, 2010) — in the
traditional setting is monotonically related to the posterior in the non-traditional setting. However,
the true posterior can be fully recovered from the non-traditional posterior only if we know the class
prior; i.e., the proportion of positives in unlabeled data. The knowledge of the class prior is also
necessary for estimation of the performance criteria such as the error rate, balanced error rate or
F-measure, and also for finding the right threshold for the non-traditional scoring function that leads
to an optimal classifier with respect to some criteria (Menon et al., 2015).



Class prior estimation in a nonparametric setting has been actively researched in the past decade
offering an extensive theory of identifiability (Ward et al., 2009; Blanchard et al., 2010; Scott et al.,
2013; Jain et al., 2016) and a few practical solutions (Elkan and Noto, 2008; Ward et al., 2009;
du Plessis and Sugiyama, 2014; Sanderson and Scott, 2014; Jain et al., 2016; Ramaswamy et al.,
2016). Application of these algorithms to real data, however, is limited in that none of the pro-
posed algorithms simultaneously deals with noise in the labels and practical estimation for high-
dimensional data.

Much of the theory on learning class priors relies on the assumption that either the distribution of
positives is known or that the positive sample is clean. In practice, however, labeled data sets con-
tain class-label noise, where an unspecified amount of negative examples contaminates the positive
sample. This is a realistic scenario in experimental sciences where technological advances enabled
generation of high-throughput data at a cost of occasional errors. One example for this comes from
the studies of proteins using analytical chemistry technology; i.e., mass spectrometry. For example,
in the process of peptide identification (Steen and Mann, 2004), bioinformatics methods are usually
set to report results with specified false discovery rate thresholds (e.g., 1%). Unfortunately, statis-
tical assumptions in these experiments are sometimes violated thereby leading to substantial noise
in reported results, as in the case of identifying protein post-translational modifications. Similar
amounts of noise might appear in social networks such as Facebook, where some users select ‘like’,
even when they do not actually like a particular post. Further, the only approach that does consider
similar such noise (Scott et al., 2013) requires density estimation, which is known to be problematic
for high-dimensional data.

In this work, we propose the first classification algorithm, with class prior estimation, designed
particularly for high-dimensional data with noise in the labeling of positive data. We first formalize
the problem of class prior estimation from noisy positive and unlabeled data. We extend the existing
identifiability theory for class prior estimation from positive-unlabeled data to this noise setting.
We then show that we can practically estimate class priors and the posterior distributions by first
transforming the input space to a univariate space, where density estimation is reliable. We prove
that these transformations preserve class priors and show that they correspond to training a non-
traditional classifier. We derive a parametric algorithm and a nonparametric algorithm to learn the
class priors. Finally, we carry out experiments on synthetic and real-life data and provide evidence
that the new approaches are sound and effective.

2 Problem formulation

Consider a binary classification problem of mapping an input spaceX to an output spaceY = {0, 1}.
Let f be the true distribution of inputs. It can be represented as the following mixture

f(x) = αf1(x) + (1− α)f0(x), (1)

where x ∈ X , y ∈ Y , fy are distributions over X for the positive (y = 1) and negative (y = 0)
class, respectively; and α ∈ [0, 1) is the class prior or the proportion of the positive examples in f .
We will refer to a sample from f as unlabeled data.

Let g be the distribution of inputs for the labeled data. Because the labeled sample contains some
mislabeled examples, the corresponding distribution is also a mixture of f1 and a small proportion,
say 1− β, of f0. That is,

g(x) = βf1(x) + (1− β)f0(x), (2)

where β ∈ (0, 1]. Observe that both mixtures have the same components but different mixing
proportions. The simplest scenario is that the mixing components f0 and f1 correspond to the class-
conditional distributions p(x|Y = 0) and p(x|Y = 1), respectively. However, our approach also
permits transformations of the input space X , thus resulting in a more general setup.

The objective of this work is to study the estimation of the class prior α = p(Y = 1) and propose
practical algorithms for estimating α. The efficacy of this estimation is clearly tied to β, where as β
gets smaller, the noise in the positive labels becomes larger. We will discuss identifiability of α and
β and give a practical algorithm for estimating α (and β). We will then use these results to estimate
the posterior distribution of the class variable, p(y|x), despite the fact that the labeled set does not
contain any negative examples.
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3 Identifiability

The class prior is identifiable if there is a unique class prior for a given pair (f, g). Much of the
identifiability characterization in this section has already been considered as the case of asymmetric
noise (Scott et al., 2013); see Section 7 on related work. We recreate these results here, with the aim
to introduce required notation, to highlight several important results for later algorithm development
and to include a few missing results needed for our approach. Though the proof techniques are
themselves quite different and could be of interest, we include them in the appendix due to space.

There are typically two aspects to address with identifiability. First, one needs to determine if a
problem is identifiable, and, second, if it is not, propose a canonical form that is identifiable. In
this section we will see that class prior is not identifiable in general because f0 can be a mixture
containing f1 and vice versa. To ensure identifiability, it is necessary to choose a canonical form
that prefers a class prior that makes the two components as different as possible; this canonical form
was introduced as the mutual irreducibility condition (Scott et al., 2013) and is related to the proper
novelty distribution (Blanchard et al., 2010) and the max-canonical form (Jain et al., 2016).

We discuss identifiability in terms of measures. Let µ, ν, µ0 and µ1 be probability measures defined
on some σ-algebra A on X , corresponding to f , g, f0 and f1, respectively. It follows that

µ = αµ1 + (1− α)µ0 (3)
ν = βµ1 + (1− β)µ0. (4)

Consider a family of pairs of mixtures having the same components

F(Π) = {(µ, ν) : µ = αµ1 + (1− α)µ0, ν = βµ1 + (1− β)µ0, (µ0, µ1) ∈ Π, 0 ≤ α < β ≤ 1},
where Π is some set of pairs of probability measures defined on A. The family is parametrized
by the quadruple (α, β, µ0, µ1). The condition β > α means that ν has a greater proportion of
µ1 compared to µ. This is consistent with our assumption that the labeled sample mainly contains
positives. The most general choice for Π is

Πall = Pall × Pall \
{

(µ, µ) : µ ∈ Pall},
where Pall is the set of all probability measures defined on A and

{
(µ, µ) : µ ∈ Pall

}
is the set of

pairs with equal distributions. Removing equal pairs prevents µ and ν from being identical.

We now define the maximum proportion of a component λ1 in a mixture λ, which is used in the
results below and to specify the criterion that enables identifiability; more specifically,

aλ1

λ = max
{
α ∈ [0, 1] : λ = αλ1 + (1− α)λ0, λ0 ∈ Pall}. (5)

Of particular interest is the case when aλ1

λ = 0, which should be read as “λ is not a mixture contain-
ing λ1”. We finally define the set all possible (α, β) that generate µ and ν when (µ0, µ1) varies in
Π:

A+(µ, ν,Π) = {(α, β) : µ = αµ1 + (1− α)µ0, ν = βµ1 + (1− β)µ0, (µ0, µ1) ∈ Π, 0 ≤ α < β ≤ 1}.
If A+(µ, ν,Π) is a singleton set for all (µ, ν) ∈ F(Π), then F(Π) is identifiable in (α, β).

First, we show that the most general choice for Π, Πall, leads to unidentifiability (Lemma 1). Fortu-
nately, however, by choosing a restricted set

Πres =
{

(µ0, µ1) ∈ Πall : aµ1
µ0

= 0, aµ0
µ1

= 0
}

as Π, we do obtain identifiability (Theorem 1). In words, Πres contains pairs of distributions, where
each distribution in a pair cannot be expressed as a mixture containing the other. The proofs of the
results below are in the Appendix.

Lemma 1 (Unidentifiability) Given a pair of mixtures (µ, ν) ∈ F(Πall), let parameters
(α, β, µ0, µ1) generate (µ, ν) and α+ = aνµ, β

+ = aµν . It follows that

1. There is a one-to-one relation between (µ0, µ1) and (α, β) and

µ0 =
βµ− αν
β − α , µ1 =

(1− α)ν − (1− β)µ

β − α . (6)
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2. Both expressions on the right-hand side of Equation 6 are well defined probability measures
if and only if α/β ≤ α+ and (1−β)/(1−α) ≤ β+.

3. A+(µ, ν,Πall) = {(α, β) : α/β ≤ α+, (1−β)/(1−α) ≤ β+}.
4. F(Πall) is unidentifiable in (α, β); i.e., (α, β) is not uniquely determined from (µ, ν).

5. F(Πall) is unidentifiable in α and β, individually; i.e., neither α nor β is uniquely deter-
mined from (µ, ν).

Observe that the definition of aλ1

λ and µ 6= ν imply α+ < 1 and, consequently, any (α, β) ∈
A+(µ, ν,Πall) satisfies α < β, as expected.

Theorem 1 (Identifiablity) Given (µ, ν) ∈ F(Πall), let α+ = aνµ and β+ = aµν . Let µ∗0 =
(µ−α+ν)/(1−α+), µ∗1 = (ν−β+µ)/(1−β+) and

α∗ = α+(1−β+)/(1−α+β+), β∗ = (1−β+)/(1−α+β+). (7)
It follows that

1. (α∗, β∗, µ∗0, µ
∗
1) generate (µ, ν)

2. (µ∗0, µ
∗
1) ∈ Πres and, consequently, α∗ = a

µ∗
1
µ , β∗ = a

µ∗
1
ν .

