A Proof of Proposition 3.1]

Proof. Let z := vec (X) € R™™ and L () := £ (X). Since the objective function is continuous
in X and the set C (r) is compact, £ (X) achieves a minimizer at some point X € C (r).

Since X ¢ is a minimizer of the constrained problem, then for all matrices X € C (r) we have the
following inequality

L(#) ~ L(z) 0. (14)

By the second-order Taylor’s theorem, we expand L (x) around ¢ = vec (X d)
~ F(d ;o d L /o2 d d
L(z)=L(x )+<V£(m ),z —x >+§<V L(z)(z—2%),z-x >, (15)
where z = az? + (1 — a) x for some « € [0, 1]. Plugging (T3) with z = £ into (T4) we obtain

(VE(a?) 4" - 2?) + % (V2L (z) (29 - o) 3% = ) <0 (16)

Through some algebraic manipulation we have the following expression for the gradient of £ (z):

d
VL (z) = vec <Z we A” (A (X) — yt]> ) (17)
t=1
Based on the above gradient it follows that
d
V2L (x) b = vec (Z we A” [ A (B)]) : (18)
t=1

where b = vec (B).
Now based on and (I8), the absolute value of first term in (I6) can be bounded as

(V2 (a) 3 — 2 = <ZwA A (X% — ] 7Ad>‘

t=1
d
<D weA™ A (X) = y'] | [[A], (19)
t=1 2
d
<o wed™ (0 = 2N Var||a]
t=1 2

The first inequality above used the trace dual norm inequality, while the second inequality follows
from a basic inequality for rank-2r matrices. Similarly the second term in (T6)) is

d
% <v25 () (2% —2), 2% - a:d> = % <Ztht*At (A% ,Ad>

t=1 20)

5 fj wy (A (AY), A (A7)

t=1

The result follows from combining (I9) and (20). Note that the above proof holds if we replace C (r, )
with C (7, a), which completes our proof.

B Proof of Theorem 3.4

Proof. The proof consists of lower bounding the LHS of (4) and upper bounding the RHS of ().

We use the following lemma to lower bound Zle Wy ||.At (A%) ||;
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Lemma B.1. Suppose the linear operator A* : R"1*"2 — R™0 is random Gaussian ensemble
foralll <t <d. Ifmg > Dnpaxr Zle w?, the composite operator {, /wt,élt}f:1 satisfies the
rank-2r matrix RIP with constant do,. < § with probability exceeding 1 — C exp (—cmy), where
D, C and c (which depends on o) are absolute positive constants.

Proof. See Appendix [C] O

Next lemma gives us an upper bound for the stochastic error Hzlle wi A (bt — 2Y) H .
2

Lemma B.2. Under the assumptions of Theorem when mg > Dnpa.x, we have

d
Z’tht* (ht _ zt) <C; ’I’LmaX 1 + (51 (Z wt 0'1 + Z 2T7’L2 U%)
t=1

with probability exceeding 1 — dC exp(—cns), where D, Cy, C, ¢ are positive constants and 6, is
the rank-1 matrix RIP parameter for all A*’s.

2

Proof. See Appendix D} O
Theorem [3.4] follows by combining Lemma Lemma [B.2]and Definition [3.3] O

C Proof of Lemma B.1]

Proof. First we introduce the following theorem providing a double-sided tail bound on the sum of
independent sub-exponential random variables.

Theorem C.1. For independent X; sub-exponential with parameters (o;, b;), with mean y;,

nt?
> nt S 2 exp —m 5

where 0% =Y, 02 and b = max; b;.

=1

We now lower bound Zle Wy HAt (Ad) Hz Since all A"’s are Gaussian random measurement
ensembles, then a particular measurement ( AL, Ad>2 is distributed as mg ! HAdHi x2 (1). Therefore

Zf (A?) H =D Wt (Al (Ad)>2 is a weighted sum of i.i.d. x2 (1) random variables.
Since x? (1) is sub- exponentlal W1th parameters (4, 4), Theorem implies a double-sided tail
bound for Zle wy H.At (A?)||;: for any given A? € R™*"2 and any fixed 0 < s < 1

2
P <slla?)? ) <2 - oS :
( < ||F)_ eXp( .

where Wyayx = max{wsy,...,wq}. The probability can be further simplified if s is very small
<1 / d).

