
A Proof of Proposition 3.1

Proof. Let x := vec (X) ∈ Rn1n2 and L̃ (x) := L (X). Since the objective function is continuous
in X and the set C (r) is compact, L (X) achieves a minimizer at some point X̂d ∈ C (r).

Since X̂d is a minimizer of the constrained problem, then for all matrices X ∈ C (r) we have the
following inequality

L̃
(
x̂d
)
− L̃ (x) ≤ 0. (14)

By the second-order Taylor’s theorem, we expand L̃ (x) around xd = vec
(
Xd
)

L̃ (x) = L̃
(
xd
)

+
〈
∇L̃

(
xd
)
, x− xd

〉
+

1

2

〈
∇2L̃ (x̄)

(
x− xd

)
, x− xd

〉
, (15)

where x̄ = αxd + (1− α)x for some α ∈ [0, 1]. Plugging (15) with x = x̂d into (14) we obtain〈
∇L̃

(
xd
)
, x̂d − xd

〉
+

1

2

〈
∇2L̃ (x̄)

(
x̂d − xd

)
, x̂d − xd

〉
≤ 0. (16)

Through some algebraic manipulation we have the following expression for the gradient of L̃ (x):

∇L̃ (x) = vec

(
d∑
t=1

wtAt∗
[
At (X)− yt

])
. (17)

Based on the above gradient it follows that

∇2L̃ (x) b = vec

(
d∑
t=1

wtAt∗
[
At (B)

])
, (18)

where b = vec (B).

Now based on (17) and (18), the absolute value of first term in (16) can be bounded as∣∣∣〈∇L̃ (xd) , x̂d − xd〉∣∣∣ =

∣∣∣∣∣
〈

d∑
t=1

wtAt∗
[
At
(
Xd
)
− yt

]
,∆d

〉∣∣∣∣∣
≤

∥∥∥∥∥
d∑
t=1

wtAt∗
[
At
(
Xd
)
− yt

]∥∥∥∥∥
2

∥∥∆d
∥∥
∗

≤

∥∥∥∥∥
d∑
t=1

wtAt∗
(
ht − zt

)∥∥∥∥∥
2

√
2r
∥∥∆d

∥∥
F

(19)

The first inequality above used the trace dual norm inequality, while the second inequality follows
from a basic inequality for rank-2r matrices. Similarly the second term in (16) is

1

2

〈
∇2L̃ (x̄)

(
x̂d − xd

)
, x̂d − xd

〉
=

1

2

〈
d∑
t=1

wtAt∗At
(
∆d
)
,∆d

〉

=
1

2

d∑
t=1

wt
〈
At
(
∆d
)
,At

(
∆d
)〉
.

(20)

The result follows from combining (19) and (20). Note that the above proof holds if we replace C (r, )
with C (r, a), which completes our proof.

B Proof of Theorem 3.4

Proof. The proof consists of lower bounding the LHS of (4) and upper bounding the RHS of (4).

We use the following lemma to lower bound
∑d
t=1 wt

∥∥At (∆d
)∥∥2

2
.

10



Lemma B.1. Suppose the linear operator At : Rn1×n2 → Rm0 is random Gaussian ensemble
for all 1 ≤ t ≤ d. If m0 > Dnmaxr

∑d
t=1 w

2
t , the composite operator

{√
wtAt

}d
t=1

satisfies the
rank-2r matrix RIP with constant δ2r ≤ δ with probability exceeding 1 − C exp (−cm0), where
D,C and c (which depends on σ) are absolute positive constants.

Proof. See Appendix C.

Next lemma gives us an upper bound for the stochastic error
∥∥∥∑d

t=1 wtAt∗ (ht − zt)
∥∥∥

2
.

Lemma B.2. Under the assumptions of Theorem 3.4, when m0 ≥ Dnmax, we have∥∥∥∥∥
d∑
t=1

wtAt∗
(
ht − zt

)∥∥∥∥∥
2

≤ C1

√√√√nmax(1 + δ1)

(
d∑
t=1

w2
t σ

2
1 +

d−1∑
t=1

(d− t)w2
t

2rn2

m0
σ2

2

)

with probability exceeding 1 − dC exp(−cn2), where D,C1, C, c are positive constants and δ1 is
the rank-1 matrix RIP parameter for all At’s.

Proof. See Appendix D.

Theorem 3.4 follows by combining Lemma B.1, Lemma B.2 and Definition 3.3.