3. F(Πres) contains all pairs of mixtures in F(Πall).

4. A+(µ, ν,Πres) = {(α∗, β∗)}.
5. F(Πres) is identifiable in (α, β); i.e., (α, β) is uniquely determined from (µ, ν).

We refer to the expressions of µ and ν as mixtures of components µ0 and µ1 as a max-canonical form
when (µ0, µ1) is picked from Πres. This form enforces that µ1 is not a mixture containing µ0 and vice
versa, which leads to µ0 and µ1 having maximum separation, while still generating µ and ν. Each
pair of distributions in F(Πres) is represented in this form. Identifiability of F(Πres) in (α, β) occurs
precisely when A+(µ, ν,Πres) = {(α∗, β∗)}, i.e., (α∗, β∗) is the only pair of mixing proportions
that can appear in a max-canonical form of µ and ν. Moreover, Statement 1 in Theorem 1 and
Statement 1 in Lemma 1 imply that the max-canonical form is unique and completely specified
by (α∗, β∗, µ∗0, µ

∗
1), with α∗ < β∗ following from Equation 7. Thus, using F(Πres) to model the

unlabeled and labeled data distributions makes estimation of not only α, the class prior, but also
β, µ0, µ1 a well-posed problem. Moreover, due to Statement 3 in Theorem 1, there is no loss in the
modeling capability by using F(Πres) instead of F(Πall). Overall, identifiability, absence of loss of
modeling capability and maximum separation between µ0 and µ1 combine to justify estimating α∗
as the class prior.

4 Univariate Transformation

The theory and algorithms for class prior estimation are agnostic to the dimensionality of the data;
in practice, however, this dimensionality can have important consequences. Parametric Gaussian
mixture models trained via expectation-maximization (EM) are known to strongly suffer from co-
linearity in high-dimensional data. Nonparametric (kernel) density estimation is also known to have
curse-of-dimensionality issues, both in theory (Liu et al., 2007) and in practice (Scott, 2008).

We address the curse of dimensionality by transforming the data to a single dimension. The trans-
formation τ : X → R, surprisingly, is simply an output of a non-traditional classifier trained to
separate labeled sample, L, from unlabeled sample, U . The transform is similar to that in (Jain
et al., 2016), except that it is not required to be calibrated like a posterior distribution; as shown
below, a good ranking function is sufficient. First, however, we introduce notation and formalize the
data generation steps (Figure 1).

Let X be a random variable taking values in X , capturing the true distribution of inputs, µ, and Y
be an unobserved random variable taking values in Y , giving the true class of the inputs. It follows
that X|Y = 0 and X|Y = 1 are distributed according to µ0 and µ1, respectively. Let S be a
selection random variable, whose value in S = {0, 1, 2} determines the sample to which an input x
is added (Figure 1). When S = 1, x is added to the noisy labeled sample; when S = 0, x is added
to the unlabeled sample; and when S = 2, x is not added to either of the samples. It follows that
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Select for
labeling

Input

Unlabeled
S = 0

Success of
labeling

Noisy positive
S = 1

Dropped
S = 2

no

yes yes

Y = 0 w.p. γ0
Y = 1 w.p. γ1

no
Y = 0 w.p. 1− γ0
Y = 1 w.p. 1− γ1

Figure 1: The labeling procedure, with S taking values from S = {0, 1, 2}. In the first step, the sample is
randomly selected to attempt labeling, with some probability independent of X or Y . If it is not selected, it is
added to the “Unlabeled” set. If it is selected, then labeling is attempted. If the true label is Y = 1, then with
probability γ1 ∈ (0, 1), the labeling will succeed and it is added to “Noisy positives”. Otherwise, it is added
to the “Dropped” set. If the true label is Y = 0, then the attempted labeling is much more likely to fail, but
because of noise, could succeed. The attempted label of Y = 0 succeeds with probability γ0, and is added to
“Noisy positives”, even though it is actually a negative instance. γ0 = 0 leads to the no noise case and the noise
increases as γ0 increases. β = γ1α/(γ1α+γ0(1−α)), gives the proportion of positives in the “Noisy positives”.

Xu = X|S = 0 and X l = X|S = 1 are distributed according to µ and ν, respectively. We make
the following assumptions which are consistent with the statements above:

p(y|S = 0) = p(y), (8)
p(y = 1|S = 1) = β, (9)
p(x|s, y) = p(x|y). (10)

Assumptions 8 and 9 states that the proportion of positives in the unlabeled sample and the labeled
sample matches the true proportion in µ and ν, respectively. Assumption 10 states that the distribu-
tion of the positive inputs (and the negative inputs) in both the unlabeled and the labeled samples is
equal and unbiased. Lemma 2 gives the implications of these assumptions. Statement 3 in Lemma 2
is particularly interesting and perhaps counter-intuitive as it states that with non-zero probability
some inputs need to be dropped.

Lemma 2 Let X , Y and S be random variables taking values in X , Y and S, respectively, and
Xu = X|S = 0 and X l = X|S = 1. For measures µ, ν, µ0, µ1, satisfying Equations 3 and 4 and
µ1 6= µ0, let µ, µ0, µ1 give the distribution of X , X|Y = 0 and X|Y = 1, respectively. If X,Y and
S satisfy assumptions 8, 9 and 10, then

1. X is independent of S = 0; i.e., p(x|S = 0) = p(x)
2. Xu and X l are distributed according to µ and ν, respectively.
3. p(S = 2) 6= 0.

The proof is in the Appendix. Next, we highlight the conditions under which the score function τ
preserves α∗. Observing that S serves as the pseudo class label for labeled vs. unlabeled classifica-
tion as well, we first give an expression for the posterior:

τp(x) = p(S = 1|x, S ∈ {0, 1}), ∀x ∈ X . (11)

Theorem 2 (α∗-preserving transform) Let random variables X,Y, S,Xu, X l and measures
µ, ν, µ0, µ1 be as defined in Lemma 2. Let τp be the posterior as defined in Equation 11 and
τ = H ◦ τp, where H is a 1-to-1 function on [0, 1] and ◦ is the composition operator. Assume

1. (µ0, µ1) ∈ Πres,
2. Xu and X l are continuous with densities f and g, respectively,
3. µτ , ντ , µτ1 are the measures corresponding to τ(Xu), τ(X l), τ(X1), respectively,
4. (α+, β+, α∗, β∗) = (aνµ, a

µ
ν , a

µ1
µ , a

µ1
ν ) and (α+

τ , β
+
τ , α

∗
τ , β
∗
τ ) = (aντµτ , a

µτ
ντ , a

µτ1
µτ , a

µτ1
ντ ).

Then
(α+
τ , β

+
τ , α

∗
τ , β
∗
τ ) = (α+, β+, α∗, β∗)

and so τ is an α∗-preserving transformation.

Moreover, τp can also be used to compute the true posterior probability:

p(Y = 1|x) =
α∗(1− α∗)
β∗ − α∗

(
p(S = 0)

p(S = 1)

τp(x)

1− τp(x)
− 1− β∗

1− α∗
)
. (12)
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The proof is in the Appendix. Theorem 2 shows that the α∗ is the same for the original data and
the transformed data, if the transformation function τ can be expressed as a composition of τp and
a one-to-one function, H , defined on [0, 1]. Trivially, τp itself is one such function. We emphasize,
however, that α∗-preservation is not limited by the efficacy of the calibration algorithm; uncalibrated
scoring that ranks inputs as τp(x) also preserves α∗. Theorem 2 further demonstrates how the true
posterior, p(Y = 1|x), can be recovered from τp by plugging in estimates of τp, p(S=0)/p(S=1),
α∗ and β∗ in Equation 12. The posterior probability τp can be estimated directly by using a prob-
abilistic classifier or by calibrating a classifier’s score (Platt, 1999; Niculescu-Mizil and Caruana,
2005); |U |/|L| serves as an estimate of p(S=0)/p(S=1); section 5 gives parametric and nonparametric
approaches for estimation of α∗ and β∗.

5 Algorithms

In this section, we derive a parametric and a nonparametric algorithm to estimate α∗ and β∗ from the
unlabeled sample, U = {Xu

i }, and the noisy positive sample, L = {X l
i}. In theory, both approaches

can handle multivariate samples; in practice, however, to circumvent the curse of dimensionality, we
exploit the theory of α∗-preserving univariate transforms to transform the samples.

Parametric approach. The parametric approach is derived by modeling each sample as a two
component Gaussian mixture, sharing the same components but having different mixing proportions:

Xu
i ∼ αN (u1,Σ1) + (1− α)N (u0,Σ0)

X l
i ∼ βN (u1,Σ1) + (1− β)N (u0,Σ0)

where u1, u0 ∈ Rd and Σ1,Σ0 ∈ Sd++, the set of all d×d positive definite matrices. The algorithm is
an extension to the EM approach for Gaussian mixture models (GMMs) where, instead of estimating
the parameters of a single mixture, the parameters of both mixtures (α, β, u0, u1,Σ0,Σ1) are esti-
mated simultaneously by maximizing the combined likelihood over both U and L. This approach,
which we refer to as a multi-sample GMM (MSGMM), exploits the constraint that the two mixtures
share the same components. The update rules and their derivation are given in the Appendix.