I

D we [ A° (AY)]]; — A

t=1

Rank of A4 is at most 2r since X @ X4 are rank-r matrices. By Theorem 2.3 in [4]] (one may see the
. . . d .
proof if necessary) if mo > Dnpmax” Zle w2, the composite operator {« /g At } (. satisfies the

rank-2r matrix RIP with constant do,- < 0 with probability exceeding 1 — C exp (—cmyg), where C
and c (depends on J) are absolute positive constants.

11



D Proof of Lemma [B.2]

Proof. Let W = Zle wi A (bt — 2%) and n = nyay for short. Following the basic framework
of the proof of Lemma 1.1 in [4], we use e-nets method to bound the stochastic error ||W||,. The
operator norm of W is

Wiy = sup  (u, Wov),

llull=[lvl=1

Consider a 1/4-net N1/4 of the unite sphere S™~! with |N1/4| < 127 (see (III.1) in [4]). For any
v,u € 7L
(u, Wo) = (u — ug, Wov) + {ug, W (v — vg)) + {(ug, Wug)
< AWy lle = uolly + W5 lv = wolly + (uo, Weo)
for some vg, wo € N4 obeying |lu — ug|l, < 1/4 and ||v — vo|| < 1/4. So the operator norm of
W is
W], <2 sup (uo, Wuo) .

u0,V0€N1 /4

For fixed ug, v
(ug, Wug) = Tr (uoTWvo) =Tr (UouOTW) uovo , Zwt uovo ) ht — zt> .

Let Z = 30wy (A" (ugvd) ,2*) and H = 3070wy (A* (ugnd) , ht). Since forall 1 < ¢ < d,
entries of 2" are i.i.d. ' (0, 01), therefore Z ~ N (0, 0%), where the variance 0% is

U

d
UZ_ZthH‘At ugvg H201 Z 1—|—51 ‘uovo HFUl Zw?(l—i—él)a% 21

t=1 t=1

The first inequality uses the matrix RIP for rank-1 matrices. For a fixed ¢, A? satisfies the rank-1
matrix RIP with constant d1, with probability at least 1 — C exp(—camg) provided that mg > Dan
by Theorem 2.3 in [4]], where C5, c5 and D> are fixed positive constants. Then by a union bound,
forall 1 <t < d, A! satisfies the rank-1 matrix RIP property with parameter o, with probability at
least 1 — dC5 exp(—camy) provided that mg > Dan.

We now simplify H as

IS8

-1

H = Z wt uovo ) ht>

wt<At wil), 3 Ao s]>

s=t+1

~
Il
=
»
|
-

Il
(7=

(wed (uouf) A [U ()7])

s=2 t=1
d s—1
-y <tht*,4t (vl , U (68)T>
s=2t=1
d s—1 mgo
— Z <wt [.At (uovOT)]iAE, U (es)T>
s=2 t=1 i=1
d s—1
s=2 \t=1

where A € R™*"2 contains i.i.d. N (0, 1/myg) entries. The last equality uses the property that
sum of independent Gaussian variables is also Gaussian, and the variance is the sum of individual
variances. Since for all 2 < s < d, entries of €® are i.i.d. N (O7 0'5), therefore H ~ N (0, O'%{),
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where the variance 0% is

2

| Rt , ()
7h =2 |2 v A (o), U7 A o3 12 ZthUTAt ag
5=2 I s=2
d s—1
= I 1+51>||UTBS||103
=2 t=1
d s—1
=Y W a3 @)
s=2 t=1 0
(53) d s—1

Z w? 1+(51 73m00§
s=2 t=1
-1

= (d—t)w? (1+6)0

U

ﬂ
I
-

Inequality (&) holds with probability exceeding 1 —dC5 exp(—camg) provided that my > Dn based
on the matrix RIP for rank-1 matrices as used while bounding 0%. Equality (£2) uses the property
that sum of independent Gaussian variables is also Gaussian and entries of B* are i.i.d. N'(0,1/my).
Inequality (£3) holds with probability at least 1 — dC'3 exp(—c3mg) by the concentration property of
correlated Chi-squared variables.

