
Supplement: Generalized Correspondence-LDA
Models (GC-LDA) for Identifying Functional Regions

in the Brain

Section 1 of this supplement presents the generative process for the GC-LDA variants that use
Gaussian mixtures to model each topic’s spatial component. Section 2 provides inference details for
all versions of GC-LDA considered in this paper1. Section 3 provides an analysis of the stability of
the topics extracted by GC-LDA.

The notation used for both model specification and inference throughout the supplement is summa-
rized in Table 1.

1 Generative Process and Joint Distribution for GC-LDA with Gaussian
Mixtures

For completeness, we present here a modified version of the generative process for the GC-LDA
models in which the spatial distributions are modeled as mixtures of multivariate Gaussians with R
components. We only present the updated process for generating topics t and activation tokens xi, as
the generative process for sampling word tokens wi does not depend on the parameterization of the
spatial distributions:

1. For each topic t ∈
{

1, ..., T
}

:

(a) Sample a Multinomial distribution over word types φ(t) ∼ Dirichlet(β)

(b) Sample a Multinomial distribution over subregions π(t) ∼ Dirichlet(δ)

2. For each document d ∈ {1, ..., D}:

(a) For each peak activation token xi ∈
{

1, ..., N
(d)
x

}
:

i. Sample indicator variable yi from Multinomial(θ(d))
ii. Sample indicator variable ci from Multinomial(π(yi))

iii. Sample a peak activation token xi from the spatial distribution for subregion r(yi)ci : xi ∼
Gaussian(µ(yi)

ci , σ
(yi)
ci )

The joint distribution of all observed peak activation tokens, word tokens, and latent parameters for
each individual document in the GC-LDA model with a mixture of Gaussian spatial distributions is
as follows:

p(x,w, z, y, c, θ) = p(θ|α)·

N
(d)
x∏

i=1

p(yi|θ(d))p(ci|π(yi))p(xi|µ(yi)
ci , σ(yi)

ci )

 ·
N

(d)
w∏

j=1

p(zj |y(d), γ)p(wj |φ(zj))


(1)

1An implementation of GC-LDA is available at http://github.com/timothyrubin/python_gclda

29th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

http://github.com/timothyrubin/python_gclda
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Figure 1: (A) Plate notation for the Generalized Correspondence-LDA model, GC-LDA. (B) Plate
notation for GC-LDA with spatial distributions modeled as a single multivariate Gaussian (Equivalent
to a smoothed version of Correspondence-LDA if γ = 0). (C) Plate notation for GC-LDA with
subregions, with spatial distributions modeled as a mixture of multivariate Gaussians

2 Inference for GC-LDA

During inference, we seek to estimate the posterior distribution across all unobserved model pa-
rameters. As is typical with topic models, exact probabilistic inference for the GC-LDA model is
intractable. Inference for the original Correspondence LDA model [2] used Variational Bayesian
methods. Here, we employ a mixture of MCMC techniques based on Gibbs Sampling [4], since
Gibbs sampling approaches have often outperformed variational methods for inference in LDA [1, 5].
The per-iteration computational complexity is O(T (NW +NXR)), where T is the number of topics,
R the number of subregions, and NW and NX are the total number of word tokens and activation
tokens in the corpus, respectively.

In describing the inference procedure, we will provide update equations for the three variants of
GC-LDA that were used in our experiments, depicted in Figures 1.B and 1.C. Specifically, we
describe the updates for the GC-LDA model where each topic’s spatial component is represented
by a single Gaussian distribution (Figure 1.B), and for the two GC-LDA models where each topic’s
spatial distribution is represented by a mixture of Gaussian distributions (Figure 1.C). As a reminder,
the difference between the two versions of the model that use Gaussian mixtures (referred to as the
“unconstrained subregions” and “constrained subregions” models), is that we constrain the mean of
the two Gaussian components to be symmetric with respect to their distance from the origin along
the horizontal spatial axis in the “constrained subregions” model. In places where the updates for
the versions of the models are different, we will first describe the update for the model with single a
Gaussian distribution, and then describe how it is modified for the models that use Gaussian mixtures.