Nonparametric approach. Our nonparametric strategy directly exploits the results of Lemma 1 and
Theorem 1, which give a direct connection between (α+ = aνµ, β

+ = aµν ) and (α∗, β∗). Therefore,
for a two-component mixture sample, M , and a sample from one of the components, C, it only
requires an algorithm to estimate the maximum proportion of C in M . For this purpose, we use
the AlphaMax algorithm (Jain et al., 2016), briefly summarized in the Appendix. Specifically, our
two-step approach for estimating α∗ and β∗ is as follows: (i) Estimate α+ and β+ as outputs of
AlphaMax(U,L) and AlphaMax(L,U), respectively; (ii) Estimate (α∗, β∗) from the estimates of
(α+, β+) by applying Equation 7. We refer to our nonparametric algorithm as AlphaMax-N.

6 Empirical investigation

In this section we systematically evaluate the new algorithms in a controlled, synthetic setting as
well as on a variety of data sets from the UCI Machine Learning Repository (Lichman, 2013).

Experiments on synthetic data: We start by evaluating all algorithms in a univariate setting where
both mixing proportions, α and β, are known. We generate unit-variance Gaussian and unit-scale
Laplace-distributed i.i.d. samples and explore the impact of mixing proportions, the size of the
component sample, and the separation and overlap between the mixing components on the accuracy
of estimation. The class prior α was varied from {0.05, 0.25, 0.50} and the noise component β from
{1.00, 0.95, 0.75}. The size of the labeled sample L was varied from {100, 1000}, whereas the size
of the unlabeled sample U was fixed at 10000.

Experiments on real-life data: We considered twelve real-life data sets from the UCI Machine
Learning Repository. To adjust these data to our problems, categorical features were transformed
into numerical using sparse binary representation, the regression data sets were transformed into
classification based on mean of the target variable, and the multi-class classification problems were
converted into binary problems by combining classes. In each data set, a subset of positive and
negative examples was randomly selected to provide a labeled sample while the remaining data
(without class labels) were used as unlabeled data. The size of the labeled sample was kept at 1000
(or 100 for small data sets) and the maximum size of unlabeled data was set 10000.
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Algorithms: We compare the AlphaMax-N and MSGMM algorithms to the Elkan-Noto algorithm
(Elkan and Noto, 2008) as well as the noiseless version of AlphaMax (Jain et al., 2016). There
are several versions of the Elkan-Noto estimator and each can use any underlying classifier. We
used the e1 alternative estimator combined with the ensembles of 100 two-layer feed-forward neural
networks, each with five hidden units. The out-of-bag scores of the same classifier were used as
a class-prior preserving transformation that created an input to the AlphaMax algorithms. It is
important to mention that neither Elkan-Noto nor AlphaMax algorithm was developed to handle
noisy labeled data. In addition, the theory behind the Elkan-Noto estimator restricts its use to class-
conditional distributions with non-overlapping supports. The algorithm by du Plessis and Sugiyama
(2014) minimizes the same objective as the e1 Elkan-Noto estimator and, thus, was not implemented.

Evaluation: All experiments were repeated 50 times to be able to draw conclusions with statistical
significance. In real-life data, the labeled sample was created randomly by choosing an appropriate
number of positive and negative examples to satisfy the condition for β and the size of the labeled
sample, while the remaining data was used as the unlabeled sample. Therefore, the class prior in
the unlabeled data varies with the selection of the noise parameter β. The mean absolute difference
between the true and estimated class priors was used as a performance measure. The best performing
algorithm on each data set was determined by multiple hypothesis testing using the P-value of 0.05
and Bonferroni correction.

Results: The comprehensive results for synthetic data drawn from univariate Gaussian and Laplace
distributions are shown in Appendix (Table 2). In these experiments no transformation was applied
prior to running any of the algorithms. As expected, the results show excellent performance of the
MSGMM model on the Gaussian data. These results significantly degrade on Laplace-distributed
data, suggesting sensitivity to the underlying assumptions. On the other hand, AlphaMax-N was
accurate over all data sets and also robust to noise. These results suggest that new parametric and
nonparametric algorithms perform well in these controlled settings.

Table 1 shows the results on twelve real data sets. Here, AlphaMax and AlphaMax-N algorithms
demonstrate significant robustness to noise, although the parametric version MSGMM was compet-
itive in some cases. On the other hand, the Elkan-Noto algorithm expectedly degrades with noise.
Finally, we investigated the practical usefulness of the α∗-preserving transform. Table 3 (Appendix)
shows the results of AlphaMax-N and MSGMM on the real data sets, with and without using the
transform. Because of computational and numerical issues, we reduced the dimensionality by us-
ing principal component analysis (the original data caused matrix singularity issues for MSGMM
and density estimation issues for AlphaMax-N). MSGMM deteriorates significantly without the
transform, whereas AlphaMax-N preserves some signal for the class prior. AlphaMax-N with the
transform, however, shows superior performance on most data sets.

7 Related work

Class prior estimation in a semi-supervised setting, including positive-unlabeled learning, has been
extensively discussed previously; see Saerens et al. (2002); Cortes et al. (2008); Elkan and Noto
(2008); Blanchard et al. (2010); Scott et al. (2013); Jain et al. (2016) and references therein. Re-
cently, a general setting for label noise has also been introduced, called the mutual contamination
model. The aim under this model is to estimate multiple unknown base distributions, using multi-
ple random samples that are composed of different convex combinations of those base distributions
(Katz-Samuels and Scott, 2016). The setting of asymmetric label noise is a subset of this more
general setting, treated under general conditions by Scott et al. (2013), and previously investigated
under a more restrictive setting as co-training (Blum and Mitchell, 1998). A natural approach is
to use robust estimation to learn in the presence of class noise; this strategy, however, has been
shown to be ineffective, both theoretically (Long and Servedio, 2010; Manwani and Sastry, 2013)
and empirically (Hawkins and McLachlan, 1997; Bashir and Carter, 2005), indicating the need to
explicitly model the noise. Generative mixture model approaches have also been developed, which
explicitly model the noise (Lawrence and Scholkopf, 2001; Bouveyron and Girard, 2009); these al-
gorithms, however, assume labeled data for each class. As the most related work, though Scott et al.
(2013) did not explicitly treat the positive-unlabeled learning with noisy positives, their formulation
can incorporate this setting by using π0 = α and β = 1 − π1. The theoretical and algorithmic
treatment, however, is very different. Their focus is on identifiability and analyzing convergence
rates and statistical properties, assuming access to some κ∗ function which can obtain proportions
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Table 1: Mean absolute difference between estimated and true mixing proportion over twelve data sets from
the UCI Machine Learning Repository. Statistical significance was evaluated by comparing the Elkan-Noto
algorithm, AlphaMax, AlphaMax-N, and the multi-sample GMM after applying a multivariate-to-univariate
transform (MSGMM-T). The bold font type indicates the winner and the asterisk indicates statistical signifi-
cance. For each data set, shown are the true mixing proportion (α), true proportion of the positives in the labeled
sample (β), sample dimensionality (d), the number of positive examples (n1), the total number of examples
(n), and the area under the ROC curve (AUC) for a model trained between labeled and unlabeled data.
Data α β AUC d n1 n Elkan-Noto AlphaMax AlphaMax-N MSGMM-T

Bank
0.095 1.00 0.842 13 5188 45000 0.241 0.070 0.037* 0.163
0.096 0.95 0.819 13 5188 45000 0.284 0.079 0.036* 0.155
0.101 0.75 0.744 13 5188 45000 0.443 0.124 0.040* 0.127

Concrete
0.419 1.00 0.685 8 490 1030 0.329 0.141 0.181 0.077*
0.425 0.95 0.662 8 490 1030 0.363 0.174 0.231 0.095*
0.446 0.75 0.567 8 490 1030 0.531 0.212 0.272 0.233

Gas
0.342 1.00 0.825 127 2565 5574 0.017 0.011 0.017 0.008*
0.353 0.95 0.795 127 2565 5574 0.078 0.016 0.006 0.006
0.397 0.75 0.672 127 2565 5574 0.396 0.137 0.009 0.006*

Housing
0.268 1.00 0.810 13 209 506 0.159 0.087 0.094 0.209
0.281 0.95 0.777 13 209 506 0.226 0.094 0.110 0.204
0.330 0.75 0.651 13 209 506 0.501 0.125 0.134 0.172

Landsat
0.093 1.00 0.933 36 1508 6435 0.074 0.009 0.007* 0.157
0.103 0.95 0.904 36 1508 6435 0.110 0.015 0.008* 0.152
0.139 0.75 0.788 36 1508 6435 0.302 0.063 0.012* 0.143

Mushroom
0.409 1.00 0.792 126 3916 8124 0.029 0.015* 0.022 0.037
0.416 0.95 0.766 126 3916 8124 0.087 0.015 0.008* 0.037
0.444 0.75 0.648 126 3916 8124 0.370 0.140 0.020 0.024

Pageblock
0.086 1.00 0.885 10 560 5473 0.116 0.026* 0.044 0.129
0.087 0.95 0.858 10 560 5473 0.137 0.031* 0.052 0.125
0.090 0.75 0.768 10 560 5473 0.256 0.041* 0.064 0.111

Pendigit
0.243 1.00 0.875 16 3430 10992 0.030 0.006* 0.009 0.081
0.248 0.95 0.847 16 3430 10992 0.071 0.011 0.005* 0.074
0.268 0.75 0.738 16 3430 10992 0.281 0.093 0.007* 0.062

Pima
0.251 1.00 0.735 8 268 768 0.351 0.120 0.111 0.171
0.259 0.95 0.710 8 268 768 0.408 0.118 0.110 0.168
0.289 0.75 0.623 8 268 768 0.586 0.144 0.156 0.175

Shuttle
0.139 1.00 0.929 9 8903 58000 0.024* 0.027 0.029 0.157
0.140 0.95 0.903 9 8903 58000 0.052 0.004* 0.007 0.157
0.143 0.75 0.802 9 8903 58000 0.199 0.047 0.004* 0.148

Spambase
0.226 1.00 0.842 57 1813 4601 0.184 0.046 0.041 0.059
0.240 0.95 0.812 57 1813 4601 0.246 0.059 0.042* 0.063
0.295 0.75 0.695 57 1813 4601 0.515 0.155 0.044* 0.059

Wine
0.566 1.00 0.626 11 4113 6497 0.290 0.083 0.060 0.070
0.575 0.95 0.610 11 4113 6497 0.322 0.113 0.063 0.076
0.612 0.75 0.531 11 4113 6497 0.420 0.322 0.353 0.293

between samples. They do not explicitly address issues with high-dimensional data nor focus on
algorithms to obtain κ∗. In contrast, we focus primarily on the univariate transformation to handle
high-dimensional data and practical algorithms for estimating α∗. Supervised learning used for class
prior-preserving transformation provides a rich set of techniques to address high-dimensional data.