Since the measurement noise Z and dynamic perturbation H are independent, then (ug, Wug) ~
N (O, o2 + cf%{). Then by a standard tail bound for Gaussian random variables we have

)\2
P(KUO,WUOH > )\) S QeXp <_2(0'24»g2)) .
H A

Therefore by an standard union bound we bound the stochastic error
CQ
P (llWllg > Coy/n(of; + o%)) < 2|Nijal* exp (—g”) <2exp(—en), (23

where ¢ = %3 — 2log 12. To ensure ¢ > 0, we require Cy > 4+/log 12.
Combining (ZI), 22), and @3), if o > Dn we have

d
5
||W||2 < Cosln ( 1+(51 Z ( t) ;::LQ %>>

0

with probability exceeding 1 — [dC5 exp(—czmo) + dCsexp(—cgmp) + 2exp(—cn)] > 1 —
dC exp(—cng). O

E Proof of Theorem

Proof. The proof follows the same framework of the proof of Theorem 7 in [15].

2 . . . .
Before we lower bound Zle Wy HAt (Ad) 5> We consider the following constraint set for a given

O0<r<n:

2048 ¢ w2log(ny + ngy)
log(6/5)mao

E(r)=¢XeC(r): | X[, =1, ||XH% > nlng\/

Define the following random matrix

d mo

ER = Zz’wt’}/fAt

t=1 i=1
where 7! is Rademacher variable.

The following lemma bounds the restricted strong convexity (see [20]) of the operator { Jwp Al }tdzl

13



Lemma E.1. Suppose all A'’s are fixed uniform sampling ensembles. For all X € £ (r)

d
2 p 2 44rnineg 2

> we AT O = S IX15 - — 2 E(IZxl) (24)
=1

with probability at least 1 — m

Proof. See Appendix [F| O

Note that HAdHOO < || x4 ‘ + HXdHOO <2 HXdHOO. To proceed, we consider the following two

cases. o

Ad
Case L W ¢ 5(27’)

Following the definition of £(2r) we have

d 21
HAdHi S c2 HXdHionlng\/zt—l wy T(:i(nl + ng)

)

where Cy = 4, / 10;%‘?5). This yields the first part of inequality (TT)) in Theorem [3.8
Case II. ﬁ € &(2r).

. d . .
Since 2H§7d\lm € &£(2r), applying Lemma yields

d
362
D e A (A, = 5 1A% - =T EUZR I @)
t=1
Combining (23) and @) yields
d
362
SIAYG < 2v2r | S wed™ (0 = )| [|A7], + = E (Al 1K
t=1
8r || & . 362
< IS (=2t 4 B )+ 222 ) |2
t=1 2

The above inequality can be further simplified as

d 2
Ztht* (ht _ zt)

t=1 2

1448rnin3

32 2,2
A%l < == s IRl X e

Next we bound E(||Xg||) in the following lemma.

Lemma E.2. Suppose all A'’s are fixed uniform sampling ensembles. — For mgy >
Dnimin log (n1 + n2) ¢(w), where ¢p(w) = lem‘“; 5, there exists an absolute positive constant
t=1 Wi
C such that
2el d 2
E(|Zr]) < C\/ elog (n1 + ns) Zt:l Wy mO. o
Mmin

The proof is not provided since it is almost the same as that of Lemma 6 in [[15] with some minor
modifications. Note that our results are a bit stronger compared to Lemma 6 in [15], since we are
dealing with bounded variables.

2
Now we upper bound the stochastic error ||.J||5 := HZLl wi A (bt — 2Y)|| . First, we rewrite J as
2
d d T
J=> wA*A|U ( > 63> +2,
t=1 s=t+1
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where each entry of the random matrix Z* € R™*"2 is i.i.d. Gaussian distributed with variance
T

o?. SetY! =U (Zg:t_H €s> and F' = Y* + Z'. Note that F* may be correlated for different

1 < t < d, though for a given ¢ the entries of F'* are independent.