C Proof of Lemma B.1

Proof. First we introduce the following theorem providing a double-sided tail bound on the sum of
independent sub-exponential random variables.

Theorem C.1. For independent Xi sub-exponential with parameters (σi, bi), with mean µi,

P

(∣∣∣∣∣
n∑
i=1

(Xi − µi)

∣∣∣∣∣ ≥ nt
)
≤ 2 exp

(
− nt2

2 (σ2 + bt)

)
,

where σ2 =
∑
i σ

2
i and b = maxi bi.

We now lower bound
∑d
t=1 wt

∥∥At (∆d
)∥∥2

2
. Since all At’s are Gaussian random measurement

ensembles, then a particular measurement
〈
Ati,∆

d
〉2

is distributed as m−1
0

∥∥∆d
∥∥2

F
χ2 (1). Therefore∑d

t=1 wt
∥∥At (∆d

)∥∥2

2
=
∑
t,i wt

〈
Ati,
(
∆d
)〉2

is a weighted sum of i.i.d. χ2 (1) random variables.
Since χ2 (1) is sub-exponential with parameters (4, 4), Theorem C.1 implies a double-sided tail
bound for

∑d
t=1 wt

∥∥At (∆d
)∥∥2

2
: for any given ∆d ∈ Rn1×n2 and any fixed 0 < s < 1

P

(∣∣∣∣∣
d∑
t=1

wt
∥∥At (∆d

)∥∥2

2
−
∥∥∆d

∥∥2

F

∣∣∣∣∣ ≤ s∥∥∆d
∥∥2

F

)
≤ 2 exp

(
− m0s

2

8
∑d
t=1 w

2
t + 8wmaxs

)
,

where wmax = max{w1, . . . , wd}. The probability can be further simplified if s is very small
(≤ 1/d).

Rank of ∆d is at most 2r since X̂d, Xd are rank-r matrices. By Theorem 2.3 in [4] (one may see the
proof if necessary) if m0 > Dnmaxr

∑d
t=1 w

2
t , the composite operator

{√
wtAt

}d
t=1

satisfies the
rank-2r matrix RIP with constant δ2r ≤ δ with probability exceeding 1− C exp (−cm0), where C
and c (depends on δ) are absolute positive constants.

11



D Proof of Lemma B.2

Proof. Let W =
∑d
t=1 wtAt∗ (ht − zt) and n = nmax for short. Following the basic framework

of the proof of Lemma 1.1 in [4], we use ε-nets method to bound the stochastic error ‖W‖2. The
operator norm of W is

‖W‖2 = sup
‖u‖=‖v‖=1

〈u,Wv〉 ,

Consider a 1/4-net N1/4 of the unite sphere Sn−1 with
∣∣N1/4

∣∣ ≤ 12n (see (III.1) in [4]). For any
v, u ∈ Sn−1

〈u,Wv〉 = 〈u− u0,Wv〉+ 〈u0,W (v − v0)〉+ 〈u0,Wv0〉
≤ ‖W‖2 ‖u− u0‖2 + ‖W‖2 ‖v − v0‖2 + 〈u0,Wv0〉 ,

for some v0, w0 ∈ N1/4 obeying ‖u− u0‖2 ≤ 1/4 and ‖v − v0‖ ≤ 1/4. So the operator norm of
W is

‖W‖2 ≤ 2 sup
u0,v0∈N1/4

〈u0,Wv0〉 .

For fixed u0, v0

〈u0,Wv0〉 = Tr
(
uT0 Wv0

)
= Tr

(
v0u

T
0 W

)
=
〈
u0v

T
0 ,W

〉
=

d∑
t=1

wt
〈
At
(
u0v

T
0

)
, ht − zt

〉
.

Let Z =
∑d
t=1 wt

〈
At
(
u0v

T
0

)
, zt
〉

and H =
∑d
t=1 wt

〈
At
(
u0v

T
0

)
, ht
〉
. Since for all 1 ≤ t ≤ d,

entries of zt are i.i.d. N
(
0, σ2

1

)
, therefore Z ∼ N

(
0, σ2

Z

)
, where the variance σ2

Z is

σ2
Z =

d∑
t=1

w2
t

∥∥At (u0v
T
0

)∥∥2

2
σ2

1 ≤
d∑
t=1

w2
t (1 + δ1)

∥∥u0v
T
0

∥∥2

F
σ2

1 =

d∑
t=1

w2
t (1 + δ1)σ2

1 . (21)

The first inequality uses the matrix RIP for rank-1 matrices. For a fixed t, At satisfies the rank-1
matrix RIP with constant δ1, with probability at least 1− C2 exp(−c2m0) provided that m0 ≥ D2n
by Theorem 2.3 in [4], where C2, c2 and D2 are fixed positive constants. Then by a union bound,
for all 1 ≤ t ≤ d, At satisfies the rank-1 matrix RIP property with parameter σ1, with probability at
least 1− dC2 exp(−c2m0) provided that m0 ≥ D2n.