8 Conclusion

In this paper, we developed a practical algorithm for classification of positive-unlabeled data with
noise in the labeled data set. In particular, we focused on a strategy for high-dimensional data,
providing a univariate transform that reduces the dimension of the data, preserves the class prior so
that estimation in this reduced space remains valid and is then further useful for classification. This
approach provides a simple algorithm that simultaneously improves estimation of the class prior and
provides a resulting classifier. We derived a parametric and a nonparametric version of the algorithm
and then evaluated its performance on a wide variety of learning scenarios and data sets. To the best
of our knowledge, this algorithm represents one of the first practical and easy-to-use approaches to
learning with high-dimensional positive-unlabeled data with noise in the labels.

8



Acknowledgements

We thank Prof. Michael W. Trosset for helpful comments. Grant support: NSF DBI-1458477, NIH
R01MH105524, NIH R01GM103725, and the Indiana University Precision Health Initiative.

References
S. Bashir and E. M. Carter. High breakdown mixture discriminant analysis. J Multivar Anal, 93(1):102–111,

2005.
G. Blanchard, G. Lee, and C. Scott. Semi-supervised novelty detection. J Mach Learn Res, 11:2973–3009,

2010.
A. Blum and T. Mitchell. Combining labeled and unlabeled data with co-training. COLT 1998, pages 92–100,

1998.
C. Bouveyron and S. Girard. Robust supervised classification with mixture models: learning from data with

uncertain labels. Pattern Recognit, 42(11):2649–2658, 2009.
C. Cortes, M. Mohri, M. Riley, and A. Rostamizadeh. Sample selection bias correction theory. ALT 2008,

pages 38–53, 2008.
F. Denis, R. Gilleron, and F. Letouzey. Learning from positive and unlabeled examples. Theor Comput Sci,

348(16):70–83, 2005.
M. C. du Plessis and M. Sugiyama. Class prior estimation from positive and unlabeled data. IEICE Trans Inf

& Syst, E97-D(5):1358–1362, 2014.
C. Elkan and K. Noto. Learning classifiers from only positive and unlabeled data. KDD 2008, pages 213–220,

2008.
D. M. Hawkins and G. J. McLachlan. High-breakdown linear discriminant analysis. J Am Stat Assoc, 92(437):

136–143, 1997.
S. Jain, M. White, M. W. Trosset, and P. Radivojac. Nonparametric semi-supervised learning of class propor-

tions. arXiv preprint arXiv:1601.01944, 2016. URL http://arxiv.org/abs/1601.01944.
J. Katz-Samuels and C. Scott. A mutual contamination analysis of mixed membership and partial label models.

arXiv preprint arXiv:1602.06235, 2016. URL http://arxiv.org/abs/1602.06235.
N. D. Lawrence and B. Scholkopf. Estimating a kernel Fisher discriminant in the presence of label noise. ICML

2001, pages 306–313, 2001.
M. Lichman. UCI Machine Learning Repository, 2013. URL http://archive.ics.uci.edu/ml.
H. Liu, J. D. Lafferty, and L. A. Wasserman. Sparse nonparametric density estimation in high dimensions using

the rodeo. AISTATS 2007, pages 283–290, 2007.
P. M. Long and R. A. Servedio. Random classification noise defeats all convex potential boosters. Mach Learn,

78(3):287–304, 2010.
N. Manwani and P. S. Sastry. Noise tolerance under risk minimization. IEEE T Cybern, 43(3):1146–1151,

2013.
A. K. Menon, B. van Rooyen, C. S. Ong, and R. C. Williamson. Learning from corrupted binary labels via

class-probability estimation. ICML 2015, pages 125–134, 2015.
A. Niculescu-Mizil and R. Caruana. Obtaining calibrated probabilities from boosting. UAI 2005, pages 413–

420, 2005.
J. C. Platt. Probabilistic outputs for support vector machines and comparison to regularized likelihood methods,

pages 61–74. MIT Press, 1999.
H. G. Ramaswamy, C. Scott, and A. Tewari. Mixture proportion estimation via kernel embedding of distribu-

tions. arXiv preprint arXiv:1603.02501, 2016. URL https://arxiv.org/abs/1603.02501.
M. D. Reid and R. C. Williamson. Composite binary losses. J Mach Learn Res, 11:2387–2422, 2010.
M. Saerens, P. Latinne, and C. Decaestecker. Adjusting the outputs of a classifier to new a priori probabilities:

a simple procedure. Neural Comput, 14:21–41, 2002.
T. Sanderson and C. Scott. Class proportion estimation with application to multiclass anomaly rejection. AIS-

TATS 2014, pages 850–858, 2014.
C. Scott, G. Blanchard, and G. Handy. Classification with asymmetric label noise: consistency and maximal

denoising. J Mach Learn Res W&CP, 30:489–511, 2013.
D. W. Scott. The curse of dimensionality and dimension reduction. Multivariate Density Estimation: Theory,

Practice, and Visualization, pages 195–217, 2008.
H. Steen and M. Mann. The ABC’s (and XYZ’s) of peptide sequencing. Nat Rev Mol Cell Biol, 5(9):699–711,

2004.
G. Ward, T. Hastie, S. Barry, J. Elith, and J.R. Leathwick. Presence-only data and the EM algorithm. Biometrics,

65(2):554–563, 2009.

9

http://arxiv.org/abs/1601.01944
http://arxiv.org/abs/1602.06235
http://archive.ics.uci.edu/ml
https://arxiv.org/abs/1603.02501


Appendix

A Identifiability proofs

We will need the following Lemma for the proofs.

Lemma A.1 Let µ, µ1 and µ0 be three measures defined on A such that µ = αµ1 + (1− α)µ0 for
some α ∈ [0, 1]. Define

R(µ, µ1) = {µ(A)/µ1(A) : A ∈ A, µ1(A) > 0}.
It follows that

1. aµ1
µ = inf R(µ, µ1).

2. If aµ1
µ0

= 0, then α = aµ1
µ .

Proof: The proof follows from Lemma 4 and Theorem 3 of Jain et al. (2016). �

As a consequence of Statement 1 in Lemma A.1, we use an alternate characterization of aλ1

λ

aλ1

λ = inf R(λ, λ1) (13)

where R(λ, λ1) = {λ(A)/λ1(A) : A ∈ A, λ1(A) > 0}.

Lemma 1 (Unidentifiability) Given a pair of mixtures (µ, ν) ∈ F(Πall), let parameters
(α, β, µ0, µ1) generate (µ, ν) and α+ = aνµ, β

+ = aµν . It follows that

1. There is a one-to-one relation between (µ0, µ1) and (α, β) and

µ0 =
βµ− αν
β − α , µ1 =

(1− α)ν − (1− β)µ

β − α . (6)

2. Both expressions on the right-hand side of Equation 6 are well defined probability measures
if and only if α/β ≤ α+ and (1−β)/(1−α) ≤ β+.

3. A+(µ, ν,Πall) = {(α, β) : α/β ≤ α+, (1−β)/(1−α) ≤ β+}.
4. F(Πall) is unidentifiable in (α, β); i.e., (α, β) is not uniquely determined from (µ, ν).

5. F(Πall) is unidentifiable in α and β, individually; i.e., neither α nor β is uniquely deter-
mined from (µ, ν).

Proof:
Statement 1: Because (α, β, µ0, µ1) generate µ and ν, β > α and Equations 3 and 4 hold. µ0

can be expressed in terms of µ, ν, α, β by eliminating µ1 (β× (Equation 3) −α× (Equation 4)).
Similarly µ1 can be expressed in terms of µ, ν, α, β and Equation 6 follows. Thus, given µ and
ν, µ0, µ1 can be uniquely determined from α, β. Equation 3 implies that for all A ∈ A such
that µ1(A) − µ0(A) > 0, α = (µ(A)−µ1(A))/(µ1(A)−µ0(A)). Existence of A is guaranteed because
µ1 6= µ0 from the definition of Πall. Thus, given µ, α is uniquely determined from µ0, µ1. Similarly,
Equation 4 implies that, given ν, β is uniquely determined from µ0, µ1.

