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A Proof of Proposition 1

Maximizing
∏
n qφ(θn |xn) w.r.t. φ is equivalent to maximizing the average log probability

1

N

∑
n

log qφ(θn |xn). (1)

Since (θn,xn) ∼ p̃(θ) p(x |θ), due to the strong law of large numbers, as N →∞ the average log
probability converges almost surely to the following expectation

1

N

∑
n

log qφ(θn |xn)
a.s.−−→ 〈log qφ(θ |x)〉p̃(θ) p(x | θ) . (2)

Let p̃(x) be a distribution over x. Maximizing the above expectation w.r.t. φ is equivalent to
minimizing

DKL(p̃(θ) p(x |θ) ‖ p̃(x) qφ(θ |x)) = −〈log qφ(θ |x)〉p̃(θ) p(x | θ) + const. (3)

The above KL divergence is minimized (and becomes 0) if and only if

p̃(θ) p(x |θ) = p̃(x) qφ(θ |x) (4)

almost everywhere. It is easy to see that this can only happen for p̃(x) =
∫
p̃(θ) p(x |θ) dθ, since

p̃(θ) p(x |θ) = p̃(x) qφ(θ |x) ⇒
∫
p̃(θ) p(x |θ) dθ = p̃(x)

∫
qφ(θ |x) dθ = p̃(x). (5)

Thus, taking p̃(x) as above, and assuming a setting of φ that makes the KL equal to 0 exists, the KL
is minimized if and only if we have almost everywhere that

qφ(θ |x) =
p̃(θ)

p̃(x)
p(x |θ) = p̃(θ)

p̃(x)

p(θ |x) p(x)
p(θ)

∝ p̃(θ)

p(θ)
p(θ |x). (6)

A corollary of the above is that

qφ(θ |x) =
p̃(θ) p(x |θ)∫
p̃(θ) p(x |θ) dθ

, (7)

in other words, qφ(θ |x) becomes what the posterior would be if the prior were p̃(θ).
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B Parameterization and training of Mixture Density Networks

A Mixture Density Network (MDN) [1] is a conditional density estimator qφ(θ |x), which takes the
form of a mixture of K Gaussian components, as follows

qφ(θ |x) =
∑
k

αkN (θ |mk,Sk). (8)

The mixing coefficients α = (α1, . . . , αK), means {mk} and covariance matrices {Sk} are com-
puted by a feedforward neural network fW,b(x), which has input x, weights W and biases b. In
particular, let the output of the neural network be

y = fW,b(x). (9)

Then, the mixing coefficients are given by

α = softmax(Wαy + bα). (10)

The softmax ensures that the mixing coefficients are strictly positive and sum to one. Similarly, the
means are given by

mk = Wmk
y + bmk

. (11)

As for the covariance matrices, we need to ensure that they are symmetric and positive definite. For
this reason, instead of parameterizing the covariance matrices directly, we parameterize the Cholesky
factorization of their inverses. That is, we rewrite

S−1
k = UT

kUk, (12)

where Uk is parameterized to be an upper triangular matrix with strictly positive elements in the
diagonal, as follows

diag(Uk) = exp
(
Wdiag(Uk)y + bdiag(Uk)

)
(13)

utri(Uk) = Wutri(Uk)y + butri(Uk) (14)

ltri(Uk) = 0. (15)

In the above, diag(·) picks out the diagonal elements, whereas utri(·) and ltri(·) pick out the
elements above and below the diagonal respectively. We chose to parameterize the factorization of
S−1
k rather than that of Sk, since it is the inverse covariance that directly appears in the calculation

of N (θ |mk,Sk). Apart from ensuring the symmetry and positive definiteness of Sk, the above
parameterization also allows for efficiently calculating the log determinant of Sk as follows

− 1

2
log det(Sk) = sum

(
Wdiag(Uk)y + bdiag(Uk)

)
. (16)

The above parameterization of the covariance matrix was introduced by Williams [12] for learning
conditional Gaussians.