We now simplify H as

H =

d∑
t=1

wt
〈
At
(
u0v

T
0

)
, ht
〉

=

d−1∑
t=1

wt

〈
At
(
u0v

T
0

)
,

d∑
s=t+1

At
[
U (εs)

T
]〉

=

d∑
s=2

s−1∑
t=1

〈
wtAt

(
u0v

T
0

)
,At

[
U (εs)

T
]〉

=

d∑
s=2

s−1∑
t=1

〈
wtAt∗At

(
u0v

T
0

)
, U (εs)

T
〉

=

d∑
s=2

s−1∑
t=1

m0∑
i=1

〈
wt
[
At
(
u0v

T
0

)]
i
Ati, U (εs)

T
〉

=

d∑
s=2

〈
s−1∑
t=1

wt
∥∥At (u0v

T
0

)∥∥
2
UTAt, (εs)

T

〉
,

where At ∈ Rn1×n2 contains i.i.d. N (0, 1/m0) entries. The last equality uses the property that
sum of independent Gaussian variables is also Gaussian, and the variance is the sum of individual
variances. Since for all 2 ≤ s ≤ d, entries of εs are i.i.d. N

(
0, σ2

2

)
, therefore H ∼ N

(
0, σ2

H

)
,

12



where the variance σ2
H is

σ2
H =

d∑
s=2

∥∥∥∥∥
s−1∑
t=1

wt
∥∥At (u0v

T
0

)∥∥
2
UTAt

∥∥∥∥∥
2

F

σ2
2

(ξ1)

≤
d∑
s=2

∥∥∥∥∥
s−1∑
t=1

wt
√

1 + δ1U
TAt

∥∥∥∥∥
2

F

σ2
2

(ξ2)
=

d∑
s=2

s−1∑
t=1

w2
t (1 + δ1)

∥∥UTBs∥∥2

F
σ2

2

=

d∑
s=2

s−1∑
t=1

w2
t (1 + δ1)

1

m0
χ2
s (rn2)σ2

2

(ξ3)

≤
d∑
s=2

s−1∑
t=1

w2
t (1 + δ1)

1

m0
3m0σ

2
2

=

d−1∑
t=1

(d− t)w2
t (1 + δ1)σ2

2 .

(22)

Inequality (ξ1) holds with probability exceeding 1−dC2 exp(−c2m0) provided thatm0 ≥ Dn based
on the matrix RIP for rank-1 matrices as used while bounding σ2

Z . Equality (ξ2) uses the property
that sum of independent Gaussian variables is also Gaussian and entries of Bs are i.i.d. N (0, 1/m0).
Inequality (ξ3) holds with probability at least 1− dC3 exp(−c3m0) by the concentration property of
correlated Chi-squared variables.

Since the measurement noise Z and dynamic perturbation H are independent, then 〈u0,Wv0〉 ∼
N
(
0, σ2

Z + σ2
H

)
. Then by a standard tail bound for Gaussian random variables we have

P (|〈u0,Wv0〉| > λ) ≤ 2 exp

(
− λ2

2 (σ2
H + σ2

Z)

)
.

Therefore by an standard union bound we bound the stochastic error

P
(
‖W‖2 ≥ C0

√
n (σ2

H + σ2
Z)

)
≤ 2

∣∣N1/4

∣∣2 exp

(
−C

2
0n

8

)
≤ 2 exp (−cn) , (23)

where c =
C2

0

8 − 2 log 12. To ensure c > 0, we require C0 > 4
√

log 12.

Combining (21), (22), and (23), if m0 ≥ Dn we have

‖W‖2 ≤ C0

√√√√n

(
(1 + δ1)

d∑
t=1

w2
t

(
σ2

1 + (d− t)5rn2

m0
σ2

2

))
with probability exceeding 1 − [dC2 exp(−c2m0) + dC3 exp(−c3m0) + 2 exp(−cn)] ≥ 1 −
dC exp(−cn2).

