
Appendix

A Some Ancillary Material

A.1 Table of Notations

M The number of fidelities.
f, f (m) The payoff function and its mth fidelity approximation. f (M) = f .
λ(m) The cost for querying at fidelity m.
X The domain over which we are optimising f .

x?, f? The optimum point and value of the M th fidelity function.
A The complement of a set A ⊂ X . A = X\A.
|A| The cardinality of a set A ⊂ X if it is countable.
∨,∧ Logical Or and And respectively.

.,&,� Inequalities and equality ignoring constant terms.
qt, rt The instantaneous reward and regret respectively.

qt = f (M)(xt) if mt = M and −B if mt 6= M . rt = f? − qt.
R(Λ) The cumulative regret after spending capital Λ. See equation (2).
S(Λ) The simple regret after spending capital Λ. See second paragraph under equation (2).
ζ(m) A bound on the maximum difference between f (m) and f (M), ‖f (M)−f (m)‖∞ ≤ ζ(m).
µ

(m)
t The mean of the mth fidelity GP f (m) conditioned on D(m)

t at time t.
κ

(m)
t The covariance of the mth fidelity GP f (m) conditioned on D(m)

t at time t.
σ

(m)
t The standard deviatiation of the mth fidelity GP f (m) conditioned on D(m)

t at time t.
xt,yt The queried point and observation at time t.
mt The queried fidelity at time t.
D(m)
n The set of queries at the mth fidelity until time n {(xt,yt)}t:mt=m.
βt The coefficient trading off exploration and exploitation in the UCB. See Theorem 10.

ϕ
(m)
t (x) The upper confidence bound (UCB) provided by the mth fidelity on f (M)(x).

ϕ
(m)
t (x) = µ

(m)
t−1(x) + β

1/2
t σ

(m)
t−1(x) + ζ(m).

ϕt(x) The combined UCB provided by all fidelities on f (M)(x). ϕt(x) = minm ϕ
(m)
t (x).

γ(m) The parameter in MF-GP-UCB for switching from the mth fidelity to the (m+ 1)th .
R̃n The cumulative regret for the queries after n rounds, R̃n =

∑n
t=1 λ

(mt)rt.
T

(m)
n (A) The number of queries at fidelity m in subset A ⊂ X until time n.

T
(>m)
n (A) The number of queries at fidelities greater than m in any subset A ⊂ X until time n.
nΛ Number of plays by a strategy querying only at fidelity M within capital Λ.

nΛ = bΛ/λ(M)c.
Ψn(A) The maximum information gain of a set A ⊂ X after n queries in A. See Definition 2.
X (m) (X (m))Mm=1 is an entirely problem dependent partitioning of X . See Equation (5).
H(m)
τ (H(m)

τ )Mm=1 are partitionings of X . See Equation (5). The analysis of MF-GP-UCB
hinges on these partitionings.

H(m)
τ,n An additional n-dependent inflation ofH(m)

τ . See paragraph under equation (5).
Ĥ(m)
τ ,

̂
Hτ (m) The arms “above"/“below"H(m)

τ . Ĥ(m)
τ =

⋃M
`=m+1H

(`)
τ ,

̂
Hτ (m) =

⋃m−1
`=1 H

(`)
τ .

Xg,Xb The good set and bad sets for M = 2 fidelity problems. Xg = X (2) and Xb = X (1).
X̃g,ρ, X̃b,ρ The inflations of Xg,Xb for MF-GP-UCB.

X̃g,ρ = {x; f? − f (1)(x) ≤ ζ(1) + ργ}, and Ẍb,τ = X\Ẍg,τ .
Ωε(A) The ε–covering number of a subset A ⊂ X in the ‖ · ‖2 metric.