We now introduce an n; x ny random matrix G* that has exactly one non-zero entry:

1
G' = wyniny F{;E;j,  with probability ,
ning

where F;; is the canonical basis of matrices with dimension n; X ny. We also introduce the following
random matrix H®, which is the average of m independent copies of G*:

1 mo
H' = — Z G where each G! is an independent copy of G*.
Moo
Then J can be decomposed as sum of independent random matrices: J = an(Zz Zle Ht. Ttis
immediate that
d
EG' =EH' = wF', EJ=—2 3 wF".
ning —1

Before we proceed we introduce a lemma describing the spectral norm deviation of a sum of
uncentered random matrices from its mean value.

Lemma E.3. (Corollary 6.1.2 in [24]) Consider a finite sequence {Sy} of independent random
matrices with common dimension ny X no. Assume that each matrix has uniformly bounded deviation
from its mean:

ISk — ESk|| < L for each index k.

Z =Y 5.
k
Let p(Z) denotes the matrix variance statistic of the sum:
K

S EI(Sk — ESK) (St — ESi)"]

Consider the sum

p(Z) = max {||[E[(Z — EZ)(Z —EZ)"]

= max{

Then for all s > 0,

|E[(Z -E2)"(Z-EZ2)]||}

)

> E[(Sk — ESk)" (Sk — ES})]

i

752
P(|Z —EZ|| = s) < (n1 + n2) exp (p(Z)-i-/LQS/?)) '

We are going to apply the above uncentered Bernstein inequality to the sum of dm independent
random matrices 3¢ H' = e S S0, Gt Before doing so, we note that for given ¢ and k,

IG5 = EGL]| < [|Gi]l + [EGL]| < |GLll + B|Gh]| < 2|65 -
The first inequality uses the triangle inequality; the second is Jensen’s inequality.

To control p(3 %, H"), first note that
0= Z ?E (G} — BG}) (G} — EG})T] = Z ;E [(GLGT] - (BGL(EGH)"
= Z%ZE [GL(GH]
= mogE [GHGHT].

15



The third relation holds because (EG})(EG?)7 is positive semidefinite; the last relation uses the
fact that for a fixed ¢, G, are random matrices following identical distributions independently for all

(ZHt>§W1LOmaX{ Y E[(GHEH" Z]E [(GHTG] }

Set pg = max{Hthl E(GHGHT)]|, ’ E((Gt)TGt)H}. Then the remaining work is to
uniformly upper bound ||GY || forall 1 <t < dand 1 < k < m and upper bound py.

1 < k < mg. Now we can control p(Zf_l H?) in the following

First we turn to the uniform bound on the spectral norm of the random matrix GZ foralll1 <t <d
and 1 < k <mg. Wehaveforalll <t <dand1l <k < my

HG H < maxwt ||n1n2F E”H =mning I{ljai(wt|F1tJ|
s

Since 11(U) < puo, the variance of each entry of the random matrix F"* can be bounded as Var(Fy;) <
“Orag(d —t) + o%. Let 02,,, = max; w? (“OT o3(d—t) + 01) Then by the tail probability

max
of Gaussian random variables and the standard union bound (over %, j), for all 1 < ¢ < d and

1 < k < mg we have

P ([|GL] < minav/210g(d(n + nz)nana) o, = L) = 1= 2/(m1 +na).