After model initialization, our Gibbs Sampling method involves sequentially updating the spatial
distribution parameters Λ(t) for all topics, the assignments zi of word tokens to topics, and the
assignments yi of peak activation tokens to topics (and additionally the assignments ci of activation
tokens to subregions when using a Gaussian mixture model for each topic’s spatial distribution). We
first provide an overview of the sampling algorithm sequence, and then describe in detail the update
equations used at each step. We also note here that the update equations presented here will generalize
to any variant of the GC-LDA model using a single parametric or mixture of parametric spatial
distributions, provided the updates for the spatial parameter estimates are modified appropriately.

2.1 Overview of Inference Procedure

Configuring and running the model consists of two phases: (1) Model initialization, and (2) Inference.
We first describe model initialization, and give an overview of the sequence in which model parameters
are updated. We will then provide the exact update equations for each of the steps used during
inference.
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Table 1: Table of notation used throughout the appendix

Model specification
Notation Meaning
wi, xi The ith word token and peak activation token in the corpus

N
(d)
x , N (d)

w The number of word tokens and peak activation tokens in document d, respectively
D The number of documents in the corpus
T The number of topics in the model
R The number of components/subregions in each topic’s spatial distribution (subregions model)
zi Indicator variable assigning word token wi to a topic
yi Indicator variable assigning activation token xi to a topic

z(d), y(d) The set of all indicator variables for word tokens and activation tokens in document d
NY D

td The number of activation tokens within document d that are assigned to topic t
ci Indicator variable assigning activation token yi to a subregion (subregion models)

Λ(t) Placeholder for all spatial parameters for topic t
µ(t), σ(t) Gaussian parameters for topic t
µ
(t)
r , σ(t)

r Gaussian parameters for subregion r in topic t (subregion models)
φ(t) Multinomial distribution over word types for topic t
φ
(t)
w Probability of word type w given topic t
θ(d) Multinomial distribution over topics for document d
θ
(d)
t Probability of topic t given document d
π(t) Multinomial distribution over subregions for topic t (subregion models)
π
(t)
r Probability of subregion r given topic t (subregion models)

β, α, γ Model hyperparameters
δ Model hyperparameter (subregion models)

Count matrices used during model inference
Notation Meaning
NY T

t· The number of activation tokens that are assigned via yi to topic t

NY D
td,−i

The number of activation tokens in document d that are assigned via yi to topic t, excluding the
ith token

NY D∗
zjd

The number of activation tokens in document d that would be assigned to the topic indicated by
zj , given the proposed update of yi

NCT
rt,−i

The number of activation tokens that are assigned via ci to subregion r in topic t, excluding the
ith token (subregion models)

NZT
wt,−i The number of times word type w is assigned via zi to topic t, excluding the ith token
NZD

td The number of word tokens in document d that are assigned via zi to topic t

2.1.1 Model Initialization

To initialize the model, we first randomly assign all yi indicator variables to one of the
topics yi ∼ uniform(1, ..., T ). The zi indicator variables are randomly sampled from the
multinomial distribution conditioned on y

(d)
i as defined in the generative model: zi ∼

Multinomial
( NY D

1d +γ

N
(d)
x +γ∗T

,
NY D

2d +γ

N
(d)
x +γ∗T

, ...,
NY D

Td +γ

N
(d)
x +γ∗T

)
. In the model that uses an unconstrained mix-

ture of Gaussians with R = 2, the initial ci are randomly assigned: ci ∼ uniform(1, ...R). In
“constrained subregions” model we used a deterministic initial assignment, where we set ci = 1 if
the x-coordinate of the activation token was less than or equal to zero (i.e., if the activation peak fell
within the left hemisphere of the brain), and c = 2 otherwise.

2.1.2 Parameter Update Sequence

After initialization, the model inference procedure entails repeating the following three parameter
update steps until the algorithm has converged:

1. For each topic t, update the estimate of the spatial distribution parameters Λ(t) conditioned
on the subset of peaks xi with indicator variables yi = t. When using a model with
subregions for the topics’ spatial components, update the estimate of the spatial distribution
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parameters Λ
(t)
r conditioned on the subsets of peaks xi with indicator variables yi = t and

ci = r.
2. For each activation token xi in each document d, update the corresponding indicator vari-

able yi assigning the token to a topic, conditioned on the current estimates of all spatial
distribution parameters Λ(·), the current assignments of z(d) of all word tokens to topics in
document d, and the current estimate of the document’s multinomial distribution over topics
θ(d). When using a model with subregions, instead jointly update the indicator variables
yi of the token to a topic and ci of the token to a subregion within topic yi. This update is
additionally conditioned on the current estimate of all topic’s multinomial distributions over
subregions π(·).