E Proof of Theorem 3.8

Proof. The proof follows the same framework of the proof of Theorem 7 in [15].

Before we lower bound
∑d
t=1 wt

∥∥At (∆d
)∥∥2

2
, we consider the following constraint set for a given

0 < r ≤ n:

E (r) =

X ∈ C(r) : ‖X‖∞ = 1, ‖X‖2F ≥ n1n2

√
2048

∑d
t=1 w

2
t log(n1 + n2)

log(6/5)m0

 .

Define the following random matrix

ΣR =

d∑
t=1

m0∑
i=1

wtγ
t
iA

t
i,

where γti is Rademacher variable.

The following lemma bounds the restricted strong convexity (see [20]) of the operator
{√

wtAt
}d
t=1

.

13



Lemma E.1. Suppose all At’s are fixed uniform sampling ensembles. For all X ∈ E (r)

d∑
t=1

wt
∥∥At (X)

∥∥2

2
≥ p

2
‖X‖2F −

44rn1n2

m0
(E(‖ΣR‖))2 (24)

with probability at least 1− 2
(n1+n2) .

Proof. See Appendix F.

Note that
∥∥∆d

∥∥
∞ ≤

∥∥∥X̂d
∥∥∥
∞

+
∥∥Xd

∥∥
∞ ≤ 2

∥∥Xd
∥∥
∞. To proceed, we consider the following two

cases.

Case I. ∆d

2‖Xd‖∞
/∈ E(2r).

Following the definition of E(2r) we have

∥∥∆d
∥∥2

F
≤ c2

∥∥Xd
∥∥2

∞ n1n2

√∑d
t=1 w

2
t log(n1 + n2)

m0
,

where C2 = 4
√

2048
log(6/5) . This yields the first part of inequality (11) in Theorem 3.8.

Case II. ∆d

2‖Xd‖∞
∈ E(2r).

Since ∆d

2‖Xd‖∞
∈ E(2r), applying Lemma E.1 yields

d∑
t=1

wt
∥∥At (∆d

)∥∥2

2
≥ p

2

∥∥∆d
∥∥2

F
− 362rn1n2

m0
(E(‖ΣR‖))2 ∥∥Xd

∥∥2

∞ . (25)

Combining (25) and (4) yields

p

2

∥∥∆d
∥∥2

F
≤ 2
√

2r

∥∥∥∥∥
d∑
t=1

wtAt∗
(
ht − zt

)∥∥∥∥∥
2

∥∥∆d
∥∥
F

+
362rn1n2

m0
(E(‖ΣR‖))2 ∥∥Xd

∥∥2

∞

≤ 8r

p

∥∥∥∥∥
d∑
t=1

wtAt∗
(
ht − zt

)∥∥∥∥∥
2

2

+
p

4

∥∥∆d
∥∥2

F
+

362rn1n2

m0
(E(‖ΣR‖))2 ∥∥Xd

∥∥2

∞ .

The above inequality can be further simplified as

∥∥∆d
∥∥2

F
≤ 32rn2

1n
2
2

m2
0

∥∥∥∥∥
d∑
t=1

wtAt∗
(
ht − zt

)∥∥∥∥∥
2

2

+
1448rn2

1n
2
2

m2
0

(E(‖ΣR‖))2 ∥∥Xd
∥∥2

∞ . (26)

Next we bound E(‖ΣR‖) in the following lemma.

Lemma E.2. Suppose all At’s are fixed uniform sampling ensembles. For m0 ≥
Dnmin log (n1 + n2)φ(w), where φ(w) =

w2
max∑d

t=1 w
2
t

, there exists an absolute positive constant
C such that

E(‖ΣR‖) ≤ C

√
2e log (n1 + n2)

∑d
t=1 w

2
tm0

nmin
. (27)

The proof is not provided since it is almost the same as that of Lemma 6 in [15] with some minor
modifications. Note that our results are a bit stronger compared to Lemma 6 in [15], since we are
dealing with bounded variables.

Now we upper bound the stochastic error ‖J‖22 :=
∥∥∥∑d

t=1 wtAt∗ (ht − zt)
∥∥∥2

2
. First, we rewrite J as

J =

d∑
t=1

wtAt∗At
U ( d∑

s=t+1

εs

)T
+ Zt

 ,
14



where each entry of the random matrix Zt ∈ Rn1×n2 is i.i.d. Gaussian distributed with variance

σ2
1 . Set Y t = U

(∑d
s=t+1 ε

s
)T

and F t = Y t + Zt. Note that F t may be correlated for different

1 ≤ t ≤ d, though for a given t the entries of F t are independent.

