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1 Proof of the convergence for finite-dimensional Gamma process

Theorem 3. Let µ ∼ GP(θ,H). Construct µK as follows:

G1, . . . , GK
i.i.d.∼ Gamma(θ/K, 1), V1, . . . , VK

i.i.d.∼ H, µK =

K∑
k=1

GkδVk . (1)

Then, for arbitrary measurable f , limK→∞ Lf (µK) = Lf (µ).

Proof. The Laplace functional of µK is computed as:

Lf (µK) =

[ ∫ ∞
0

∫
Ω

sθ/K−1e−s

Γ(θ/K)
e−f(ω)sdsH(dω)

]K
=

[ ∫
Ω

(1 + f(ω))−θ/KH(dω)

]K
=

[
1−

∫
Ω

{1− (1 + f(ω))−θ/K}H(dω)

]K
.

By the Taylor’s expansion of 1− e−x around 0, we have

1− (1 + f(ω))−θ/K = 1− exp

{
− θ

K
log(1 + f(ω))

}
=

θ

K
log(1 + f(ω))− θ2

2!K2
log(1 + f(ω))2 +

θ3

3!K3
log(1 + f(ω))3 + . . .

=
θ

K

[
log(1 + f(ω)) +O(K−1)

]
.

Hence, we have

Lf (µK) =

[
1− 1

K

∫
Ω

θ
[

log(1 + f(ω)) +O(K−1)
]
H(dω)

]K
.

Since O(K−1) is bounded for every K, by the bounded convergence theorem,

lim
K→∞

Lf (µK) = exp

{
−
∫

Ω

θ log(1 + f(ω))H(dω)

}
= exp

{
−
∫ ∞

0

∫
Ω

(1− e−sf(ω))θs−1e−sdsH(dω)

}
,

which is precisely Lf (µ).
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2 Variational Bayes for FNSPM

The density of the joint likelihood distribution of the FNSPM, with auxiliary variable U , is written as

p(x, z, u, s, ω) =
uN−1

Γ(N)

K∏
k=1

θsNk−α−1
k e−usk(1− e−(αK/θ)1/αsk)

KΓ(1− α)

[ ∏
zn=k

`(xn|ωk)

]
h(ωk), (2)

where ` is the density for L and h is the density for H . We assume that L(x|ω) and H(ωk) are
conjugate exponential families:

`(x|ω) = exp{〈t(x), ω〉 − 〈1, g(ω)〉 − b(x)} (3)
h(ω) = exp{〈ζ, ω〉 − 〈κ, g(ω)〉 − c(ζ, κ)}, (4)

and thus we have

log p(x, z, u, s, ω) = (N − 1) log u− log Γ(N) +K(log θ − logK − log Γ(1− α))

+

K∑
k=1

[
(Nk − α− 1) log sk − usk + log(1− e−(αK/θ)1/αsk)

+

〈
ζ +

∑
zn=k

t(xn), ωk

〉
− 〈κ+Nk1, g(ωk)〉 −

∑
zn=k

b(xn)− c(ζ, κ)

]
. (5)

Now we introduce variational distributions for {u, s, z, ω}, with density.

q(u, s, z, ω) = q(u)

K∏
k=1

q(sk)q(ωk)

N∏
n=1

K∏
k=1

q(zn = k). (6)

The standard choice for q(sk) would be gamma distributions, but we found that the computing the
expectation Eq[log(1 − e−(αK/θ)1/αsk)] is intractable, and numerical approximation methods are
unstable especially for large K values. Hence, we chose to do point estimations for sk by setting

q(sk) = δŝk(sk). (7)

By doing this we cannot estimate the posterior variances of sk, but we found that the point-estimates
are enough for the model fitting and prediction in FNSPM. Finding good variational distributions for
q(sk) would be a good future research direction. For the other variables, we assume that

q(u) = δû(u) (8)
q(zn = k) = r̂nk (9)

q(ωk) = exp{〈ζ̂k, ωk〉 − 〈κ̂k, g(ωk)〉 − c(ζ̂k, κ̂k)}. (10)

The variational parameters to optimize is then {û, {ŝk}, {r̂nk}, {ζ̂k, κ̂k}}. We optimize these param-
eters by maximizing the evidence lower bound (ELBO),

L = Eq[log p(x, z, u, s, ω)]− Eq[log q(z, u, s, ω)]

= (N − 1) log û− log Γ(N) +K(log θ − logK − log Γ(1− α))

+

K∑
k=1

[
(N̂k − α− 1) log ŝk − ûŝk + log(1− e−(αK/θ)1/αŝk)

+

〈
ζ +

N∑
n=1

r̂nkt(xn)− ζ̂k,E[ωk]

〉
− 〈κ+ N̂k1− κ̂k,E[g(ωk)]〉

−
N∑
n=1

r̂nkb(xn) + c(ζ̂k, κ̂k)− c(ζ, κ)

]
−

N∑
n=1

K∑
k=1

r̂nk log r̂nk, (11)

where N̂k :=
∑N
n=1 r̂nk.