Statement 2: It is easy to observe that (βµ−αν)/(β−α) is a valid probability measure, if and only
if βµ(A) − αν(A) ≥ 0 for all A ∈ A. Because the inequality is trivially true when ν(A) = 0,
the necessary and sufficient condition can be reduced to βµ(A) − αν(A) ≥ 0 for all A ∈ A with
ν(A) > 0. This can be rewritten as α/β ≤ µ(A)/ν(A) for allA ∈ A such that ν(A) > 0. Equivalently,
α/β is a lower bound to R(µ, ν); in other words, α/β ≤ α+ due to the alternate characterization
given by equation 13. Similarly, ((1−α)ν−(1−β)µ)/(β−α) is a valid probability measure provided
(1−β)/(1−α) ≤ β+.

Statement 3: Because system of equations in 6 is essentially equivalent to equations 3 and 4,
(α, β) ∈ A+(µ, ν,Πall) if and only if, µ0 and µ1 as defined in equations 6 come from Πall. When
the conditions of statement 2 are not satisfied, µ0, µ1 are not well-defined probability measures and

10



consequently (µ0, µ1) /∈ Πall. On the other hand, when they are satisfied, µ0, µ1 are well-defined
probability measures. Moreover, µ 6= ν implies µ0 6= µ1 and consequently (µ0, µ1) ∈ Πall.

Statement 5: We construct mixtures µ̈ and ν̈ such that there are multiple values for α that generate
the mixtures. For 0 < α̈ < β̈ < 1 and probability measures µ̈0, µ̈1 on A, let (α̈, β̈, µ̈0, µ̈1) generate
mixtures µ̈ and ν̈. Thus, (α̈, β̈) ∈ A+(µ̈, ν̈,Πall). It follows that α̈+(= aν̈µ̈) and β̈+(= aµ̈ν̈ ) are both
strictly greater than 0 because α̈+ = 0 implies α̈ = 0 and β̈+ = 0 implies β̈ = 1 (using statement
3), which contradicts our assumption. Now, (0, 1) ∈ A+(µ̈, ν̈,Πall) follows trivially from statement
3. It is easy to observe that (α, 1) ∈ A+(µ̈, ν̈,Πall) for any α ∈ [0, α̈+]. Thus, there are multiple
values for α that generate µ̈ and ν̈. Similarly, (0, β) ∈ A+(µ̈, ν̈,Πall) for any β ∈ [1 − β̈+, 1] and
there are multiple values for β that generate µ̈ and ν̈.

Statement 4: Statement 4 follows trivially from statement 5 and also by observing that
A+(µ̈, ν̈,Πall) cannot be a singleton set because α̈+, β̈+ > 0. �

Theorem 1 (Identifiablity) Given (µ, ν) ∈ F(Πall), let α+ = aνµ and β+ = aµν . Let µ∗0 =
(µ−α+ν)/(1−α+), µ∗1 = (ν−β+µ)/(1−β+) and

α∗ = α+(1−β+)/(1−α+β+), β∗ = (1−β+)/(1−α+β+). (7)
It follows that

1. (α∗, β∗, µ∗0, µ
∗
1) generate (µ, ν)

2. (µ∗0, µ
∗
1) ∈ Πres and, consequently, α∗ = a

µ∗
1
µ , β∗ = a

µ∗
1
ν .

3. F(Πres) contains all pairs of mixtures in F(Πall).

4. A+(µ, ν,Πres) = {(α∗, β∗)}.
5. F(Πres) is identifiable in (α, β); i.e., (α, β) is uniquely determined from (µ, ν).

Proof:
Statement 1: First, we show that µ∗0, µ

∗
1 are well defined probability measures.

α+ 6= 1, β+ 6= 1: Suppose α+ = 1. It follows that µ = ν and, consequently, from Equation 6,
µ0 = µ1 = ν. However, µ0 6= µ1 because they are picked from Πall. Thus, α+ 6= 1 by contradic-
tion. Similarly β+ 6= 1. Thus, the denominator in the R.H.S. of µ∗0 and µ∗1 is not 0.
By definition α+ = inf R(µ, ν). Thus, α+ ≤ µ(A)/ν(A) when ν(A) > 0. Consequently,
µ(A) − α+ν(A) ≥ 0. The inequality is trivially true when ν(A) = 0. Thus, µ(A) − α+ν(A) ≥ 0
for all A ∈ A. Hence, µ∗0 is a probability measure. Similarly, µ∗1 is also a probability measure.
Second, we show that (α∗, β∗, µ∗0, µ

∗
1) generate µ, ν.

(α∗, β∗, µ∗
0, µ

∗
1) → (µ, ν): Observe that µ∗0, µ

∗
1 can also be expressed as µ∗0 = β∗µ−α∗ν

β∗−α∗ and

µ∗1 = (1−α∗)ν−(1−β∗)µ
β∗−α∗ . Moreover, after some algebraic manipulation of Equations labeled 7,

α∗
/β∗ = α+ and (1−β∗)/(1−α∗) = β+ can be derived. Thus, from Lemma 1 (statements 1 and

3), (α∗, β∗, µ∗0, µ
∗
1) generate µ, ν.

Statement 2: We show that aµ
∗
0

µ∗
1

= 0 and aµ
∗
1

µ∗
0

= 0, giving (µ∗0, µ
∗
1) ∈ Πres.

We start by showing that aµ
∗
0

µ∗
1

= 0. Suppose, for some ε > 0 and

ν(A)− β+µ(A) ≥ ε(µ(A)− α+ν(A)) (for all A ∈ A)

⇒ (1 + εα+)ν(A) ≥ (ε+ β+)µ(A)

⇒ ν(A)/µ(A) ≥ (ε+β+)/(1+εα+) (when µ(A) > 0)

Thus, (ε+β+)/(1+εα+) is a lower bound to R(ν, µ) and, consequently, β+ ≥ (ε+β+)/(1+εα+). How-
ever, because α+β+ < 1, (ε+β+)/(1+εα+) > (εα+β++β+)/(1+εα+) = β+. This is a contradiction.
Thus, for all ε > 0 there exists some Aε ∈ A such that ν(Aε)− β+µ(Aε) < ε(µ(Aε)− α+ν(Aε)).
We now divide the inequality on both sides by µ(Aε) − α+ν(Aε), observing that the divisor is
strictly greater than 0 because ν(Aε)− β+µ(Aε) ≥ 0 as µ∗1 is a probability measure. Thus,

(ν(Aε)−β+µ(Aε))/(µ(Aε)−α+ν(Aε)) < ε

⇒ µ∗
1(Aε)/µ∗

0(Aε) < ε(1−α+)/(1−β+).
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Because the choice of ε is arbitrary and β+ 6= 1, any lower bound of R(µ∗1, µ
∗
0) cannot be greater

than 0. Thus, aµ
∗
0

µ∗
1

= 0.

A similar argument shows that aµ
∗
1

µ∗
0

= 0. Therefore, aµ
∗
0

µ∗
1

= 0 and aµ
∗
1

µ∗
0

= 0; consequently, (µ∗0, µ
∗
1) ∈

Πres. Because µ∗0 is not a mixture containing µ∗1 and because µ = α∗µ∗1+(1−α∗)µ∗0, from Statement
2 in Lemma A.1 we get that α∗ = a

µ∗
1
µ . Similarly, β∗ = a

µ∗
1
ν .

Statement 3: Because statements 1 and 2 are true for any (µ, ν) ∈ F(Πall), statement 3 is true.

Statement 4: It follows from statements 1 and 2, that (α∗, β∗) ∈ A+(µ, ν,Πres). To show
that A+(µ, ν,Πres) contains no other element, we give a proof by contradiction. Suppose (α, β) ∈
A+(µ, ν,Πres) and (α, β) 6= (α∗, β∗). Let (α, β, µ0, µ1) generate (µ, ν), for some (µ0, µ1) ∈ Πres.
First, we show that α+ = α/β and β+ = (1−β)/(1−α):
α+ = α/β: Suppose for some 0 < ε < (β−α)/β(1−β) and all A ∈ A where ν(A) > 0,

µ(A)/ν(A) ≥ α/β + ε

⇒ α+ (1− α)µ0(A)/µ1(A)

β + (1− β)µ0(A)/µ1(A)
≥ α+ βε

β

⇒ µ0(A)/µ1(A) ≥ β2ε/(β−α−εβ(1−β))

⇒ aµ1
µ0
≥ β2ε/(β−α−εβ(1−β)) > 0

However, this is a contradiction because (µ0, µ1) ∈ Πres. Thus, for every 0 < ε < (β−α)/β(1−β)
there exists some Aε ∈ A with ν(Aε) > 0 such that µ(Aε)/ν(Aε) < α/β + ε. Thus, α+ < α/β + ε,
because ε can be made arbitrarily small, α+ ≤ α/β. However, because A+(µ, ν,Πres) ⊆
A+(µ, ν,Πall), (α, β) also belongs to A+(µ, ν,Πall) and consequently α+ ≥ α/β from Lemma 1
(statement 3). Thus, α+ = α/β.
β+ = (1−β)/(1−α): The proof is similar to α+ = α/β —supposing ν(A)/µ(A) ≥ (1−β)/(1−α)+ ε for
some ε > 0 and all A ∈ A with µ(A) > 0, reaching a contradiction and following the subsequent
steps.
α+ = α/β, β+ = (1−β)/(1−α) and Equation 7 implies α = α∗ and β = β∗, which contradicts our
assumption. Hence, (α∗, β∗) is the only element in A+(µ, ν,Πres), which proves statement 4.