3. For each word token wi in each document d, update the corresponding indicator variable zi
assigning the token to a topic, conditioned on the current estimates of all topics’ multinomial
distributions over words φ(·), and the current assignments y(d) of all peaks to topics in
document d.

Note that we do not need to directly update the θ(d), φ(t) or π(t) parameters during inference, because
these distributions are “collapsed out” [5] and are estimated directly from the current state of indicator
variables y, z, and c, respectively. Convergence of this algorithm is evaluated by computing the
log-likelihood of the observed data after every iteration of the sampler; when the log-likelihood
is no increasing over multiple iterations, we halt the algorithm and compute a final estimate of all
parameters.

We now provide the update equations for each of these steps.

2.2 Updating Spatial Distribution Estimates: Λ(t)

To estimate the spatial distributions, we compute the maximum likelihood estimates of the spatial
distribution for each topic t, conditioned on the subset of peak activation tokens that are assigned to t.
When each topic is associated with a single multivariate Gaussian distribution:

µ̂(t) =

∑
i,yi=t

xi

NY T
t·

(2)

σ̂(t) =

∑
i,yi=t

(xi − µ̂(t))2

NY T
t·

(3)

where NY T
t· is the total number of peak activation tokens xi that are assigned (via yi) to t. When

using a mixture of Gaussians for the spatial distributions, the same estimates are used to estimate the
means and covariances for each subregion, µ̂(t)

r and σ̂(t)
r , except that the sums are computed over the

subset of peak activation tokens for which yi = t and ci = r. Similarly, for any arbitrary choice of
spatial distribution not specifically considered in this paper (e.g., a kernel density estimator), one can
use the standard maximum likelihood estimator.

In the “constrained subregions” model, where the Gaussian component means are constrained to be
symmetric about the horizontal spatial axis (with respect to the distance from the origin), we must
further modify the estimation procedure. We estimate a single mean for the two subregions, with
respect to it’s location along the horizontal axis in terms of distance from the origin (corresponding
to the longitudinal fissure of the brain), by computing the average coordinates of all xi tokens
that are assigned to t after taking the absolute value of the tokens’ distance from the origin. This
estimate is then used as the mean of the 2nd subregion along the horizontal axis, and the mean
of the 1st subregion is set equal to the same mean, reflected about the horizontal axis (so that
along this coordinate, µ̂(t)

1 = −µ̂(t)
2 ). The covariance matrices of the two subregions are estimated

independently using equation 3. We note that these updates correspond to maximum likelihood
estimates, subject to the constraint that the mean is symmetric along the horizontal axis.

2.3 Updating Assignments yi of Activation Tokens xi to Topics

This update step, in which peak activation tokens xi to are assigned to topics via the indicator
variables yi, is dependent upon the choice of the spatial distribution. Specifically, when using a
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model with topic subregions (e.g., where each topic is associated with a Gaussian mixture), this
step involves additionally updating the ci assignments of tokens to subregions. We first provide the
update equations for the model that uses a Gaussian distribution for each topic, and then describe the
modification to this update needed when using a subregions model.

2.3.1 Updating yi Assignments for GC-LDA Models Using Single Multivariate Gaussian
Spatial Distributions

Here, we wish to update the indicator variable y(d)i , which is the assignment of the ith peak activation
token xi of document d to a topic. This update is conditioned on the current estimates of all spatial
distribution parameters Λ, the current vector z(d) of assignments of words to topics in document d,
and the current estimate of the document’s multinomial distribution over topics θ(d).

We employ a Gibbs Sampling step to update each indicator variable using a proposal distribution.
The proposal distribution is used to compute the relative probabilities that xi should be assigned to a
specific topic t = 1, ...T . Once the relative probabilities are computed across all topics, we randomly
sample a topic-assignment yi from the proposal distribution, normalized such that the probability of
assigning the word to a topic sums to 1 across all topics. The update equation is as follows:

p(yi = t|xi, z(d), y(d)
−i ,Λ

(t), γ, α) ∼ p(xi|Λ(t)) · p(t|θ(d)) · p(z(d)|y(d)∗, γ)

∼ p(xi|Λ(t)) · (NY D
td,−i + α) ·

N
(d)
w∏

j=1

NY D∗
zjd

+ γ

N
(d)
x + γ ∗ T

∼ p(xi|Λ(t)) · (NY D
td,−i + α) ·

(
NY D

td,−i + γ + 1

NY D
td,−i + γ

)NZD
td

(4)

To understand this equation and the notation, we consider the three main terms in the equation in
detail.