Given a set of training data {θn,xn}, training the MDN with maximum likelihood amounts to
maximizing the average log probability

1

N

∑
n

log qφ(θn |xn) (17)

with respect to the MDN parameters

φ =
(
W,b,Wα,bα,

{
Wmk

,bmk
,Wdiag(Uk),bdiag(Uk),Wutri(Uk),butri(Uk)

})
. (18)

Because the reparameterization φ described above is unconstrained, any off-the-shelf gradient-based
stochastic optimizer can be used. Gradients of the average log probability can be easily computed with
backpropagation. In our experiments, we implemented MDNs using Theano [8], which automatically
backpropagates gradients, and we maximized the average log likelihood using Adam [3], which is
currently the state of the art in minibatch-based stochastic optimization.
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C Analytical calculation of parameter posterior

According to Proposition 1, after training qφ(θ |x), the posterior at x = xo is approximated by

p̂(θ |x = xo) ∝
p(θ)

p̃(θ)
qφ(θ |xo). (19)

Typically, the prior p(θ) is a simple distribution like a uniform or a Gaussian. Here we will consider
the uniform case, while the Gaussian case is treated analogously. Let p(θ) be uniform everywhere
(improper). Then the posterior estimate becomes

p̂(θ |x = xo) ∝
qφ(θ |xo)
p̃(θ)

. (20)

In practice, we also used this estimate for uniform priors with broad but finite support. Since
qφ(θ |xo) is a mixture of K Gaussians and p̃(θ) is a single Gaussian, that is

qφ(θ |x) =
∑
k

αkN (θ |mk,Sk) and p̃(θ) = N (θ |m0,S0), (21)

their ratio can be calculated and normalized analytically. In particular, after some algebra it can be
shown that the posterior estimate p̂(θ |x = xo) is also a mixture of K Gaussians

p̂(θ |x = xo) =
∑
k

α′kN (θ |m′k,S′k), (22)

whose parameters are

S′k =
(
S−1
k − S−1

0

)−1 (23)

m′k = S′k
(
S−1
k mk − S−1

0 m0

)
(24)

α′k =
αk exp

(
− 1

2ck
)∑

k′ αk′ exp
(
− 1

2ck′
) , (25)

where quantities {ck} are given by

ck = log detSk − log detS0 − log detS′k +mT
k S
−1
k mk −mT

0 S
−1
0 m0 −m′Tk S′−1

k m′k. (26)

For the above mixture to be well defined, the covariance matrices {S′k} must be positive definite.
This will not be the case if the proposal prior p̃(θ) is narrower than some component of qφ(θ |xo)
along some dimension. However, in both Algorithms 1 and 2, qφ(θ |xo) is trained on parameters
sampled from p̃(θ), hence, if trained properly, it tends to be narrower than p̃(θ). Our experience with
Algorithms 1 and 2 is that {S′k} not being positive definite rarely happens, whereas it happening is an
indication that the algorithm’s parameters have not been set up properly.

D Stochastic Variational Inference for Mixture Density Networks

In this section we describe our adaptation of Stochastic Variational Inference (SVI) for neural
networks [4], in order to develop a Bayesian version of MDN. The first step is to express beliefs
about the MDN parameters φ as independent Gaussian random variables with means φm and log
variances φs. Under this interpretation we can rewrite the parameters as

φ = φm + exp

(
1

2
φs

)
� u, (27)

where the symbol � denotes elementwise multiplication and u is an unknown vector drawn from a
standard normal,

u ∼ N (u |0, I). (28)

The above parameterization induces the following variational distribution over φ

q(φ) = N (φ |φm,diag(expφs)), (29)
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where diag(expφs) denotes a diagonal covariance matrix whose diagonal is the vector expφs.
Moreover, we place the following Bayesian prior over φ

p(φ) = N
(
φ |0, λ−1I

)
. (30)

Under this prior, before seeing any data we set the parameter means φm all to zero, and the parameter
log variances φs all equal to log λ−1. In our experiments, we used a default value of λ = 0.01.

Given training data {θn,xn}, the objective of SVI is to optimize φm and φs so as to make the
variational distribution q(φ) be as close as possible (in KL) to the true Bayesian posterior over φ.
This objective is equivalent to maximizing a variational lower bound,

1

N

∑
n

〈log qφ(θn |xn)〉N (u | 0,I) −
1

N
DKL(q(φ) ‖ p(φ)), (31)

with respect to φm and φs. The expectations in the first term of the above can be stochastically
approximated by randomly drawing u’s from a standard normal. The KL term can be calculated
analytically, which yields

DKL(q(φ) ‖ p(φ)) =
λ

2

(
‖φm‖2 + ‖expφs‖2

)
− sum(φs) + const. (32)

The above optimization problem has been parameterized in such a way that φm and φs are uncon-
strained. Moreover, the derivatives of the variational lower bound with respect to φm and φs can
be easily calculated with backpropagation after stochastic approximations to the expectations have
been made. This allows the use of any off-the-shelf gradient-based stochastic optimizer. In our
experiments, we implemented MDN-SVI in Theano [8], which automatically calculates derivatives
with backpropagation, and used Adam [3] for stochastic maximization of the variational lower bound.