Statement 5: This statement follows by observing that A+(µ, ν,Πres) is a singleton set. �

B Proofs for properties of the univariate transform

We first prove Lemma 2, which we can then use to construct a suitable univariate transform.

Lemma 2 Let X , Y and S be random variables taking values in X , Y and S, respectively, and
Xu = X|S = 0 and X l = X|S = 1. For measures µ, ν, µ0, µ1, satisfying Equations 3 and 4 and
µ1 6= µ0, let µ, µ0, µ1 give the distribution of X , X|Y = 0 and X|Y = 1, respectively. If X,Y and
S satisfy assumptions 8, 9 and 10, then

1. X is independent of S = 0; i.e., p(x|S = 0) = p(x)
2. Xu and X l are distributed according to µ and ν, respectively.
3. p(S = 2) 6= 0.

Proof:
Statement 1: Observe that

p(x|S = 0) = p(x, Y = 1|S = 0) + p(x, Y = 0|S = 0)

= p(Y = 1|S = 0)p(x|Y = 1, S = 0) + p(Y = 0|S = 0)p(x|Y = 0, S = 0)

= p(Y = 1)p(x|Y = 1) + p(Y = 0)p(x|Y = 0) (from assumptions 8 and 10)
= p(x).

Thus, X is independent of S = 0.
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Statement 2: From statement 1, Xu has the same distribution as X , which is µ. Now,

p(x|S = 1) = p(x, Y = 1|S = 1) + p(x, Y = 0|S = 1)

= p(Y = 1|S = 1)p(x|Y = 1, S = 1) + p(Y = 0|S = 1)p(x|Y = 0, S = 1)

= βp(x|Y = 1) + (1− β)p(x|Y = 0). (from assumptions 9 and 10)

Thus, the distribution of X|S = 1 is βµ1 + (1− β)µ0, which is ν.

Statement 3: Now,

p(S = 2|x) = 1− p(S = 0|x)− p(S = 1|x)

= 1− p(S = 0)− p(x|S = 1)

p(x)
p(S = 1) (because S = 0 and X are independent)

The probability p(S = 2|x) is independent of x only if p(x|S=1)/p(x) is a constant with respect to x.
Let p(x|S=1)/p(x) = c, where c is some constant. Integrating over x on both sides gives

∫
X p(x|S =

1)dx = c
∫
X p(x)dx. Since both integrals are 1, it follows that c = 1. Thus, p(x|S=1)/p(x) = 1,

which implies µ = ν; i.e., the labeled and unlabeled samples have the same distribution. However,
this implies µ1 = µ0, which contradicts the assumption. Therefore, S = 2 is not independent of X .

�

To prove the main result about the preservation properties of the univariate transform, we will make
use of the following theorem.

Lemma B.1 (Restatement of Theorem 9 in Jain et al. (2016)) Let X and X1 be random vari-
ables with densities f and f1 and measures µ and µ1 respectively. For R+

= R+ ∪ {0,∞} and an
abstract space Xτ , given any one-to-one function G : R+ → Xτ , define function τ : X → Xτ

τ = G ◦ τd,
where

τd(x) =

{
f(x)/f1(x) if f1(x) > 0

∞ if f1(x) = 0.

Let µτ and µτ1 be the measures for the random variables τ(X), τ(X1) respectively for σ-algebra
Aτ on Xτ . Then aµ1

µ = aµτ1µτ .

Theorem 2 (α∗-preserving transform) Let random variables X,Y, S,Xu, X l and measures
µ, ν, µ0, µ1 be as defined in Lemma 2. Let τp be the posterior as defined in Equation 11 and
τ = H ◦ τp, where H is a 1-to-1 function on [0, 1] and ◦ is the composition operator. Assume

1. (µ0, µ1) ∈ Πres,
2. Xu and X l are continuous with densities f and g, respectively,
3. µτ , ντ , µτ1 are the measures corresponding to τ(Xu), τ(X l), τ(X1), respectively,
4. (α+, β+, α∗, β∗) = (aνµ, a

µ
ν , a

µ1
µ , a

µ1
ν ) and (α+

τ , β
+
τ , α

∗
τ , β
∗
τ ) = (aντµτ , a

µτ
ντ , a

µτ1
µτ , a

µτ1
ντ ).

Then

(α+
τ , β

+
τ , α

∗
τ , β
∗
τ ) = (α+, β+, α∗, β∗)

and so τ is an α∗-preserving transformation.

Moreover, τp can also be used to compute the true posterior probability:

p(Y = 1|x) =
α∗(1− α∗)
β∗ − α∗

(
p(S = 0)

p(S = 1)

τp(x)

1− τp(x)
− 1− β∗

1− α∗
)
. (12)
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Proof: First we prove that (α+, β+) = (α+
τ , β

+
τ ). To this end, we expand τp(x) as follows

τp(x) =
p(S = 1, x, S ∈ {0, 1})

p(x, S ∈ {0, 1})

=
p(S = 1, x)

p(x, S = 0) + p(x, S = 1)

=
p(x|S = 1)p(S = 1)

p(x|S = 0)p(S = 0) + p(x|S = 1)p(S = 1)
(14)

=
p(S = 1)

p(x|S=0)
p(x|S=1)p(S = 0) + p(S = 1)

=
p(S = 1)

f(x)
g(x)p(S = 0) + p(S = 1)

(15)

the last step is justified because f(x) = p(X = x|S = 0) and g(x) = p(X = x|S = 1).

Consider one-to-one functions G1(t) = p(S=1)
tp(S=0)+p(S=1) and G2(t) = p(S=1)

1
t p(S=0)+p(S=1)

defined on

R+ ∪ {0,∞}. We can apply Lemma B.1 to G1 to get α+ = α+
τ and to G2 to get β+ = β+

τ . To
satisfy the condition of Lemma B.1 for G1, let Xu, X l and H ◦ G1 play the role of X , X1 and G,
respectively. Now,

τ = H ◦ τp
= H ◦G1 ◦ τd (from Equation 15)

Because H and G1 are both one-to-one functions, H ◦ G1 is one-to-one as well. Thus, all the
conditions of Lemma B.1 are satisfied and, consequently, α+ = α+

τ .

Similarly, we can use Lemma B.1 with Xu, X l and H ◦ G2 playing the role of X1, X and G,
respectively, now giving that β+ = β+

τ .

From Statement 2 in Theorem 1 and Equation 7
α∗ = α+(1−β+)/(1−α+β+)

β∗ = (1−β+)/(1−α+β+)

α∗τ = α+
τ (1−β+

τ )/(1−α+
τ β

+
τ )

β∗τ = (1−β+
τ )/(1−α+

τ β
+
τ ).

and, thus, (α∗τ , β
∗
τ ) = (α∗, β∗).

Next we prove Equation 12. Let c = p(S=0)/p(S=1). Rearranging the terms of Equation 14,
τ(x)

1− τ(x)
=
p(x|S = 1)p(S = 1)

p(x|S = 0)p(S = 0)

=
p(S = 1)

p(S = 0)

(
p(x, Y = 1|S = 1) + p(x, Y = 1|Y = 0)

p(x)

)
(from Lemma 2 statement 1)

=
p(S = 1)

p(S = 0)

(
p(Y = 1|S = 1)

p(x|Y = 1, S = 1)

p(x)
+ p(Y = 0|S = 1)

p(x|Y = 0, S = 1))

p(x)

)
=
p(S = 1)

p(S = 0)

(
p(Y = 1|S = 1)

p(x|Y = 1)

p(x)
+ p(Y = 0|S = 1)

p(x|Y = 0)

p(x)

)
(from assumption 10)

=
1

c

(
p(Y = 1|S = 1)

p(Y = 1)
p(Y = 1|x) +

p(Y = 0|S = 1)

p(Y = 0)
p(Y = 0|x)

)
=

1

c

(
β∗

α∗
p(Y = 1|x) +

1− β∗
1− α∗ (1− p(Y = 1|x))

)
=

1

c

(
1− β∗
1− α∗ +

(
β∗

α∗
− 1− β∗

1− α∗
)
p(Y = 1|x)

)
.

14



Rearranging the terms,

p(Y = 1|x) =
α∗(1− α∗)
β∗ − α∗

(
cτ(x)

1− τ(x)
− 1− β∗

1− α∗
)
.