The first term, p(xi|Λ(t)), is the probability that peak activation xi was generated from the spatial
distribution associated with topic t. For example, if each topic is associated with a single multivariate
Gaussian distribution, this term corresponds to the multivariate Gaussian probability density function
with parameters µ(t) and σ(t) evaluated at location xi.

The second term, (NY D
td,−i+α) is an estimate of the probability of sampling topic t from θ(d), using an

estimate of θ(d) that is computed from the set of all indicator variables y(d)
−i in document d excluding

the indicator variable for the token i that is currently being sampled. In the notation above, NY D
td,−i is

equal to the number of activation tokens in document d that are currently assigned via y to topic t,
where −i indicates that the current token that we are sampling is removed from these counts.

The third term,
∏N(d)

w
j=1

NY D∗
zjd

+γ

N
(d)
x +γ∗T

is the multinomial probability of sampling all of the current indicator

variables z(d) for words in document d, given the count matrix NY D∗
·d that results from the proposed

update of the indicator variables for the peak assignment yi. In this notation,
NY D∗

zjd
+γ

N
(d)
x +γ∗T

is the
multinomial probability of sampling the indicator variable zj from the proposed vector of peak-topic
assignments y(d)∗, where NY D∗

zjd
is the number of y indicator variables that would be assigned to

the same topic as indicator variable zj given the proposed update of yi. In the context of Gibbs
sampling, the third term can be simplified as shown in the final form of the equation, in which NZD

td
corresponds to the number of word tokens in document d that are currently assigned via z to topic t.

2.3.2 Updating yi and ci Assignments for GC-LDA models Using Mixtures of Multivariate
Gaussian Spatial Distributions

In the GC-LDA model in which each topic’s spatial distribution is a mixture of multivariate Gaussian
distributions, we use a modified Gibbs sampling procedure in which we jointly sample both the yi
assignment of the peak activation token to a topic, and the ci assignment of the peak activation token
to a subregion, according to the following update update equation:
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p(yi = t, ci = r|xi,z(d), y(d)
−i ,Λ

(t)
r , π(t), δ, γ, α)

∼ p(xi|Λ(t)
r ) · p(t|θ(d)) · p(r|π(t)) · p(z(d)|y(d)∗, γ)

∼ p(xi|Λ(t)
r ) · (NY D

td,−i + α) ·
NCT

rt,−i + δ∑R
r′=1(NCT

r′t,−i + δ)
·
N

(d)
w∏

j=1

NY D∗
zjd

+ γ

N
(d)
x + γ ∗ T

∼ p(xi|Λ(t)
r ) · (NY D

td,−i + α) ·
NCT

rt,−i + δ∑R
r′=1(NCT

r′t,−i + δ)
·

(
NY D

td,−i + γ + 1

NY D
td,−i + γ

)NZD
td

(5)

This update equation is the same as the update equation for the model with a single multivariate
Gaussian distribution per topic, with the exception of the first and third terms. The first term p(xi|Λ(t)

r )
now corresponds the probability that peak activation xi was generated from the spatial distribution
associated with subregion r of topic t. The third term is the probability π(t)

r of sampling subregion r
from topic t. The notation NCT

rt,−i corresponds to the total number of subregion indicator variables
ci that are currently assigned to subregion r within topic t, excluding the count of the token that is
currently being sampled.

