6 Appendix

6.1 Proof of Lemma 3.1

Sketch of proof: We use change of variable $W = ZZ^T$. The matrix W can be decomposed as ZZ^T where **Z** is $p \times K$, if and only if $W \succeq 0$ and has rank at most *K*. The constraints $||Z||_2 \leq \tau$, $||Z_i||_2 \leq 1$ and $||\mathbf{Z}||_F \leq \beta$ are equivalent with the constraints $\mathbf{W} \preceq \tau^2 I$, diag($\mathbf{W} \preceq \tau^2 I$ and $tr(\mathbf{W}) \leq \beta^2$, respectively. Also, note that the condition that the regularization parameters of all (i, j) pairs of variables are non-negative is satisfied implicitly. For the diagonal elements, we have the constraint diag(W) \leq 1 explicitly. Without loss of generality, assume $i < j$. We know $W \succeq 0$, therefore we achieve: $M =$ $\begin{bmatrix} W_{ii} & W_{ij} \\ W_{ji} & W_{jj} \end{bmatrix} \succeq 0$. Having $W_{ii} \le 1$ and $W_{jj} \le 1$, we conclude $W_{ij} = W_{ji} \leq 1.$

6.2 Proof of Lemma 3.3

Sketch of proof: In the Z-step, to estimate $\mathbb Z$ given Θ using the BCD method, we solve the following problem based on Eq (2):

$$
\underset{\mathbf{Z}\in\mathcal{D}}{\text{maximize}} \ \mathrm{tr}\big(\mathbf{Z}\mathbf{Z}^{\mathsf{T}}|\Theta|\big),\tag{14}
$$

which is equivalent to:

$$
\underset{\mathbf{Z}\in\mathcal{D}}{\text{maximize}} \sum_{i,j} (\mathbf{Z}\mathbf{Z}^{\mathsf{T}})_{ij} |\Theta_{ij}|,\tag{15}
$$

where D is defined based on the two constraints (a) and (b) described above. First, note that by solving Eq (14), we will have $||Z_i||_2 = 1$, for all variables *i*. Hence, because of the binary assumption, each row of *Z* will have exactly one element with value 1 and the other elements will be 0.

Then, Eq (15) leads to:

$$
\underset{\mathbf{Z}\in\mathcal{D}}{\text{maximize}} \sum_{(i,j)\in\mathcal{F}_{\mathbf{Z}}}|\Theta_{ij}|,
$$

which is equivalent to

$$
\underset{\mathbf{Z}\in\mathcal{D}}{\text{minimize}} \sum_{(i,j)\notin\mathcal{F}_{\mathcal{Z}}} |\Theta_{ij}|,\tag{16}
$$

where \mathcal{F}_Z is the set of edges within blocks B_1, \ldots, B_K : $\mathcal{F}_Z = \bigcup_{k=1}^K \{(i, j) | i, j \in B_k\}$. None of the blocks B_k for all k would be empty due to the constraint (b). Therefore, Eq (16) is equivalent with the *K*-way graph-cut problem on the similarity matrix $|\Theta|$.

Therefore, in the special case with constraints (a) and (b), **Z**-step is *K*-way graph-cut on $|\Theta|$. The GRAB algorithm can be viewed as an iterative BCD method that 1) uses graph-cut as a clustering method to find **Z** based on $|\Theta|$ as a similarity matrix, and 2) learns a network structure of the GGM by solving graphical lasso problem to find Θ .