A.2 Review of GP-UCB

The following bounds the regret Rn for the GP-UCB algorithm of Srinivas et al. [28] after n time
steps. The algorithm is given in Algorithm 2.
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Theorem 4. (Theorems 2 in [28]) Let f ∼ GP(0, κ), f : X → R and κ satisfy Assumption 8. At each
query, we have noisy observations y = f(x) + ε where ε ∼ N (0, η2). Denote C1 = 8/ log(1 + η−2).

Pick δ ∈ (0, 1). If X = [0, r]d, run GP-UCB with βt = 2 log
(

2π2t2

3δ

)
+ 2d log

(
t2bdr

√
4ad
δ

)
.

Then,
P
(
∀n ≥ 1, Rn ≤

√
C1nβnΨn(X ) + 2

)
≥ 1− δ

Here Ψn(X ) is the Maximum Information Gain of X after n queries (see Definition 2).

Algorithm 2 GP-UCB
Input: kernel κ.
For t = 1, 2 . . .

• D0 ← ∅, (µ0, σ
2
0)← (0, κ).

• (µ0, κ0)← (0, κ)
• for t = 1, 2, . . .

1. xt ← argmaxx∈X µt−1(x) + β
1/2
t σt−1(x)

2. yt ← Query f at xt.
3. Dt = Dt−1 ∪ {(xt,yt)}.
4. Perform Bayesian posterior updates to obtain µt, σt (See Equation (1)).

A.3 More Related Work

Agarwal et al. [1] derive oracle inequalities for hyper-parameter tuning with ERM under computational
budgets. Our setting is more general as it applies to any bandit optimisation task. Sabharwal
et al. [26] present a UCB based idea for tuning hyper-parameters with incremental data allocation.
However, their theoretical results are for an idealised non-realisable algorithm. Cutler et al. [5]
study reinforcement learning with multi-fidelity simulators by treating each fidelity as a Markov
Decision Process. Finally, Zhang and Chaudhuri [33] study active learning when there is access to a
cheap weak labeler and an expensive strong labeler. All the work above study problems different to
optimisation. Further, none of them are in the bandit setting where there is a price for exploration.

A.4 Some Ancillary Results

We will use the following results in our analysis. The first is a standard Gaussian concentration result
and the second is an expression for the Information Gain in a GP from Srinivas et al. [28].

Lemma 5 (Gaussian Concentration). Let Z ∼ N (0, 1). Then P(Z > ε) ≤ 1
2 exp(−ε2/2).

Lemma 6 (Mutual Information in GP, [28] Lemma 5.3). Let f ∼ GP(0, κ), f : X → R and we
observe y = f(x) + ε where ε ∼ N (0, η2). Let A be a finite subset of X and fA, yA be the function
values and observations on this set respectively. Using the basic Gaussian properties they show that
the mutual information I(yA; fA) is,

I(yA; fA) =
1

2

n∑

t=1

log(1 + η−2σ2
t−1(xt)).

where σ2
t−1 is the posterior variance after observing the first t− 1 points.

We conclude this section with the following comment on our assumptions in Section 2.

Remark 7 (Validity of the Assumptions A1, A2, A3). It is sufficient to show that when the
functions f (m) are sampled from GP(0, κ), the latter constraints, i.e. ‖f (M)‖∞ ≤ B and
‖f (M) − f (m)‖∞ ≤ ζ(m) ∀m, occur with positive probability. Then, a generative mechanism
would repeatedly sample the f (m)’s from the GP and output them when the constraints are satisfied.
The claim is true for well behaved kernels. For instance, using Assumption 8 (Appendix C) we
can establish a high probability bound on the Lipschitz constant of the GP sample f (M). Since for
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a given x ∈ X , P(−B < f (M)(x) < 0) is positive we just need to make sure that the Lipschitz
constant is not larger than B/diam(X ). This bounds ‖f (M)‖∞ < B. For the latter constraint, since
f (M) − f (m) ∼ GP(0, 2κ) is also a GP, the argument follows in an essentially similar fashion.