2.4 Updating zi Assignments of Word Tokens wi to topics

Here we wish to update the indicator variables z(d)i , giving the assignment of the ith word token wi in
document d to a topic. This update is conditioned on the current vector y(d) of assignments of peaks
to topics in d, and an estimate of each topic’s multinomial distribution over word types φ(t)

This update involves a collapsed Gibbs sampling step similar in form to the one employed for
inference in standard LDA [5]. The update equation is as follows:

p(zi = t|wi, z−i, y(d), γ, β) ∼ p(t|y(d), γ) · p(wi|φ(t))

∼ (NY D
td,−i + γ) ·

NZT
wt,−i + β∑T

w′=1(NZT
w′t,−i + β)

(6)

The first term in this equation gives the probability of sampling topic t from document d, which is
proportional to NY D

td,−i—the count of the number of activation tokens in document d that are currently
assigned to topic t—plus the smoothing parameter γ, as defined in the generative model. The second
term in this equation is the probability of sampling word wi from topic t, given the current estimates
of the topic-word multinomial distributions. As with the estimate of θ(d) computed during the yi
update steps, φ(t) is computed from the counts of word token assignments, where NZT

wt,−i is the
number of times word type w is assigned to topic t across the vector of indicator variables z−i,
ignoring the token that is currently being sampled.

2.5 Computing Final Parameter Estimates

We compute final estimates (as well as estimates to be used for log-likelihood computations during
inference) of the model parameters as follows:

θ̂
(d)
t =

NY D
td + α∑T

t′=1(NY D
t′d + α)

(7)

π̂(t)
r =

NCT
rt + δ∑R

r′=1(NCT
r′t + δ)

(8)

φ̂(t)
w =

NZT
wt + β∑T

t′=1(NZT
w′t + β)

(9)

The final estimates for the parameters of the spatial distributions are equivalent to estimates used
during inference, described previously.
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Figure 2: Jensen-Shannon (JS) distances between pairs of topics learned using distinct subsets of
training documents. For each topic t = 1...100 learned using training Subset 1, we show the JS-
distances between the topic t and all topics learned from training Subset 2. The JS-distance between
topic t and the topic it was aligned with using a matching algorithm is indicated using a red ‘×’.
Topics from training Subset 1 are sorted in terms of the JS-distance between the topic and its aligned
topic from Subset 2.

3 Topic Stability Analysis

Given that one goal of our models are to work towards a “functional neuro-anatomical atlas”, it is
important to consider how stable the topic solutions provided by the model are. That is, if the model
is identifying functional regions that are consistent with true underlying neuroanatomical patterns,
we expect that these regions should be consistently identified regardless of the specific training data
used by the model. To investigate the stability of our topic solutions, we randomly partitioned the
Neurosynth database into two equal halves—training Subset 1 and Subset 2—where each of these
subsets contained 5,681 complete documents. For each of the two subsets, we trained a “constrained
subregions” GC-LDA model using γ = .01 and all other hyper-parameters equal to those described
in Section 3.2 of the main paper.

To evaluate the similarity between the topic solutions identified from the training subsets, we followed
a procedure similar to the one described for alignment of standard LDA topics in [6] (although note
that in [6] the authors used the same training data but different random initializations to produce
two separate topic solutions). Specifically, we computed a T -by-T “dissimilarity” matrix, where
element i, j of the matrix corresponded to the dissimilarity between the ith topic in training Subset
1 and the jth topic in Subset 2. We defined the dissimilarity between two topics as the sum of the
Jensen-Shannon (JS) distances [3] between the probability distributions over words and the spatial
probability distributions for the two topics. Given these dissimilarity matrices, we aligned each topic
t = 1...T learned from training Subset 1 with a single topic from training Subset 2, using a greedy
algorithm which iterated T times over the following steps: (1) find the lowest remaining dissimilarity
value in the dissimilarity matrix, and store the row and column indices as a mapping from the topics
in Subset 1 to Subset 2, then (2) remove the corresponding rows and topics from the matrix.

Given the aligned topic sets, we qualitatively evaluated the similarities between the aligned topic
pairs in terms of both their spatial and linguistic distributions. Additionally, for each topic t from
training Subset 1, we visualized the distribution of JS-distances between its “aligned” topic and
all non-aligned topics, as illustrated in Figure 2. From Figure 2, it is clear that for many of the
best-aligned topics, the JS-distance between the aligned topics lies outside of the distribution of
distances for the non-aligned topics. Based on these analyses, we estimate that approximately 50% of
topics identified by the GC-LDA model are stable, and will be consistently extracted, independent of
the specific training documents. We note that these analyses are only heuristic in nature, and in future
work we hope to formalize a concrete procedure for assessing topic stability.
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