An important practical detail for stochastically approximating the expectation terms is the local
reparameterization trick [5], which leverages the layered feedforward structure of the MDN. Consider
any hidden or output unit in the MDN; if a is its activation and z is the vector of its inputs, then the
relationship between a and z is always of the form

a = wT z+ b, (33)

where w and b are the weights and bias respectively associated with this unit. As we have seen, in
the SVI framework these weights and biases are Gaussian random variables with means wm and bm,
and log variances ws and bs. It is easy to see that this induces a Gaussian distribution over activation
a, whose mean am and variance exp as is given by

am = wT
mz+ bm and exp as = (expws)

T (z� z) + exp bs, (34)

where � denotes elementwise multiplication. Therefore, randomly sampling w and b in order to
estimate the expectations and their gradients in the variational lower bound is equivalent to directly
sampling a from a Gaussian with the above mean and variance. This trick saves computation by
reducing calls to the random number generator, but more importantly it reduces the variance of the
stochastic approximation of the expectations (intuitively this is because less randomness is involved)
and hence it makes stochastic optimization more stable and faster to converge.

E Effective sample size of ABC methods

Rejection ABC returns a set of independent samples, MCMC-ABC returns a set of correlated samples,
and SMC-ABC returns a set of independent but weighted samples. To make a fair comparison between
them in terms of simulation cost, we quote the number of simulations per effective sample, that is, the
total number of simulations divided by the effective sample size of the returned set of samples.

Let {θn} be a set of N samples, not necessarily independent. The effective sample size Neff is
defined to be the number of equivalent independent samples that would give an estimator of equal
variance. For rejection ABC Neff = N , since all returned samples are independent.

Suppose that each sample is a vector of D components. For MCMC-ABC, where samples come in
the form of D autocorrelated sequences, we estimated the effective sample size for component d as

Neff,d =
N

1 + 2
∑Ld

l=1 rdl
, (35)
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where rdl is the autocorrelation coefficient of component d at lag l, estimated from the samples. We
calculated the summation up to lag Ld, which corresponds to the first autocorrelation coefficient
that is equal to 0. Then we took the effective sample size Neff to be the minimum Neff,d across
components. For a more general discussion on estimating autocorrelation time (which is equal to
N/Neff and thus equivalent to effective sample size) see Thompson [9].

For SMC-ABC, each sample is independent but comes with a corresponding non-negative weight wn.
The weights have to sum to one, that is

∑
n wn = 1. We estimated the effective sample size by

Neff =
1∑
n w

2
n

. (36)

It is easy to see that if wn = 1/N for all n then Neff = N , and if all weights but one are 0 then
Neff = 1. For a discussion regarding the above estimate see Nowozin [6].

F Setup for the Lotka–Volterra experiment

The Lotka–Volterra model [10] is a stochastic model that was developed to describe the time evolution
of a population of predators interacting with a population of prey. Let X be the number of predators
and Y be the number of prey. The model asserts that the following four reactions can take place, with
corresponding rates:

(i) A predator may be born, with rate θ1XY , increasing X by one.
(ii) A predator may die, with rate θ2X , decreasing X by one.

(iii) A prey may be born, with rate θ3Y , increasing Y by one.
(iv) A prey may be eaten by a predator, with rate θ4XY , decreasing Y by one.

Given initial populations X and Y , the above model can be simulated using Gillespie’s algorithm [2],
as follows:

(i) Draw the time to next reaction from an exponential distribution with rate equal to the total
rate θ1XY + θ2X + θ3Y + θ4XY .

(ii) Select a reaction at random, with probability proportional to its rate.
(iii) Simulate the reaction, and go to step (i).

In our experiments, each simulation started with initial populations X = 50 and Y = 100, and took
place for a total of 30 time units. We recorded the values of X and Y after every 0.2 time units,
resulting in two time series of 151 values each.