B Some Details on MF-GP-UCB

An Extended Simulation

In Figure 6 we provide an extended version of the simulation of Fig. 2 for a 2 fidelity example. Read
the caption under the simulation for more details.

More Implementation Details

Data dependent prior: In our experiments, following recommendations in Brochu et al. [3] all GP
methods were initialised with uniform random queries using an initialisation capital Λ0. For single
fidelity methods, we used it at the M th fidelity, whereas for MF-GP-UCB we used Λ0/2 at fidelity
1 and Λ0/2 at fidelity 2. After initialising the kernel in this manner, we update the kernel every 25
iterations of the method by maximising the GP marginal likelihood.

Choice of βt: βt, as specified in Theorems 4, 10 has unknown constants and tends to be too
conservative in practice. Following Kandasamy et al. [15] we use βt = 0.2d log(2t) which captures
the dominant dependencies on d and t.

Initial ζ, γ: We set both ζ, γ to 1% of the range of initial queries and update them as explained in
the main text.

Maximising ϕt: To determine xt we maximised ϕt using DiRect [12]. For other GP methods, the
EI, PI, GP-UCB acquisition functions were also maximised using DiRect.
MF-GP-UCB was fairly robust to the above choices except when Λ0 was set too low in which case,
all GP methods performed poorly on some experiments.

C Theoretical Analysis

In this section we present our main theoretical results. While it is self contained, the reader will
benefit from first reading the more intuitive discussion in Section 4. The goal in this section is to
bound R(Λ) for MF-GP-UCB . Recall,

R(Λ) = Λf? −
N∑

t=1

λ(mt)qt −
(

Λ−
N∑

t=1

λ(mt)

)
(−B)

=

(
Λ−

N∑

t=1

λ(mt)

)
(f? +B)

︸ ︷︷ ︸
r̃(Λ)

+

N∑

t=1

λ(mt)rt

︸ ︷︷ ︸
R̃(Λ)

,

where N is the random number of plays within capital Λ and qt, rt are the instantaneous reward and
regret as defined in Section 2. The first term r̃(Λ) is the residual quantity. It is an artefact of the
fact that after the (N + 1)th query, the spent capital would have exceeded Λ. It can be bounded by
r̃(Λ) ≤ 2Bλ(M) which is typically small. Our analysis will mostly be dealing with the latter term
R̃(Λ) for which we will first bound the quantity R̃n =

∑n
t=1 λ

(mt)rt after n time steps in terms of
n. Then, we will bound the random number of plays N within principal Λ. While N ≤ bΛ/λ(1)c is
a trivial bound, this will be too loose for our purpose. In fact, we will show that after a sufficiently
large number of time steps n, with high probability the number of plays at fidelities lower than M
will be sub-linear in n. Hence N ∈ O(nΛ) where nΛ = bΛ/λ(M)c is the number of plays by any
algorithm that operates only at the highest fidelity.

Our strategy to bound R̃n will be to identify a (possibly disconnected) measurable region of the space
Z which contains x? and has high value for the payoff function f (M)(x). Z will be determined by
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t

ϕ
(2)
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f (1)

f (2)
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t = 8

f (1)
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β
1/2
t σ

(1)
t−1(x)

γ(1)

mt = 1

γ
(1) mt = 1

x⋆xt

t = 10

f (1)

f (2)
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f (1)

f (2)
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(1)
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(1)
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Figure 6: Illustration of MF-GP-UCB for a 2-fidelity problem initialised with 5 random points at
the first fidelity. In the top figures, the solid lines in brown and blue are f (1), f (2) respectively, and
the dashed lines are ϕ(1)

t , ϕ
(2)
t . The solid green line is ϕt = min(ϕ

(1)
t , ϕ

(2)
t ). The small crosses are

queries from 1 to t−1 and the red star is the maximiser of ϕt, i.e. the next query xt. x?, the optimum
of f (2) is shown in magenta. In the bottom figures, the solid orange line is β1/2

t σ
(1)
t−1 and the dashed

black line is γ(1). When β1/2
t σ

(1)
t−1(xt) ≤ γ(1) we play at fidelity mt = 2 and otherwise at mt = 1.