We now introduce an n1 × n2 random matrix Gt that has exactly one non-zero entry:

Gt = wtn1n2F
t
ijEij , with probability

1

n1n2
,

where Eij is the canonical basis of matrices with dimension n1×n2. We also introduce the following
random matrix Ht, which is the average of m0 independent copies of Gt:

Ht =
1

m0

m0∑
i=1

Gti where each Gti is an independent copy of Gt.

Then J can be decomposed as sum of independent random matrices: J = m0

n1n2

∑d
t=1H

t. It is
immediate that

EGt = EHt = wtF
t, EJ =

m0

n1n2

d∑
t=1

wtF
t.

Before we proceed we introduce a lemma describing the spectral norm deviation of a sum of
uncentered random matrices from its mean value.

Lemma E.3. (Corollary 6.1.2 in [24]) Consider a finite sequence {Sk} of independent random
matrices with common dimension n1×n2. Assume that each matrix has uniformly bounded deviation
from its mean:

‖Sk − ESk‖ ≤ L for each index k.

Consider the sum
Z =

∑
k

Sk.

Let ρ(Z) denotes the matrix variance statistic of the sum:

ρ(Z) = max
{∥∥E[(Z − EZ)(Z − EZ)T ]

∥∥ ,∥∥E[(Z − EZ)T (Z − EZ)]
∥∥}

= max

{∥∥∥∥∥∑
k

E[(Sk − ESk)(Sk − ESk)T ]

∥∥∥∥∥ ,
∥∥∥∥∥∑
k

E[(Sk − ESk)T (Sk − ESk)]

∥∥∥∥∥
}
.

Then for all s ≥ 0,

P (‖Z − EZ‖ ≥ s) ≤ (n1 + n2) exp

(
−s2/2

ρ(Z) + Ls/3

)
.

We are going to apply the above uncentered Bernstein inequality to the sum of dm0 independent
random matrices

∑d
t=1H

t = 1
m0

∑d
t=1

∑m0

k=1G
t
k. Before doing so, we note that for given t and k,∥∥Gtk − EGtk

∥∥ ≤ ∥∥Gtk∥∥+
∥∥EGtk∥∥ ≤ ∥∥Gtk∥∥+ E

∥∥Gtk∥∥ ≤ 2
∥∥Gtk∥∥ .

The first inequality uses the triangle inequality; the second is Jensen’s inequality.

To control ρ(
∑d
t=1H

t), first note that

0 �
∑
t

∑
k

E
[
Gtk − EGtk)(Gtk − EGtk)T

]
=
∑
t

∑
k

E
[
(Gtk(Gtk)T

]
− (EGtk)(EGtk)T

�
∑
t

∑
k

E
[
Gtk(Gtk)T

]
= m0

∑
t

E
[
Gt(Gt)T

]
.

15



The third relation holds because (EGtk)(EGtk)T is positive semidefinite; the last relation uses the
fact that for a fixed t, Gtk are random matrices following identical distributions independently for all
1 ≤ k ≤ m0. Now we can control ρ(

∑d
t=1H

t) in the following

ρ

(
d∑
t=1

Ht

)
≤ 1

m0
max

{∥∥∥∥∥∑
t

E
[
(Gt(Gt)T

]∥∥∥∥∥ ,
∥∥∥∥∥∑

t

E
[
(Gt)TGt

]∥∥∥∥∥
}
.

Set ρ0 := max
{∥∥∥∑d

t=1 E(Gt(Gt)T )
∥∥∥ ,∥∥∥∑d

t=1 E((Gt)TGt)
∥∥∥}. Then the remaining work is to

uniformly upper bound ‖Gtk‖ for all 1 ≤ t ≤ d and 1 ≤ k ≤ m0 and upper bound ρ0.

First we turn to the uniform bound on the spectral norm of the random matrix Gtk for all 1 ≤ t ≤ d
and 1 ≤ k ≤ m0. We have for all 1 ≤ t ≤ d and 1 ≤ k ≤ m0∥∥Gtk∥∥ ≤ max

i,j,t
wt
∥∥n1n2F

t
ijEij

∥∥ = n1n2 max
i,j,t

wt|F tij |.