Second we turn to the computation of E(G*(G*)T). We have

ni no ny no

E(GH(GHT) —wtnlngzz )2E; ET— —wtnlnzzz

=1 j=1 nin =1 j=1

Similarly E((G*)"G") = wining 372, 3772 (F;)? Ejj. Then

p = Ning max maxg E w?(F, maxg E w?(F,

t=1 j=1 t=1 i=1

Leta; = Zt 1 2”2 L wi(F} ) and b; = Zt Lo w; (Ft )2. We first bound max; a;. Note that

Zt 1w w? 2”2 (ng + Zz'tj) < 2215:1 w? Zj:l[( ij) + (ij)2]~ Note that for 1 < i < ny
and 1<t< d Z 121(Z};)? ~ 0ix*(n2) and are independent. So by the tail bound of Chi-squared
variable and the standard union bound (over i and t) we have

d

maxZwt Z 2 < 5ny Zwt o? | >1—dnyexp(—ny). (28)

j=1 t=1

Similarly we have

<max2wt Z 2 <5m Zwt 0%) > 1 —dngexp(—ny). (29)
i=1

t=1

For Z;Lil (Y})?, note that Y}/, is Gaussian distributed and the variance is not greater than @ (d—t)o2
for all 4, j, ¢, since u(U) < pg. For a fixed 4, forall 1 < j < no, Yt are 1ndependent Gaussian
random variables. So given 7 and ¢, applying the tail bound of Chi-squared random variables yields

ny

IPZMWSMMfWUQZF%WM)
N n1
=1

By the standard union bound (over ¢ and ¢) we have

maxZwt Z 2<5n g'uo Z Hw?os | > 1 —dny exp(—nz). (30)
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Now we turn to Y%, (Y}5)?, which follows a Chi-squared distribution (d — t)o3x*(r), since

ny
S = (Y)Y =2 uTU ()" =4, (@)"

i=1

where € = Zf:t 41 €. The last equality uses the fact that U is orthonormal. Then by the tail bound
of Chi-squared random variables and the standard union bound (over j and t) we have

d
(maxZwt Z 2 <vmy Z —t wtag> >1—dngexp(—nq). 31

=1 t=1

Combining (28) and (30) yields

d
P (maxai < 10n4 wa ( o + M(d - t)a%)) > 1 — 2dny exp(—na). (32)
’ t=1 ™
Similarly combining (29) and (Z1) yields
P <maxb < 10m Zwt 24 (d— t)a§)> > 1 — 2dng exp(—ny). (33)
t=1

2
Note that 1 < pg < \/n1/+4/7, 80 % < 1. Now we are ready to bound py by combining (32) and

(33):

d d
P (po < 10N maxn1 M2 (Z wfof + wa(d — t)a%) =: 1/> > 1—4dnmax exp(—nmin)- (34)
t=1 t=1
Now by Lemma [E3] we have

Z’thf

(1%

8log(ni+mna)v
mo

d d
Z H' — Z w B
t=1 t=1

A hidden condition when the above inequality holds is that v dominates the denominator of the
exponential term. The remaining work is to have sufficiently large mg to guarantee that v dominates
the denominator of the exponential, which follows

—mos?/2
> s> (n1 + n2) exp (1/+;Ls//3) .

Ifwelets = and substitute this into the above matrix Bernstein inequality we obtain
8log(ny + ng)v

<1 .
o <1/(n1 + n2)

8log(ny + ng)v

v>2/3L
mo

The above inequality immediately implies that

32 maxyg wf ((d t) NOT 2 + O'1>
Mo > —Nmin l0g(d(n1 + n2)ning) log(ng + no) i .
45 D1 wi ((d - t)02 + U%)
Note that ny + ng > n;,i = 1,2, and ny + ny > d, then the above sample complexity can be
simplified as

) max; w? ((d t) kel 52 4 U%)
—— NMmin IOg (nl + n2)

45 S wi((d -

mo >

L
- (35)
t)os

+07)
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The remaining work is to bound H Zle w F*t H First we note that each entry of ¢ is Gaussian and

the variance is not greater than 0% + (d — t)o3. Then, according to results on bounds for the spectral
norm of i.i.d. Gaussian ensemble, we have

d
<2 wa (0’% + (d — t)O’%)\/m >1-C exp(_CQnmax)a (36)

where C', co are absolute positive constants. Note that Cy exp(—cznmax) < dNmax €xXp(—Nmin)-

Now we are ready to bound ||.J H2 With probability at least 1 — — 5dNmax €Xp(—Nmin) WE

ny +n2
have
2
8log(ni + na)v
1712 < p? Y| ) Bloslm F 2l
mo
d
< 320p? max{ning log(ng + nz)/mo, 1 }nmax Z w?((d —t)os + o?)
t=1 37
= 320p° Z wt —t) w2 + Ul)anLQ log(n1 + n2)Nmax /Mo

_ 320mg log(n1 + n2) S w?((d—t)od + o?)