Data x was taken to be the following set of 9 statistics calculated from the time series:

(i) The mean of each time series.
(ii) The log variance of each time series.

(iii) The autocorrelation coefficient of each time series at lag 1 and lag 2.
(iv) The cross-correlation coefficient between the two time series.

Since the above statistics have potentially very different scales, we normalized them on the basis of
a pilot run. That is, we performed a pilot run of 1000 simulations, calculated and stored the mean
and standard deviation of each statistic across pilot simulations, and used them in all subsequent
simulations to normalize each statistic by subtracting the pilot mean and dividing by the pilot standard
deviation. This choice of statistics and normalization process was taken from Wilkinson [11].

From our experience with the model we observed that typical evolutions of the predator/prey pop-
ulations for randomly selected parameters θ = (θ1, θ2, θ3, θ4) include (a) the predators quickly
eating all the prey and then slowly decaying exponentially, or (b) the predators quickly dying out
and then the prey growing exponentially. However, for certain carefully tuned values of θ, the
two populations exhibit an oscillatory behaviour, typical of natural ecological systems. In order to
generate observations xo for our experimental setup, we set the parameters to

θ1 = 0.01, θ2 = 0.5, θ3 = 1, θ4 = 0.01 (37)
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Figure 1: Typical oscillatory behaviour of predator/prey populations corresponding to four different
simulations of the Lotka–Volterra model with parameter values θ1 = 0.01, θ2 = 0.5, θ3 = 1, and
θ4 = 0.01.

and simulated the model to generate xo. We carefully chose parameter values that give rise to
oscillatory behaviour (see Figure 1 for typical examples of population evolution corresponding to the
above parameters). Since only a small subset of parameters give rise to such oscillatory behaviour,
the posterior p(θ |x = xo) is expected to be tightly peaked around the true parameter values. We
tested our algorithms by evaluating how well (in terms of assigned log probability) each algorithm
retrieves the true parameters.

Finally, we took the prior over θ to be uniform in the log domain. That is, the prior was taken to be

p(log θ) ∝
4∏
i=1

U(log θi | log θα, log θβ), (38)

where log θα = −5 and log θβ = 2, which of course includes the true parameters. All our inferences
where done in the log domain.

G Setup for the M/G/1 experiment

The M/G/1 queue model [7] is a statistical model that describes how a single server processes a queue
formed by a set of continuously arriving jobs. Let I be the total number of jobs to be processed, si be
the time the server takes to process job i, vi be the time that job i entered the queue, and di be the
time that job i left the queue (i.e. the time when the server finished processing it). The M/G/1 queue
model asserts that for each job i we have

si ∼ U(θ1, θ2) (39)
vi − vi−1 ∼ Exp(θ3) (40)
di − di−1 = si +max (0, vi − di−1). (41)

6



In the above equations, U(θ1, θ2) denotes a uniform distribution in the range [θ1, θ2], Exp(θ3) denotes
an exponential distribution with rate θ3, and v0 = d0 = 0. In our experiments we used a total of
I = 50 jobs.

The goal is to infer parameters θ = (θ1, θ2, θ3) if the only knowledge is a set of percentiles of the
empirical distribution of the interdeparture times di − di−1 for i = 1, . . . , I . In our experiments we
used 5 equally spaced percentiles. That is, given a set of I interdeparture times di − di−1, we took x
to be the 0th, 25th, 50th, 75th and 100th percentiles of the set of interdeparture times. Note that the
0th and 100th percentiles correspond to the minimum and maximum element in the set.

Since different percentiles can have different scales and strong correlations between them, we
whitened the data on the basis of a pilot run. That is, we performed 100K pilot simulations, and
recorded the mean vector and covariance matrix of the resulting percentiles. For each subsequent sim-
ulation, we calculated x from resulting percentiles by subtracting the mean vector and decorrelating
and normalizing with the covariance matrix.

To generate observed data xo, we set the parameters to the following values

θ1 = 1, θ2 = 5, θ3 = 0.2 (42)

and simulated the model to get xo. We evaluated inference algorithms by how well the true parameter
values were retrieved, as measured by log probability under computed posteriors. Finally, the prior
probability of the parameters was taken to be

θ1 ∼ U(0, 10) (43)
θ2 − θ1 ∼ U(0, 10) (44)

θ3 ∼ U(0, 1/3), (45)

which is uniform, albeit not axis-aligned, and of course includes the true parameters.
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