Since µ(U) ≤ µ0, the variance of each entry of the random matrix F t can be bounded as Var(F tij) ≤
µ2
0r
n1
σ2

2(d − t) + σ2
1 . Let σ2

max = maxt w
2
t

(
µ2
0r
n1
σ2

2(d− t) + σ2
1

)
. Then by the tail probability

of Gaussian random variables and the standard union bound (over i, j), for all 1 ≤ t ≤ d and
1 ≤ k ≤ m0 we have

P
(∥∥Gtk∥∥ ≤ n1n2

√
2 log(d(n1 + n2)n1n2)σ2

max =: L
)
≥ 1− 2/(n1 + n2).

Second we turn to the computation of E(Gt(Gt)T ). We have

E(Gt(Gt)T ) = w2
tn

2
1n

2
2

n1∑
i=1

n2∑
j=1

(F tij)
2EijE

T
ij

1

n1n2
= w2

tn1n2

n1∑
i=1

n2∑
j=1

(F tij)
2Eii.

Similarly E((Gt)TGt) = w2
tn1n2

∑n1

i=1

∑n2

j=1(F tij)
2Ejj . Then

ρ = n1n2 max

max
i

d∑
t=1

n2∑
j=1

w2
t (F

t
ij)

2,max
j

d∑
t=1

n1∑
i=1

w2
t (F

t
ij)

2

 .

Let ai =
∑d
t=1

∑n2

j=1 w
2
t (F

t
ij)

2 and bj =
∑d
t=1

∑n1

i=1 w
2
t (F

t
ij)

2. We first bound maxi ai. Note that

ai =
∑d
t=1 w

2
t

∑n2

j=1(Y tij + Ztij)
2 ≤ 2

∑d
t=1 w

2
t

∑n2

j=1[(Y tij)
2 + (Ztij)

2]. Note that for 1 ≤ i ≤ n1

and 1 ≤ t ≤ d,
∑n2

j=1(Ztij)
2 ∼ σ2

1χ
2(n2) and are independent. So by the tail bound of Chi-squared

variable and the standard union bound (over i and t) we have

P

max
i

d∑
t=1

w2
t

n2∑
j=1

(Ztij)
2 ≤ 5n2

d∑
t=1

w2
t σ

2
1

 ≥ 1− dn1 exp(−n2). (28)

Similarly we have

P

(
max
j

d∑
t=1

w2
t

n2∑
i=1

(Ztij)
2 ≤ 5n1

d∑
t=1

w2
t σ

2
1

)
≥ 1− dn2 exp(−n1). (29)

For
∑n2

j=1(Y tij)
2, note that Y tij is Gaussian distributed and the variance is not greater than µ2

0r
n1

(d−t)σ2
2

for all i, j, t, since µ(U) ≤ µ0. For a fixed i, for all 1 ≤ j ≤ n2, Y tij are independent Gaussian
random variables. So given i and t, applying the tail bound of Chi-squared random variables yields

P

 n2∑
j=1

(Y tij)
2 ≤ 5n2(d− t)µ

2
0r

n1
σ2

2

 ≥ 1− exp(−n2).

By the standard union bound (over i and t) we have

P

max
i

d∑
t=1

w2
t

n2∑
j=1

(Y tij)
2 ≤ 5n2

µ2
0r

n1

d∑
t=1

(d− t)w2
t σ

2
2

 ≥ 1− dn1 exp(−n2). (30)
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Now we turn to
∑n1

i=1(Y tij)
2, which follows a Chi-squared distribution (d− t)σ2

2χ
2(r), since

n1∑
i=1

(Y tij)
2 = (Y t:j)

TY t:j = ε̄tj:U
TU

(
ε̄tj:
)T

= ε̄tj:
(
ε̄tj:
)T

where ε̄t =
∑d
s=t+1 ε

s. The last equality uses the fact that U is orthonormal. Then by the tail bound
of Chi-squared random variables and the standard union bound (over j and t) we have

P

(
max
j

d∑
t=1

w2
t

n1∑
i=1

(Y tij)
2 ≤ 5n1

d∑
t=1

(d− t)w2
t σ

2
2

)
≥ 1− dn2 exp(−n1). (31)

Combining (28) and (30) yields

P

(
max
i
ai ≤ 10n2

d∑
t=1

w2
t

(
σ2

1 +
µ2

0r

n1
(d− t)σ2

2

))
≥ 1− 2dn1 exp(−n2). (32)