Update for r̂nk: the gradient of L w.r.t. r̂nk is given as

∂L
∂r̂nk

= log ŝk + 〈t(xn),E[ωk]〉 − 〈1,E[g(ωk)]〉+ const.
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By the properties of conjugate exponential families,

E[ωk] =
∂c(ζ̂k, κ̂k)

∂ζ̂k
, E[g(ωk)] = −∂c(ζ̂k, κ̂k)

∂κ̂k
.

Hence,

r̂nk ∝ exp

{
log ŝk +

〈
t(xn),

∂c(ζ̂k, κ̂k)

∂ζ̂k

〉
+

〈
1,
∂c(ζ̂k, κ̂k)

∂κ̂k

〉}
. (12)

Update for {ζ̂k, κ̂k}: equating the gradients of L w.r.t. ζ̂k and κ̂k gives

ζ̂k = ζ +

N∑
n=1

r̂nkt(xn), κ̂k = κ+ N̂k1. (13)

Update for û: equating the gradients of L w.r.t. û gives

û =
1

N − 1

K∑
k=1

ŝk. (14)

Update for ŝk: we first write the part of ELBO relevant to ŝk as f(sk), as follows:

f(sk) := (N̂k − α− 1) log ŝk − ûŝk + log(1− e−Φŝk), (15)

where Φ := (αK/θ)1/α. Note that

lim
ŝk→0

f(sk) = lim
ŝk→0

log ŝk

[
(N̂k − α− 1) +

log(1− e−Φŝk)

log ŝk

]
= lim
ŝk→0

(N̂k − α) log ŝk, (16)

since

lim
ŝk→0

log(1− e−Φŝk)

log ŝk
= lim
ŝk→0

Φe−Φŝk/(1− e−Φŝk)

1/ŝk
= lim
ŝk→0

Φŝk
eΦŝk − 1

= lim
ŝk→0

Φ

ΦeΦŝk
= 1,

by L’Hospital’s rule. Hence, when N̂k < α, the maximization problem becomes ill-posed since it
diverges to∞ as ŝk → 0. In such case, we set ŝk to be the posterior expectation E[ŝk|û], which is
computed as

E[ŝk|û] =

∫ ∞
0

ŝkp(dŝk|û) =
α(1− ξ1−α)

û(ξ−α − 1)
, (17)

where

p(ŝk|û) =
αŝ−α−1

k e−ûŝk(1− e−Φŝk)

Γ(1− α){(û+ Φ)α − ûα}
, ξ :=

û

û+ Φ
. (18)

Otherwise, if N̂k > α, we compute the gradient of L w.r.t. ŝk,

∂L
∂ŝk

=
N̂k − α− 1

ŝk
− û+

Φe−Φŝk

1− e−Φŝk
. (19)

We found that considering the geometry of the solution space is crucial in this maximization problem.
Following [1], we update

ŝk ←
∣∣∣∣ŝk + λtŝk

∂L
∂ŝk

∣∣∣∣, (20)

where λt is a learning rate. Here we applied the expended-mean representation updates in [1]. Note
that taking the absolute value after update is equivalent to computing and updating the gradients of
ŝk = |ŝ′k|. We chose λt = 0.05× (t+ 1)−0.5 for all experiments.

Optimizing the hyperparameters: we can optimize the hyperparemeters θ, α by maximizing the
ELBO. However, we found that the gradient descent or Newton’s method work poorly in this case,
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possibly because the objective functions have multiple modes. Instead, we chose to optimize θ and
α via slice-sampling [2]; we sampled θ and α via a single iteration of slice sampling, and accepted
those samples only if they improved the ELBO.

To sample θ, we assumed a prior distribution θ ∼ Gamma(aθ, bθ), and let θ = ec. Then, the log of
the posterior density is given as

log p(c| . . . ) = (aθ +K)c− bθec +

K∑
k=1

log(1− e−Φŝk) + const. (21)

We sampled the new v with this log density via slice sampling, and accepted it when the ELBO was
improved. Likewise, to sample α, we assumed the prior α ∼ Beta(aα, bα) and let α = 1

1+e−r . The
log density is then

log p(r| . . . ) = −K log Γ(1− α) + aα logα+ bα log(1− α) (22)

+

K∑
k=1

[
− α log ŝk + log(1− e−Φŝk)

]
+ const. (23)

We sampled new r via slice sampling and accepted new values when the ELBO was improved.