Tmin

The first equality uses the fact that mo < nynslog(ny + na).
Combining (26),(27) and yields the second part of inequality (IT)) in Theorem 3.§]

F Proof of Lemma [E.1

Proof. The proof is almost the same as the proof of Lemma 12 in [[15] with some minor modifications.

Set F = 44’””71"2 (E(|Zz|)))?. We will show that the probability of the following bad event is small:

d
3w || AT ()3 - plIX %

t=1

B = {HX € &(r) such that

p 2
> 5 IX15 + ]—"} .

Note that B contains the complement of the event in Lemma

2048 329 | w? log(ni+nsa) and
log(6/5)mo

We use a peeling argument to bound the probability of B. Let v = \/
a=6/5. Forl € N let

T nine

S’l:{XEE’(T):Val_1< ||XF<Va}

Then if event B holds for some X € £(r), it must be that X belongs to some S; and

5}
>§||XH2F+$> alvmo + F. (38)

d
3w |JA (0|5 - plIX %

For T' > v consider the set

E(r,T) = {X &) X2 < nsz}

and the event
d
Zwt HAt (X)||2 p HX“F

B, = {EIX € £(r,a'v) such that
t=1

12

> 5041/m0+]-'} 39
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Note that X € S; implies that X € £(r, a'v). Then (38) implies that B; holds and B C UB;. Thus,
it is sufficient to bound the probability of the simpler event B; and then apply the union bound. Such
a bound is given by the following lemma. Its proof is given in Appendix [G] Let

Hy = sup ZthAt (X2 = plIX|1Z] -

Xe&(r,T)

Lemma F.1. Suppose all A*’s are fixed uniform sampling ensembles. Then

5 —csmoT?
P <HT > Eall/mo +.7:> < exp (202> ,

t=1 Wi
where ¢5 = 1/4096.

The above lemma implies that P(3;) < exp(—csmoa®v?). By a union bound, we have

P(B) < 3 P(By) < S ex <c5moo‘”> exp ( (2¢5mo log(a)v 2)l>7
; l ; g Zt 1 Z thlwt

where the last inequality uses the bound e” > z. Then, substituting v = \/ 204851
into the above summation we obtain

=1 U)t IOg(nl +7’L2)
log(6/5)mo

This completes the proof. O

G Proof of Lemma [F1]

Proof. The proof is almost the same as the proof of Lemma 14 in [[15] with some minor modifications.

By Massart’s concentration inequality (see, e.g., [2]], Theorem 14.2), we have

1 —csmoT?
P Hy > B(Hr) + 2 2moT ) < exp | —2™01" ) (40)
912 le w?

where ¢5 = 1/4096. Next we bound the expectation E(Hr). Using a symmetrization argument we

obtain
Z Wt Z X>2 ) )

t=1 i=1
where +/ is a Rademacher variable (independent on both ¢ and t). The assumption || X || ., = 1 implies
that [ (A?, X')| < 1. Then the contraction inequality yields

Zwmz X>D8]E< sup |<ER,X>|>7

=1 i—1 Xe&(r,T)

E(Hr) <2E sup
Xe&(r,T)

E(Hr) < 8E < sup
Xe&(r,T)

where X = Zle o weyt AL Since X € E(r, T'), we have

X1, < V7 IX|lp < V/rranoT.

Then by the trace duality inequality, we obtain

E(Hr) < 8yrninTE||Zg|, -

Finally using

15 85 44rning 9
——moT + 8/ T— IE by T melT + —— (E |2
9 12m0 + rnin2mo || R||2 — 9 12m0 + 9 12 + mo ( || R||2)

combined with {@0) we complete the proof. O
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