Similarly combining (29) and (31) yields

P

(
max
j
bj ≤ 10n1

d∑
t=1

w2
t

(
σ2

1 + (d− t)σ2
2

))
≥ 1− 2dn2 exp(−n1). (33)

Note that 1 ≤ µ0 ≤
√
n1/
√
r, so µ2

0r
n1
≤ 1. Now we are ready to bound ρ0 by combining (32) and

(33):

P

(
ρ0 ≤ 10nmaxn1n2

(
d∑
t=1

w2
t σ

2
1 +

d∑
t=1

w2
t (d− t)σ2

2

)
=: ν

)
≥ 1−4dnmax exp(−nmin). (34)

Now by Lemma E.3, we have

P

(∥∥∥∥∥
d∑
t=1

Ht −
d∑
t=1

wtF
t

∥∥∥∥∥ ≥ s
)
≤ (n1 + n2) exp

(
−m0s

2/2

ν + 2Ls/3

)
.

If we let s =
√

8 log(n1+n2)ν
m0

and substitute this into the above matrix Bernstein inequality we obtain

P

∥∥∥∥∥
d∑
t=1

Ht −
d∑
t=1

wtF
t

∥∥∥∥∥ ≥
√

8 log(n1 + n2)ν

m0

 ≤ 1/(n1 + n2).

A hidden condition when the above inequality holds is that ν dominates the denominator of the
exponential term. The remaining work is to have sufficiently large m0 to guarantee that ν dominates
the denominator of the exponential, which follows

ν ≥ 2/3L

√
8 log(n1 + n2)ν

m0
.

The above inequality immediately implies that

m0 ≥
32

45
nmin log(d(n1 + n2)n1n2) log(n1 + n2)

maxt w
2
t

(
(d− t)µ

2
0r
n1
σ2

2 + σ2
1

)
∑d
t=1 w

2
t ((d− t)σ2

2 + σ2
1)

.

Note that n1 + n2 > ni, i = 1, 2, and n1 + n2 > d, then the above sample complexity can be
simplified as

m0 ≥
128

45
nmin log2(n1 + n2)

maxt w
2
t

(
(d− t)µ

2
0r
n1
σ2

2 + σ2
1

)
∑d
t=1 w

2
t ((d− t)σ2

2 + σ2
1)

. (35)
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The remaining work is to bound
∥∥∥∑d

t=1 wtF
t
∥∥∥. First we note that each entry of F t is Gaussian and

the variance is not greater than σ2
1 + (d− t)σ2

2 . Then, according to results on bounds for the spectral
norm of i.i.d. Gaussian ensemble, we have

P

∥∥∥∥∥
d∑
t=1

wtF
t

∥∥∥∥∥ ≤ 2

√√√√ d∑
t=1

w2
t (σ2

1 + (d− t)σ2
2)
√
nmax

 ≥ 1− C1 exp(−c2nmax), (36)

where C1, c2 are absolute positive constants. Note that C1 exp(−c2nmax)� dnmax exp(−nmin).

Now we are ready to bound ‖J‖22. With probability at least 1− 3
n1+n2

− 5dnmax exp(−nmin) we
have

‖J‖22 ≤ p
2

∥∥∥∥∥
d∑
t=1

wtF
t

∥∥∥∥∥+

√
8 log(n1 + n2)ν

m0

2

≤ 320p2 max{n1n2 log(n1 + n2)/m0, 1}nmax

d∑
t=1

w2
t ((d− t)σ2

2 + σ2
1)

= 320p2
d∑
t=1

w2
t ((d− t)w2

2 + σ2
1)n1n2 log(n1 + n2)nmax/m0

=
320m0 log(n1 + n2)

∑d
t=1 w

2
t ((d− t)σ2

2 + σ2
1)

nmin
.

(37)

The first equality uses the fact that m0 < n1n2 log(n1 + n2).

Combining (26),(27) and (37) yields the second part of inequality (11) in Theorem 3.8.

F Proof of Lemma E.1

Proof. The proof is almost the same as the proof of Lemma 12 in [15] with some minor modifications.

Set F = 44rn1n2

m0
(E(‖ΣR‖))2. We will show that the probability of the following bad event is small:

B =

{
∃X ∈ E(r) such that

∣∣∣∣∣
d∑
t=1

wt
∥∥At (X)

∥∥2

2
− p ‖X‖2F

∣∣∣∣∣ > p

2
‖X‖2F + F

}
.