3 Collapsed Gibbs sampler for FNSPM

By marginalizing the jumps {sk} from the joint likelihood, we get the following collapsed joint
likelihood:

p(x, z, u, ω) =
uN−1

KKΓ(N)

K∏
k=1

[
θ(1− ξNk−α)

uNk−α
Γ(Nk − α)

Γ(1− α)

]I{Nk>α}[θuα
α

(ξ−α − 1)

]I{Nk<α}
×
[ ∏
zn=k

`(xn|ωk)

]
h(ωk). (24)

We first marginalize out ωk to get

p(x, z, u) =
uKα−1θK

KKΓ(N)

K∏
k=1

[
Γ(Nk − α)

Γ(1− α)
(1− ξNk−α)

]I{NK>α}[ξ−α − 1

α

]I{Nk<α}
m(xk), (25)

where

m(xk) =

∫
Ω

[ ∏
zn=k

`(xn|ω)

]
h(ω)dω

= exp

{
h

(
ζ +

∑
zn=k

t(xn), κ+Nk1

)
− c(ζ, κ)−

∑
zn=k

b(xn)

}
. (26)

Hence, the conditional posterior of zn is given as

p(zn = k| . . . ) ∝


(N¬nk − α)

1− ξN¬nk +1−α

1− ξN¬nk −α
m(xn, x

¬n
k )

m(x¬nk )
if N¬nk > α

α(1− ξ1−α)

ξ−α − 1

∫
Ω

`(xn|ω)H(dω) if N¬nk < α

, (27)

where the superscript ¬n means except for the index n.

We use slice sampling to update u, θ and α. The log density for u = ev is given as

log p(v| . . . ) = Kαv +

K∑
k=1

[
I{Nk>α} log(1− ξNk−α) + I{Nk<α} log(ξ−α − 1)

]
+ const. (28)
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The log density for θ = ec is (with prior θ ∼ Gamma(aθ, bθ)

log p(c| . . . ) = (K + aθ)c− bθc

+

K∑
k=1

[
I{Nk>α} log(1− ξNk−α) + I{Nk<α} log(ξ−α − 1)

]
+ const. (29)

The log density for α = 1
1+e−r (with prior α ∼ Beta(aα, bα)) is

log p(r| . . . ) = (Kα log u+ aα logα+ bα log(1− α)

+

K∑
k=1

[
I{Nk>α}(log Γ(Nk − α)− log Γ(1− α) + log(1− ξNk−α))

+I{Nk<α}(log(ξ−α − 1)− logα)
]

+ const. (30)

4 Collapsed Variational Bayes for FNSPM

Based on the collpased joint likelihood (24), we can develop a collapsed variational Bayes for
TNSPM. We introduce variational distributions for {z, u, ω} as

q(z, u, ω) = q(u)

K∏
k=1

q(ωk)

N∏
n=1

K∏
k=1

q(zn = k), (31)

where

q(u) = δû(u) (32)
q(zn = k) = r̂nk (33)

q(ωk) = exp{〈ζ̂k, ωk〉 − 〈κ̂k, g(ωk)〉 − h(ζ̂k, κ̂k)}. (34)

Update for r̂nk: the update equation for q(zn = k) is given as

q(zn = k) ∝ exp

{
Eq[log p(zn|z¬n)] +

〈
t(xn),

∂c(ζ̂k, κ̂k)

∂ζ̂k

〉
+

〈
1,
∂c(ζ̂k, κ̂k)

∂κ̂k

〉}
. (35)

Following [3], we use the Gaussian approximation to compute Eq[log p(zn|z−¬n)]. For FNSPM, the
conditional distribution is

p(zn = k|z¬n) ∝


(N¬nk − α)

1− ξN¬nk +1−α

1− ξN¬nk −α
if N¬nk > α

α(1− ξ1−α)

ξ−α − 1
if N¬nk < α

, (36)

For convenience, let f(N¬nk ) = log p(zn = k|z¬n). Then by the second order Taylor’s approxima-
tion we have

E[f(N¬nk )] ≈ f(E[N¬nk ]) +
1

2
f ′′(E[N¬nk ])Var(N¬nk ). (37)

In practice, we found that the first order approximation is enough:

E[f(N¬nk )] ≈ f(E[N¬nk ])

= E[I{N¬nk >α}]
{

log(N̂¬nk − α) + log(1− ξN̂
¬n
k +1−α)− log(1− ξN̂

¬n
k −α)

}
+E[I{N¬nk <α}]

{
logα+ log(1− ξ1−α)− log(ξ−α − 1)

}
, (38)

where N̂¬nk = Eq[N¬nk ] =
∑
n′ 6=n r̂n′k. We further approximate this as

E[f(N¬nk )] ≈

 log(N̂¬nk − α) + log(1− ξN̂¬nk +1−α)− log(1− ξN̂¬nk −α) if N̂¬nk > α

logα+ log(1− ξ1−α)− log(ξ−α − 1) if N̂¬nk < α
, (39)
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Update for û: as in the variational Bayes, we found that the gradient descent works poorly. Hence, we
use slice-sampling using the log density (28) and accepted samples only if the ELBO was improved.

Optimizing the hyperparameters: again we use slice-sampling with log densities (30), (29) and
accepted samples samples only if the ELBO was improved.
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