At the initial stages, MF-GP-UCB is mostly exploring X in the first fidelity. β1/2
t σ

(1)
t−1 is large and we

are yet to constrain f (1) well to proceed to m = 2. At t = 10, we have constrainted f (1) sufficiently
well at a region around the optimum. β1/2

t σ
(1)
t−1(xt) falls below γ(1) and we query at mt = 2. Notice

that once we do this (at t = 11), ϕ(2)
t dips to change ϕt in that region. At t = 14, MF-GP-UCB has

identified the maximum x? with just 4 queries to f (2). In the last figure, at t = 50, the algorithm
decides to explore at a point far away from the optimum. However, this query occurs in the first
fidelity since we have not sufficiently constrained f (1)(xt) in this region. The key idea is that it is not
necessary to query such regions at the second fidelity as the first fidelity alone is enough to conclude
that it is suboptimal. Herein lies the crux of our method. The region shaded in cyan in the last figure
is the good set Xg = {x; f (2)(x?)− f (1)(x) ≤ ζ(1)} discussed in Section 4. Our analysis predicts
that most second fidelity queries in MF-GP-UCB will be confined to this set with high probability
and the simulation corroborates this claim. In addition, observe that in a large portion of X , ϕt is
given by ϕ(1)

t except in a small neighborhood around x?, where it is given by ϕ(2)
t .
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the approximations provided via the lower fidelity evaluations. Denoting Z = X\Z , we decompose
R̃n as follows,

R̃n ≤ 2B

M−1∑

m=1

λ(m)T (m)
n (X )

︸ ︷︷ ︸
R̃n,1

+ λ(M)
∑

t:mt=M
xt∈Z

(
f? − f (M)(xt)

)

︸ ︷︷ ︸
R̃n,2

+ λ(M)
∑

t:mt=M
xt∈Z

(
f? − f (M)(xt)

)

︸ ︷︷ ︸
R̃n,3

.

(4)

R̃n,1 is the capital spent on the lower fidelity queries for which we receive no reward. R̃n,2 is
the regret due to fidelity M queries in Z and R̃n,3 is due to fidelity M queries outside Z . To
control R̃n,1 we will first bound T (m)

n (X ) for m < M . This will typically be small containing only
polylog(n)/poly(γ) and o(n) terms. The last two terms can be controlled using the MIGs Ψn of
Z,Z respectively (Definition 2). As we will see, R̃n,2 will be the dominant term in n in our final
expression since most of the fidelity M queries will be confined to Z . T (n)

M (Z) will be sublinear
in n and hence R̃n,3 will be of low order. When the lower fidelities allow us to eliminate a large
region of the space, vol(Z)� vol(Z) and consequently the maximum information gain of Z will be
much smaller than that of Z , Ψn(Z)� Ψn(Z). As we will see, this results in much better regret for
MF-GP-UCB in comparison to GP-UCB.

For the analysis, we will need the following regularity conditions on the kernel. It is satisfied for four
times differentiable kernels such as the SE and Matérn kernels with smoothness parameter ν > 2 [10].

Assumption 8. Let f ∼ GP(0, κ), where κ : [0, r]d× [0, r]d → R is a stationary kernel. The partial
derivatives of f satisfies the following high probability bound. There exists constants a, b > 0 such
that, for all J > 0,

∀ i ∈ {1, . . . , d}, P
(

sup
x

∣∣∣∂f(x)

∂xi

∣∣∣ > J

)
≤ ae−(J/b)2

.

For our proofs we will need to control the conditional variances for queries within a subset A ⊂ X .
To that end, we provide the lemma below.

