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1 Proof of the convergence for finite-dimensional Gamma process

Theorem 3. Let yn ~ GP (0, H). Construct px as follows:

K
Gi,...,Gx "% Gamma(/K,1), Vi,....Vk =" H, px=> Gidy,. (1)
k=1

Then, for arbitrary measurable f, limg_,oc L¢(prc) = Lf(1).

Proof. The Laplace functional of px is computed as:

e = [ [T ] S e s o)
K
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By the Taylor’s expansion of 1 — e™* around 0, we have
0
— @ F) O =1 e { - o1+ 7))}

0 2 ’
X log(1 + f(w)) — e log(1+ f(w))® + 33

- %[bga + f(w)) + O(K—l)}.

Hence, we have

log(1+ f(w))® +

Li(ux) = [1— / log(1 + f(w)) + O(K >}H<dw>r.

Since O(K ~1) is bounded for every K, by the bounded convergence theorem,

Jin £iu) = e { = [ olos1+ s (dw>}

= exp{ / / e @) 1esdsH(dw)},
Q

which is precisely £ (). O
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2 Variational Bayes for FNSPM

The density of the joint likelihood distribution of the FNSPM, with auxiliary variable U, is written as

I1 e(xn|wk>]h<wk>, ®

zZn=k

N-1 K est—a—167u5k(1 . e*(QK/G)l/QSk) |:

P2, 5,w) = 7i:(N) k[[l : KT(1 - a)

where ¢ is the density for L and h is the density for H. We assume that L(x|w) and H (wy,) are
conjugate exponential families:

t(x|w) exp{(t(z),w) — (L, g(w)) — b(x)} 3)
hw) = exp{((w) = (r g(w)) = ¢(( K}, )

and thus we have
logp(x, z,u,s,w) = (N — 1) logu — log T'(N) + K(log 8 —log K — logI'(1 — )

+ Z { r —a— 1)log sy — usy + log(1l — (O‘K/e)l/as’“)
—|—<C+ Z t(;vn),wk> (k + Ni1, g(wg)) Z b(zy) — (¢, )} 5)
zZn=k zn=k

Now we introduce variational distributions for {u, s, z w} with density.

q(u, s,z,w) = Hqsk (wr) HHq (6)

n=1k=1
The standard choice for ¢(s;) would be gamma distributions, but we found that the computing the

expectation E4[log(1 — e~ (aK/ G)I/QSk)} is intractable, and numerical approximation methods are
unstable especially for large K values. Hence, we chose to do point estimations for sy by setting

q(sk) = 05, (sk)- (7)

By doing this we cannot estimate the posterior variances of s, but we found that the point-estimates
are enough for the model fitting and prediction in FNSPM. Finding good variational distributions for
q(sy) would be a good future research direction. For the other variables, we assume that

q(u) = da(u) ®)
qwe) = exp{(Ce,wi) — (fr, g(wr)) — e(Ce, fn) }- (10)

The variational parameters to optimize is then {@, {3}, {#ni }, {(fk, Rk }}. We optimize these param-
eters by maximizing the evidence lower bound (ELBO),

L= Eq[logp(x,z,u,s,w)] —Eq[logq(Z,U,S,W)]
= (N-1)loga—1logT'(N) 4+ K(logf —log K —logT'(1 — «))

K
+> {(Nk — o — 1) log & — itdy + log(1 — e~ K/ 3n)
k
1 N A A
+<c + 3 Fut(an) — G, E[wk]> = (k4 Nl — i, Eg (i)
n=1

N N K
= Fukb(n) + c(Ces ) — } SNk loging, (11

n=1 n=1 k=1
¢ N
where Nj, := > " | Pni.
Update for 7,,;: the gradient of £ w.r.t. 7, is given as
oL

OFnk

= log 8 + (t(x,), Elwg]) — (1, E[g(wg)]) + const.



By the properties of conjugate exponential families,

_ dc(C, for) B _36(@, Rik)
E[wk] - ag_k ) ]E[g(wk)} - a/%k .
Hence,
A . (G fx) c(Ck, r)
Pk OC €XP { log §y, + <t(xn), aék > + <]l7 07 . (12)
Update for {(},, &), }: equating the gradients of £ w.r.t. {; and &y, gives
~ N A
Go=C+ Y furt(n), Ak =r+ Nil. (13)
n=1

Update for 4: equating the gradients of £ w.r.t. & gives
1 K

Update for §;.: we first write the part of ELBO relevant to §, as f(s), as follows:

fsk) == (Ny — a — 1) log 8 — 68y, + log(1 — e~ %), (15)
where ® := (aK/#)'/*. Note that
_ e [ log(l —e ®%)] .

glklglof(s/f) = Jim log 5 (N —a—1)+ o8 51 = glklglo(Nk —a)logsg, (16)

since
— D3y — D3y _ o P8 s
limwzlim(be /(1A c ):lim&:limi:,

$—0 log Sk $—0 1/Sk $k—0 e‘bsk -1 $:—0 ¢6q>sk

by L’Hospital’s rule. Hence, when Ny, < a, the maximization problem becomes ill-posed since it
diverges to oo as §; — 0. In such case, we set §j, to be the posterior expectation E[$|u], which is
computed as

< o al=¢T)
E%u:/swmmzf———a a7)
auli) = [ suplainli) = G
where
a—a—1 — U8y — P35y -~
o as e (1—e ) i
e = . 18
PO = 5 ot e —aey ST ave (1%
Otherwise, if N r > «, we compute the gradient of £ w.r.t. 8,
oL Np—a-1 e Pk
= Sy . 19
03y Sk ut 1— e %3k (9)

We found that considering the geometry of the solution space is crucial in this maximization problem.
Following [1]], we update

e

k £k 5,
where ), is a learning rate. Here we applied the expended-mean representation updates in [1]]. Note
that taking the absolute value after update is equivalent to computing and updating the gradients of
5k = |8},|. We chose Ay = 0.05 x (t + 1)~%5 for all experiments.