Note that B contains the complement of the event in Lemma E.1.

We use a peeling argument to bound the probability of B. Let ν =
√

2048
∑d

t=1 w
2
t log(n1+n2)

log(6/5)m0
and

α = 6/5. For l ∈ N let

Sl =

{
X ∈ E(r) : ναl−1 ≤ 1

n1n2
‖X‖2F ≤ να

l

}
.

Then if event B holds for some X ∈ E(r), it must be that X belongs to some Sl and∣∣∣∣∣
d∑
t=1

wt
∥∥At (X)

∥∥2

2
− p ‖X‖2F

∣∣∣∣∣ > p

2
‖X‖2F + F >

5

12
αlνm0 + F . (38)

For T > ν consider the set

E(r, T ) =
{
X ∈ E(r) : ‖X‖2F ≤ n1n2T

}
and the event

Bl =

{
∃X ∈ E(r, αlν) such that

∣∣∣∣∣
d∑
t=1

wt
∥∥At (X)

∥∥2

2
− p ‖X‖2F

∣∣∣∣∣ > 5

12
αlνm0 + F

}
. (39)
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Note that X ∈ Sl implies that X ∈ E(r, αlν). Then (38) implies that Bl holds and B ⊂ ∪Bl. Thus,
it is sufficient to bound the probability of the simpler event Bl and then apply the union bound. Such
a bound is given by the following lemma. Its proof is given in Appendix G. Let

HT = sup
X∈E(r,T )

∣∣∣∣∣
d∑
t=1

wt
∥∥At (X)

∥∥2

2
− p ‖X‖2F

∣∣∣∣∣ .
Lemma F.1. Suppose all At’s are fixed uniform sampling ensembles. Then

P
(
HT >

5

12
αlνm0 + F

)
≤ exp

(
−c5m0T

2∑d
t=1 w

2
t

)
,

where c5 = 1/4096.

The above lemma implies that P(Bl) ≤ exp(−c5m0α
2lν2). By a union bound, we have

P(B) ≤
∞∑
l=1

P(Bl) ≤
∞∑
l=1

exp

(
−c5m0α

2lν2∑d
t=1 w

2
t

)
≤
∞∑
l=1

exp

(
−(2c5m0 log(α)ν2)l∑d

t=1 w
2
t

)
,

where the last inequality uses the bound ex ≥ x. Then, substituting v =
√

2048
∑d

t=1 w
2
t log(n1+n2)

log(6/5)m0

into the above summation we obtain

P(B) ≤ 2/(n1 + n2).

This completes the proof.

G Proof of Lemma F.1

Proof. The proof is almost the same as the proof of Lemma 14 in [15] with some minor modifications.

By Massart’s concentration inequality (see, e.g., [2], Theorem 14.2), we have

P
(
HT ≥ E(HT ) +

1

9

5

12
m0T

)
≤ exp

(
−c5m0T

2∑d
t=1 w

2
t

)
, (40)

where c5 = 1/4096. Next we bound the expectation E(HT ). Using a symmetrization argument we
obtain

E(HT ) ≤ 2E

(
sup

X∈E(r,T )

∣∣∣∣∣
d∑
t=1

wtγ
t
i

m0∑
i=1

〈
Ati, X

〉2∣∣∣∣∣
)
,

where γti is a Rademacher variable (independent on both i and t). The assumption ‖X‖∞ = 1 implies
that |〈Ati, X〉| ≤ 1. Then the contraction inequality yields

E(HT ) ≤ 8E

(
sup

X∈E(r,T )

∣∣∣∣∣
d∑
t=1

wtγ
t
i

m0∑
i=1

〈
Ati, X

〉∣∣∣∣∣
)

= 8E

(
sup

X∈E(r,T )

|〈ΣR, X〉|

)
,

where ΣR =
∑d
t=1

∑m0

i=1 wtγ
t
iA

t
i. Since X ∈ E(r, T ), we have

‖X‖∗ ≤
√
r ‖X‖F ≤

√
rn1n2T .

Then by the trace duality inequality, we obtain

E(HT ) ≤ 8
√
rn1n2TE ‖ΣR‖2 .

Finally using

1

9

5

12
m0T + 8

√
rn1n2m0T

1
√
m0

E ‖ΣR‖2 ≤
1

9

5

12
m0T +

8

9

5

12
m0T +

44rn1n2

m0
(E ‖ΣR‖2)

2

combined with (40) we complete the proof.
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