Lemma 9. Let f ∼ GP(0, κ), f : X → R and each time we query at any x ∈ X we observe
y = f(x) + ε, where ε ∼ N (0, η2). Let A ⊂ X . Assume that we have queried f at n points, (xt)

n
t=1

of which s points are in A. Let σ2
t−1 denote the posterior variance at time t, i.e. after t− 1 queries.

Then,
∑
xt∈A σ

2
t−1(xt) ≤ 2

log(1+η−2)Ψs(A).

Proof Let As = {z1, z2, . . . , zs} be the queries inside A in the order they were queried. Now,
assuming that we have only queried insideA atAs, denote by σ̃t−1(·), the posterior standard deviation
after t− 1 such queries. Then,

∑

t:xt∈A
σ2
t−1(xt) ≤

s∑

t=1

σ̃2
t−1(zt) ≤

s∑

t=1

η2 σ̃
2
t−1(zt)

η2
≤

s∑

t=1

log(1 + η−2σ̃2
t−1(zt))

log(1 + η−2)

≤ 2

log(1 + η−2)
I(yAs ; fAs)

Queries outside A will only decrease the variance of the GP so we can upper bound the first sum
by the posterior variances of the GP with only the queries in A. The third step uses the inequality
u2/v2 ≤ log(1+u2)/ log(1+v2) with u = σ̃t−1(zt)/η and v = 1/η and the last step uses Lemma 6.
The result follows from the fact that Ψs(A) maximises the mutual information among all subsets of
size s.

We now proceed to the analysis. To avoid clutter in the notation we will use γ = γ(m) for all m.
Generalising this to different γ(m)’s is straightforward.
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Denote ∆(m)(x) = f?− f (m)(x)− ζ(m) and J (m)
η = {x ∈ X ; ∆(m)(x) ≤ η}. Let τ > 0, ρ > 1 be

given. Central to our analysis will be two partitionings (X (m))Mm=1 and (H(m)
τ )Mm=1 of X . The latter

depends on the parameter γ and the given τ, ρ. Let X (1) = J (1)

0 ,H(1)
τ = J (1)

max(τ,ργ). Then define,

X (m) = J (m)

0 ∩
(
m−1⋂

`=1

J (`)
0

)
for 2 ≤ m ≤M − 1, X (M) =

M−1⋂

`=1

J (`)
0 . (5)

H(m)
τ = J (m)

max(τ,ργ) ∩
(
m−1⋂

`=1

J (`)
max(τ,ργ)

)
for 2 ≤ m ≤M − 1, H(M)

τ =

M−1⋂

`=1

J (`)
max(τ,ργ).

In addition to the above, we will also find it useful to define the sets “above" H(m)
τ as Ĥ(m)

τ =⋃M
`=m+1H

(`)
τ and the sets “below" H(m)

τ as
̂
Hτ (m) =

⋃m−1
`=1 H

(`)
τ . Intuitively, H(m)

τ is the set
of points that MF-GP-UCB will query at the mth fidelity but exclude from higher fidelities due to
information from fidelity m.

̂
Hτ (m) is the set of points that can be excluded from queries at fidelities

m and beyond due to information from lower fidelities. Ĥ(m)
τ are points that need to be queried at

fidelities higher than m. In the 2 fidelity setting described in Section 4, the set Xg is X (2) and X̃g,ρ is
H(2)
τ . Finally, for any given α > 0 we will also defineH(m)

τ,n = {x ∈ X : B2(x, r
√
d/n

α
2d )∩H(m)

τ 6=
∅ ∧ x /∈ Ĥ(m)} to be an n-dependence inflation ofH(m)

τ,n . Here, B2(x, ε) is an L2 ball of radius ε
centred at x. The sets {H(m)

τ,n }Mm=1 depend on ρ, γ, τ, n and α. Notice that for any α > 0, as n→∞,
H(m)
τ,n → H(m)

τ . In addition to the above, denote the ε covering number of a set A ⊂ X in the
‖ · ‖2 metric by Ωε(A). Let T (m)

n (A) denote the number of queries in a subset A ⊂ X at fidelity m.
D(m)
n = {(xt,yt)}t:mt=m denotes the set of query-value pairs at the mth fidelity until time n. Our

main theorem is as follows.