�

C MSGMM

Let U = {Xu
i } and L = {X l

i} be the unlabeled sample and the noisy positive sample, respectively.
The parametric approach is derived by modeling each sample as a two component Gaussian mixture,
sharing the same components but having different mixing proportions:

Xu
i ∼ αN (u1,Σ1) + (1− α)N (u0,Σ0)

X l
i ∼ βN (u1,Σ1) + (1− β)N (u0,Σ0)

where u1, u0 ∈ Rd and Σ1,Σ0 ∈ Sd++, the set of all d× d positive definite matrices. The algorithm
is an extension to the EM approach for Gaussian mixture models (GMMs) where, instead of esti-
mating the parameters of a single mixture, the parameters of both mixtures (α, β, u0, u1,Σ0,Σ1)
are estimated simultaneously by maximizing the combined likelihood over both U and L. This ap-
proach, that we refer to as a multi-sample GMM (MSGMM), exploits the constraint that the two
mixtures share the same components.
To derive the update equations, we introduce missing variables Wu

i ,W
l
j that give the true class of

the ith and jth example in U and L, respectively. The variables Wu
i ,W

l
j are Bernoulli distributed;

i.e., Wu
i ∼ Bernoulli(α) and W l

j ∼ Bernoulli(β). For

W = {Wu
i }|U |i=1, V = {W l

j}|L|j=1

the quartet (U,L,W, V ) forms the observed and unobserved variables in the EM framework. The
complete data log-likelihood, llC is given by,

llC =
∑|U |
i=1W

u
i log[αφ1(xui )] + (1−Wu

i ) log[(1− α)φ0(xui )]

+
∑|L|
i=1W

l
i log

[
βφ1(xli)

]
+ (1−W l

i ) log
[
(1− β)φ0(xli)

]
,

where φi is the density of N (ui,Σi). Our goal is to maximize E[llC ]. To do so we take the
conditional expectation of llC with respect to W and V given U and L. For

w̄ui = E[Wu
i |Xu

i = xui ] =
αφ1(xui )

αφ1(xui ) + (1−α)φ0(xui )
,

w̄li = E[W l
i |X l

i = xli] =
βφ1(xli)

βφ1(xli) + (1−β)φ0(xli)
,

we obtain

E[llC ] =

|U |∑
i=1

w̄ui log[αφ1(xui )] + (1− w̄ui ) log[(1− α)φ0(xui )]

+

|L|∑
i=1

w̄li log
[
βφ1(xli)

]
+ (1−w̄li) log

[
(1−β)φ0(xli)

]
which up to constants, that are ignored in the optimization, can be explicitly written as

E[llC ] =

|U |∑
i=1

w̄ui

[
logα−

1

2
log |Σ1|−(xui −u1)TΣ−11 (xui −u1)

]

+

|U |∑
i=1

(1−w̄ui )

[
log(1−α)−

1

2
log |Σ0|−(xui −u0)TΣ−10 (xui −u0)

]

+

|L|∑
i=1

w̄li

[
log β−

1

2
log |Σ1|−(xli−u1)TΣ−11 (xli−u1)

]

+

|L|∑
i=1

(1−w̄li)
[
log(1−β)−

1

2
log |Σ0|−(xli−u0)TΣ−10 (xli−u0)

]
.
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Finally, we obtain the parameter update equations by maximizing E[llC ] with respect to
(α, β, u0, u1,Σ0,Σ1):

α← 1/|U |
∑|U |
i=1 w̄

u
i

β ← 1/|L|
∑|L|
j=1 w̄

l
j

u1 ←
∑|U |
i=1 w̄

u
i x

u
i +

∑|L|
j=1 w̄

l
jx
l
j∑|U |

i=1 w̄
u
i +

∑|L|
j=1 w̄

l
j

u0 ←
∑|U |
i=1(1− w̄ui )xui +

∑|L|
j=1(1− w̄lj)xlj∑|U |

i=1(1− w̄ui ) +
∑|L|
j=1(1− w̄lj)

Σ1 ←
∑|U |
i=1 w̄

u
i (xui − u1)(xui − u1)T +

∑|L|
j=1 w̄

l
j(x

l
j − u1)(xlj − u1)T∑|U |

i=1 w̄
u
i +

∑|L|
j=1 w̄

l
j

Σ0 ←
∑|U |
i=1(1− w̄ui )(xui − u0)(xui − u0)T +

∑|L|
j=1(1− w̄lj)(xlj − u0)(xlj − u0)T∑|U |

i=1(1− w̄ui ) +
∑|L|
j=1(1− w̄lj)

The update rules reduce to the standard GMM when the labeled sample is not provided. Further
generalization to more than two samples and/or mixing components is straightforward.

D AlphaMax

For a mixture sample M and a component sample C, AlphaMax(M,C) estimates the maximum
proportion of C in M (Jain et al., 2016). AlphaMax is based on the constrained maximization of the
log likelihood of samples M and C, derived using nonparametric estimates of their densities m and
c, respectively. We list the main steps of AlphaMax below.

1. Estimate c nonparameterically as ĉ using sample C. Obtain the weights, vi, and com-
ponents κi from nonparametric density estimation of m as a k-component mixture, m̂(x) =∑k
i=1 viκi(x), using M .

2. Construct two density functions c̃(·|ω) and m̃(·|ω) from vi, κi and ĉ parameterized by a
k-dimensional weight vector ω = [ωi], 0 ≤ ωi ≤ 1, which re-weights components κi:

c̃(x|ω) =

∑k
i=1 ωiviκi(x)∑k

i=1 ωivi
,

m̃(x|ω) =

(
k∑
i=1

ωivi

)
ĉ(x) +

(
1−

k∑
i=1

ωivi

)
c̃(x|1− ω);

3. Maximize the log likelihood of M and C constructed with m̃ and c̃ under the constraint∑k
i=1 ωivi = r for many values of r equispaced in [0, 1].

llr = max
w.r.t. ω

∑
x∈M

log m̃(x|ω) +
∑
x∈C

log c̃(x|ω),

subject to
∑k
i=1 ωivi = r,

0 ≤ ωi ≤ 1, i = 1, . . . , k.

4. Estimate the maximum proportion of c in m, acm (minor abuse of notation1), as the x-
coordinate of the elbow in the llr versus r graph.

The densities m̃(·|ω) and c̃(·|ω) are constructed to approximate m and c. The efficacy of the ap-
proximation depends on the value of ω; there exists ω such that m̃(·|ω) and c̃(·|ω) are good approx-
imations provided

∑k
i=1 ωivi ≤ acm, however, the approximation deteriorates progressively, even

1acm is a minor abuse of notation; replacing the densities with the underlying measures makes the notation
correct.
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with the optimum ω, as
∑k
i=1 ωivi moves beyond acm. This suggests that the graph of llr versus r

should be approximately a flat line from 0 to acm and decrease progressively beyond acm exposing an
elbow at acm, which is detected in the last step. The pseudo code for elbow detection is provided in
(Jain et al., 2016).

The practical implementation, backed by the α∗-preservation theory, reduces the dimension of the
data to a single dimension by using the scoring function of a non-traditional classifier and employs
histograms as the nonparametric method to obtain m̂ and ĉ. The bin-width is chosen to cover the
component sample’s (after the transformation) range and reveal the shape of its distribution, us-
ing the default option in Matlab’s histogram function. More bins with the same bin-width are
subsequently added to cover the mixture sample’s range.

The total computation includes the time to (a) train a classifier (b) perform density estimation in
1D and (c) perform optimization in AlphaMax. The complexity for (a) varies; for neural networks
it is O(n) per epoch. For (b) we used k bin histograms, where k can be O(log(n)) to O(

√
n)

depending on the bandwidth selection rule, giving O(nk) complexity. For (c), (size k optimization)
the computation of the objective and gradient is O(nk) per step; e.g., LBFGS is O(nk) per step. An
execution of AlphaMax takes about 10 minutes on a laptop computer for the Shuttle data set (for
results reported in Table 1; i.e., 1000 labeled and 10000 unlabeled examples); 12 hours on the entire
data (8903 labeled and 49097 unlabeled examples).

E Empirical results

Results for univariate synthetic data. The results for synthetic data, with scalar inputs, are sum-
marized in Table 2.

Results for multivariate AlphaMax-N and MSGMM. To demonstrate the efficacy of the class
prior preserving transform, we implemented the multivariate versions of AlphaMax-N and MS-
GMM and evaluated them on the twelve real data sets without applying the transform. There were
significant stability and computational issues related to the high-dimensional nature of the data sets.
MSGMM was numerically unstable because of singular/nearly-singular covariance matrix, whereas
AlphaMax-N became computationally demanding because the number of bins (for histogram based
density estimation) grow exponentially with the dimension, resulting in a large parameter vector ω
and, consequently, a large optimization problem, even after removing the zero-count bins. This is
expected, as density estimation for multivariate data is known to be problematic, which is one of the
main reasons for introducing our transform. To make estimation feasible under these stability and
computational issues, we used dimensionality reduction. Though not all data sets posed the same
level of difficulty, to have a standard approach and permit effective density estimation, we used the
top three principal components, obtained via principal component analysis on the z-score normal-
ized data (mixture and component samples combined), as input to the two algorithms. We also
attempted using top k principal components that preserve 75 percent of the total variance, however,
for some of the data sets, the dimension was still too high.

In the same manner as in the univariate case, we used histograms in the multivariate implementation
of AlphaMax-N. The bin-width for a dimension was selected to minimize the asymptotic mean
integrated squared error (AMISE) with a normal reference rule, using the component sample, C.
The formula for the bin-width of dimension k is given by:

bk = 3.5σk|C|−1/(2+d),

where d is the total number of dimensions, σk is the standard deviation of the kth dimension and |C|
is the size of the component sample. Bins were added to cover the range of the entire data, mixture
and component combined, and empty bins were removed to reduce the size of the optimization
problem.

Table 3 contains the results of AlphaMax-N and MSGMM on the real-life data sets, using the top
three principal components under column headings AlphaMax-NM (M for multi-dimensional) and
MSGMM, respectively. The results of AlphaMax-N and MSGMM-T with the class-prior preserving
transform are also provided for comparison. Notice that, though AlphaMax-NM (without transform)
performs well, AlphaMax-N (with transform) is significantly better in terms of estimation error,
despite having a lower computational cost. Also notice the deterioration in the performance of
MSGMM (without transform) compared to MSGMM-T (with transform).
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Table 2: Mean absolute difference between estimated and true mixing proportion over a selection of true
mixing proportions and the following data sets: N = Gaussian with ∆µ ∈ {1, 2, 4}, L = Laplace with
∆µ ∈ {1, 2, 4}. Statistical significance was evaluated by comparing the Elkan-Noto algorithm, AlphaMax,
AlphaMax-N, and the multi-sample Gaussian Mixture Model (MSGMM). The bold font type indicates the
winner and the asterisk indicates statistical significance.