S

: (20)

Optimizing the hyperparameters: we can optimize the hyperparemeters ¢, « by maximizing the
ELBO. However, we found that the gradient descent or Newton’s method work poorly in this case,



possibly because the objective functions have multiple modes. Instead, we chose to optimize 6 and
« via slice-sampling [2]]; we sampled ¢ and « via a single iteration of slice sampling, and accepted
those samples only if they improved the ELBO.

To sample 6, we assumed a prior distribution § ~ Gamma(ag, bp), and let § = e€. Then, the log of
the posterior density is given as

K
logp(c|...) = (ag + K)c — bpe + Zlog(l — e %% + const. (1)
k=1

We sampled the new v with this log density via slice sampling, and accepted it when the ELBO was
improved. Likewise, to sample c, we assumed the prior a ~ Beta(aq, bo) and let & = = _H, —~. The
log density is then

logp(r|...) = —KlogT'(1—a)+ aqloga+ by log(l — ) (22)

+ Z { — alog 51, + log(1 — e~ ®%%)| + const. (23)
We sampled new r via slice sampling and accepted new values when the ELBO was improved.

3 Collapsed Gibbs sampler for FNSPM

By marginalizing the jumps {s;} from the joint likelihood, we get the following collapsed joint
likelihood:

_ ¢Ni—«a (N, — Ny >ay Ou LNy <a}
p@zuw) = KKF H{ ufoa : F((lkao)é)} {Z(f_a—l)}
X|: H f(xn|wk)} h(wg). (24)
Zn=Fk

We first marginalize out wy, to get

uKoz—leK K F(Nk—a) ) Ne—a H{NK>W} f_a—l I[{N,C<m}
e 1L | Tomay 0]

m(xg), (25)

Pz, z,u) =
k=1

where

m(zy) = /{Hﬁxﬂw] (w)dw

zZn=k
- exp{h<g+ > t(mn),m—ka]l) —c(Cr) = > blan) } (26)
Zn=k zn=Fk
Hence, the conditional posterior of z,, is given as
o 1— N (g, 2™
(N, — ) =0 m(an) if N >«
plzn =k|...) x ; 27
1 _ 51 a )
/émn\w (dw) if N, <«

where the superscript —n means except for the index n.

We use slice sampling to update u, 6 and «. The log density for u = e is given as

K
logp(v|...) = Kav + Z []I{Npa} log(1 — &™) + I N, <oy log(67* — 1)| + const. (28)
k=1



The log density for § = e€ is (with prior § ~ Gamma(ag, by)
logp(e|...) = (K +ag)c— byc

K
+ Z []I{Nk>a} log(1 — ¢Vrm) 4 [ vy <a) log(§™* — 1)| + const. (29)
k=1

The log density for « = —— (with prior & ~ Beta(an, by )) is

1+e
logp(r|...) = (Kalogu + ay log o + b, log(1l — )
K

+ Z [H{Nk>a} (log (N — ) —logI'(1 — &) + log(1 — é‘Nk:—a))
k=1

+Ny<ay (log(§™* — 1) —log a)} + const. (30)

4 Collapsed Variational Bayes for FNSPM

Based on the collpased joint likelihood (24), we can develop a collapsed variational Bayes for
TNSPM. We introduce variational distributions for {z, u,w} as

N K
q(z,u,w) H q(wg H H q(zn = k), (31)
k=1 n=1k=1

where
q(u) = da(u) (32)
qzn=k) = Tuk (33)
gwe) = exp{(Ce,wr) — (R, 9(wi)) — h(Ce, i) }- (34)

Update for 7,: the update equation for ¢(z,, = k) is given as
oo = 1) o oxp B Togplenls)] + (), 205D o (3, ZCLBI, o
G Ok,

Following [3]], we use the Gaussian approximation to compute E,[log p(z,|2~"™)]. For FNSPM, the
conditional distribution is

1— é-N,:"Jrlfa

p(zn = k‘Z_‘n) S8 1 o s (36)
O‘(gf - ) if Ny» < o

For convenience, let f(N.") = log p(z, = k|2™™). Then by the second order Taylor’s approxima-
tion we have

E[f(Ny™)] = f(EIN.™]) + %f”(]E[NE”])Var(N;?") 37)
In practice, we found that the first order approximation is enough:
E[f(Ny™)] = f(E[NL™])
= Ell(nprsa]{ log(Ny" — @) + log(1 — €% 417) —log(1 — %" )|
FE[I v <oy ){ log o + log(1 — €7%) — log(¢ ™ = 1)}, (38)
where Ny = E [N =3, 4n T/ We further approximate this as

log(N;™ — @) + log(1 — ¢NF"+1=a) _log(1 — N =) if N;m > o
E[f(N,")] ~ . , (39)
log a + log(1 — £€17%) —log(¢7 — 1) itN" <a



Update for : as in the variational Bayes, we found that the gradient descent works poorly. Hence, we
use slice-sampling using the log density (28) and accepted samples only if the ELBO was improved.

Optimizing the hyperparameters: again we use slice-sampling with log densities (30), (29) and
accepted samples samples only if the ELBO was improved.
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