Theorem 10. Let X ⊂ [0, r]d be compact and convex. Let f (m) ∼ GP(0, κ) ∀m, and satisfy
assumptions A2, A3. Let κ satisfy Assumption 8 with some constants a, b. Pick δ ∈ (0, 1) and run
MF-GP-UCB with

βt = 2 log

(
Mπ2t2

2δ

)
+ 4d log(t) + max

{
0 , 2d log

(
brd log

(
6Mad

δ

))}
.

For all α ∈ (0, 1), τ > 0, ρ > ρ0 = max{2, 1 +
√

(1 + 2/α)/(1 + d)} and sufficiently large Λ,

we have R(Λ) ∈ O
(∑M

m=1 λ
(m)

√
nΛβnΛΨnΛ(H(m)

τ,nΛ) +
diam(Ĥ(m)

τ )dpolylog(nΛ)
poly(γ)

)
. Here, nΛ =

bΛ/λ(M)c as before.
Precisely, there exists Λ0 such that for all Λ ≥ Λ0, with probability > 1− δ we have,

R(Λ) ≤ 2Bλ(M) + λ(M)

[√
2C1MnαΛΨ2MnαΛ

(

̂
H(M)) +

√
2C1nΛΨ2nΛ

(H(M)
τ,nΛ) +

π2

6

]

+ 2B

M−1∑

m=1

λ(m)

[
(m− 1)(2nαΛ) +

1

τ

(√
2C1nΛβ2nΛΨ2nΛ(H(m)

τ,nΛ) +
π2

6

)
+

Ωεn(Ĥ(m)
τ )

(
2η2

γ2
βn + 1

) ]
,

where C1 = 8/ log(1 + η2). For the SE kernel εn = γ√
8CSEβn

, and therefore Ωεn(Ĥ(m)) ∈
O
(

diam(Ĥ(m))d(log(n))d/2

γd

)
. For the Matérn kernel εn = γ2

8CMatβn
and therefore Ωεn(Ĥ(m)) ∈

O
(

diam(Ĥ(m))d(log(n))d

γ2d

)
. CSE , CMat are kernel dependent constants. As Λ→∞, nΛ →∞ and

henceH(m)
τ,nΛ → H(m)

τ for all m ∈ {1, . . . ,M} and α ∈ (0, 1).

Synopsis: Ignoring the common terms, constants and nαΛ terms, the regret for GP-UCB is

λ(M)
√
nΛΨnΛ

(X ) whereas for MF-GP-UCB it is
∑
m λ

(m)

√
nΛΨnΛ

(H(m)
τ,n ). In problems where
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⌧
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Figure 7: Illustration of the sets {F (`)
n }m−1

`=1 with re-
spect to H(m)

τ . The grid represents a r
√
d/nα/2d cover-

ing of X . The yellow region is Ĥ(m)
τ . The area enclosed

by the solid red line (excluding Ĥ(m)
τ ) is H(m)

τ . H(m)
τ,n ,

shown by a dashed red line, is obtained by inflatingH(m)
τ by

r
√
d/nα/2d. The grey shaded region represents

⋃m−1
`=1 F

(`)
n .