Data Elkan-Noto AlphaMax AlphaMax-N MSGMM
α β 100 1000 100 1000 100 1000 100 1000

N
∆µ = 1

0.05 1.00 0.473 0.460 0.079 0.102 0.064 0.085 0.034* 0.020*
0.25 1.00 0.484 0.435 0.132 0.160 0.123 0.122 0.063* 0.044*
0.50 1.00 0.395 0.347 0.155 0.125 0.173 0.096 0.073* 0.040*
0.05 0.95 0.484 0.496 0.099 0.124 0.076 0.099 0.039* 0.022*
0.25 0.95 0.510 0.469 0.127 0.167 0.115 0.111 0.074* 0.037*
0.50 0.95 0.433 0.378 0.180 0.152 0.186 0.087 0.068* 0.048*
0.05 0.75 0.663 0.630 0.124 0.135 0.089 0.076 0.056* 0.024*
0.25 0.75 0.641 0.608 0.152 0.209 0.141 0.120 0.141 0.060*
0.50 0.75 0.548 0.485 0.219 0.218 0.244 0.137 0.040* 0.068*

N
∆µ = 2

0.05 1.00 0.112 0.136 0.018 0.016 0.017 0.015 0.006* 0.004*
0.25 1.00 0.177 0.168 0.050 0.049 0.049 0.042 0.018* 0.010*
0.50 1.00 0.219 0.153 0.104 0.053 0.109 0.043 0.024* 0.015*
0.05 0.95 0.125 0.162 0.015 0.019 0.015 0.015 0.009* 0.004*
0.25 0.95 0.212 0.208 0.063 0.061 0.060 0.043 0.025* 0.011*
0.50 0.95 0.271 0.211 0.099 0.077 0.106 0.046 0.023* 0.018*
0.05 0.75 0.215 0.285 0.030 0.036 0.022 0.012 0.034 0.005*
0.25 0.75 0.405 0.403 0.100 0.139 0.084 0.036 0.025* 0.014*
0.50 0.75 0.457 0.415 0.156 0.184 0.159 0.048 0.030* 0.020*

N
∆µ = 4

0.05 1.00 0.010 0.013 0.022 0.019 0.022 0.019 0.001* 0.001*
0.25 1.00 0.032 0.018 0.022 0.004 0.027 0.008 0.002* 0.002*
0.50 1.00 0.070 0.020 0.032 0.005 0.039 0.012 0.002* 0.002*
0.05 0.95 0.018 0.029 0.018 0.014 0.019 0.015 0.001* 0.001*
0.25 0.95 0.063 0.056 0.010 0.017 0.013 0.009 0.002* 0.001*
0.50 0.95 0.115 0.083 0.040 0.032 0.045 0.010 0.002* 0.001*
0.05 0.75 0.062 0.114 0.011 0.006 0.018 0.015 0.001* 0.001*
0.25 0.75 0.236 0.249 0.063 0.090 0.026 0.005 0.002* 0.002*
0.50 0.75 0.380 0.353 0.130 0.168 0.106 0.021 0.002* 0.002*

L
∆µ = 1

0.05 1.00 0.410 0.389 0.195 0.256 0.147* 0.190* 0.418 0.390
0.25 1.00 0.410 0.356 0.151 0.209 0.103* 0.117* 0.148 0.183
0.50 1.00 0.367 0.299 0.195 0.154 0.190 0.038* 0.243 0.236
0.05 0.95 0.455 0.430 0.204 0.271 0.140* 0.192* 0.424 0.406
0.25 0.95 0.455 0.401 0.180 0.230 0.115* 0.112* 0.157 0.187
0.50 0.95 0.412 0.331 0.222 0.179 0.214 0.047* 0.249 0.241
0.05 0.75 0.593 0.578 0.225 0.325 0.133* 0.181* 0.415 0.440
0.25 0.75 0.602 0.562 0.191 0.327 0.119* 0.123* 0.210 0.230
0.50 0.75 0.520 0.470 0.264 0.278 0.272 0.053* 0.254 0.247

L
∆µ = 2

0.05 1.00 0.116 0.123 0.052 0.061 0.045 0.056 0.448 0.014*
0.25 1.00 0.158 0.132 0.054 0.067 0.041 0.051 0.037 0.027*
0.50 1.00 0.186 0.125 0.077 0.049 0.074 0.021* 0.130 0.068
0.05 0.95 0.131 0.146 0.053 0.066 0.042* 0.053 0.455 0.016*
0.25 0.95 0.186 0.175 0.071 0.082 0.049 0.049 0.055 0.021*
0.50 0.95 0.239 0.183 0.082 0.082 0.073 0.024* 0.134 0.075
0.05 0.75 0.230 0.268 0.079 0.097 0.046* 0.052* 0.461 0.261
0.25 0.75 0.375 0.377 0.123 0.159 0.090* 0.039 0.191 0.050
0.50 0.75 0.450 0.406 0.201 0.212 0.216 0.045 0.101* 0.067

L
∆µ = 4

0.05 1.00 0.015 0.020 0.024 0.020 0.025 0.021 0.015 0.011*
0.25 1.00 0.040 0.025 0.018 0.005 0.022 0.005 0.009* 0.009
0.50 1.00 0.094 0.027 0.022 0.005 0.028 0.006 0.002* 0.002*
0.05 0.95 0.024 0.037 0.019 0.017 0.020 0.018 0.022 0.012*
0.25 0.95 0.074 0.063 0.013 0.021 0.011 0.011 0.009 0.009*
0.50 0.95 0.141 0.089 0.028 0.034 0.026 0.008 0.002* 0.002*
0.05 0.75 0.072 0.124 0.008* 0.005* 0.015 0.010 0.034 0.012
0.25 0.75 0.244 0.258 0.076 0.095 0.033 0.009 0.009* 0.008
0.50 0.75 0.389 0.355 0.128 0.173 0.106 0.014 0.002* 0.002*
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Table 3: Mean absolute difference between estimated and true mixing proportion over twelve data sets from
the UCI Machine Learning Repository. Statistical significance was evaluated by comparing AlphaMax-NM,
MSGMM (both using top three principal components of the data as input), AlphaMax-N, MSGMM-T (both
using class-prior preserving transform). The bold font type indicates the winner and the asterisk indicates
statistical significance. For each data set, shown are the true mixing proportion (α), true proportion of the
positives in the labeled sample (β) and the percent of the total variance explained by the top three principal
components rounded to the nearest integer (%variance).
Data α β %variance AlphaMax-N AlphaMax-NM MSGMM-T MSGMM

Bank
0.095 1.00 0.037 0.028* 0.163 0.528
0.096 0.95 40 0.036 0.032 0.155 0.574
0.101 0.75 0.040 0.047 0.127 0.580

Concrete
0.419 1.00 0.181 0.276 0.077 0.020*
0.425 0.95 60 0.231 0.269 0.095 0.028*
0.446 0.75 0.272 0.320 0.233 0.063*

Gas
0.342 1.00 0.017 0.030 0.008* 0.585
0.353 0.95 81 0.006 0.021 0.006 0.575
0.397 0.75 0.009 0.064 0.006* 0.533

Housing
0.268 1.00 0.094* 0.132 0.209 0.316
0.281 0.95 69 0.110 0.110 0.204 0.308
0.330 0.75 0.134 0.205 0.172 0.283

Landsat
0.093 1.00 0.007 0.008 0.157 0.443
0.103 0.95 89 0.008* 0.028 0.152 0.298
0.139 0.75 0.012* 0.053 0.143 0.270

Mushroom
0.409 1.00 0.022* 0.075 0.037 0.432
0.416 0.95 24 0.008* 0.021 0.037 0.398
0.444 0.75 0.020 0.050 0.024 0.375

Pageblock
0.086 1.00 0.044 0.046 0.129 0.178
0.087 0.95 72 0.052 0.040* 0.125 0.178
0.090 0.75 0.064 0.031* 0.111 0.188

Pendigit
0.243 1.00 0.009* 0.071 0.081 0.289
0.248 0.95 65 0.005* 0.070 0.074 0.286
0.268 0.75 0.007* 0.092 0.062 0.260

Pima
0.251 1.00 0.111 0.123 0.171 0.299
0.259 0.95 60 0.110* 0.156 0.168 0.292
0.289 0.75 0.156 0.178 0.175 0.286

Shuttle
0.139 1.00 0.029* 0.064 0.157 0.232
0.140 0.95 67 0.007* 0.055 0.157 0.227
0.143 0.75 0.004* 0.015 0.148 0.356

Spambase
0.226 1.00 0.041 0.034 0.059 0.487
0.240 0.95 22 0.042 0.041 0.063 0.485
0.295 0.75 0.044* 0.072 0.059 0.434

Wine
0.566 1.00 0.060 0.258 0.070 0.134
0.575 0.95 65 0.063 0.256 0.076 0.126
0.612 0.75 0.353 0.302 0.293 0.096*
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