By our definition,
⋃m−1
`=1 F

(`)
n contains the cells which are

entirely outsideH(m)
τ . However, the inflationH(m)

τ,n is such
that Ĥ(m)

τ ∪ H(m)
τ,n ∪

⋃m−1
`=1 F

(`)
n = X . As n → ∞,

H(m)
τ,n → H(m)

τ .

vol(H(m)
τ,n )� vol(H(m)

τ,n ), and λ(m) � λ(m+1) MF-GP-UCB achieves signficantly better regret than
GP-UCB. When the sets become larger (the approximation becomes worse) and the costs become

comparable the bound decays gracefully. The λ(m)
√
nαΛΨnαΛ

(H(m)
τ,n ) terms can be made arbitrarily

small by picking large enough ρ, provided H(m)
τ,n is still small relative to X . On the other hand the

diam(Ĥ(m)
τ )polylog(nΛ)/poly(γ) terms could be big if γ is too small. MF-GP-UCB requires that

γ will be chosen large enough so that the above term remains small relative to
√
nΛβnΛΨnΛ(H(m)

τ )

which is not too restrictive since we expect Ĥ(m)
τ to be much smaller thanH(m)

τ . Our analysis reveals
that an optimal choice for the SE kernel scales γ(m) � (λ(m)ζ(m)/(tλ(m+1)))1/(d+2) at time step t.
However this observation is of little practical consequence as the leading constant depends on several
problem dependent quantities such as Ψn(Xg). Our heuristics for setting γ seemed to work well in
practice (see Section 5).

Proof of Theorem 10. We will study MF-GP-UCB after n time steps regardless of the queried
fidelities and bound R̃n. Then we will bound the number of playsN within capital Λ. For the analysis,
at time n we will consider a r

√
d

2n
α
2d

-covering of the space X of size n
α
2 . For instance, if X = [0, r]d a

sufficient discretisation would be an equally spaced grid having nα/2d points per side. Let {ai,n}n
α
2

i=1

be the points in the covering, Fn = {Ai,n}n
α
2

i=1 be the cells in the covering, i.e. Ai,n is the set of
points which are closest to ai,n in the covering. Next we define another partitioning of the space
similar in spirit to (5) using this partitioning. First let F (1)

n = {Ai,n ∈ Fn : Ai,n ⊂ J (1)
max(τ,ργ)}.

Next,

F (m)
n =

{
Ai,n ∈ Fn : Ai,n ⊂ J

(m)

max(τ,ργ) ∧ Ai,n /∈
m−1⋃

`=1

F (`)
n

}
for 2 ≤ m ≤M − 1.

(6)

Note that F (m)
n ⊂ Fn. We define the following disjoint subsets {F (m)

n }M−1
m=1 of X via F (m)

n =⋃
Ai,n∈F (m)

n
Ai,n. We have illustrated

⋃m−1
`=1 F

(`)
n with respect toH(m)

τ in Figure 7. By noting that

H(1)
τ,n = H(1) we make the following observation,

T (m)
n (X ) ≤

m−1∑

`=1

T (m)
n (F (`)

n ) + T (m)
n (H(m)

τ,n ) + T (m)
n (Ĥ(m)). (7)

This follows by noting thatH(m)
τ,n ∪ Ĥ(m) ⊂ ⋃m−1

`=1 F
(`)
n (See Fig. 7). To control R̃n we will bound

control each of these terms individually. First we focus on Ĥ(m) for which we use the following
lemma. The proof is given in Section C.0.1.

Lemma 11. Let f ∼ GP(0, κ), f : X → R and we observe y = f(x) + ε where ε ∼ N (0, η2). Let
A ⊂ X such that its L2 diameter diam(A) ≤ D. Say we have n queries (xt)

n
t=1 of which s points
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are in A. Then the posterior variance of the GP, κ′(x, x) at any x ∈ A satisfies

κ′(x, x) ≤
{

CSED
2 + η2

s if κ is the SE kernel,
CMatD + η2

s if κ is the Matérn kernel,

for appropriate constants CSE , CMat.

First consider the SE kernel. At time t consider any εn = γ√
8CSEβn

covering (Bi)
εn
i=1 of Ĥ(m).

The number of queries inside any Bi of this covering at time n will be at most 2η2

γ2 βn + 1. To see
this, assume we have already queried 2η2/γ2 + 1 times inside Bi at time t ≤ n. By Lemma 11 the
maximum variance in Ai can be bounded by

max
x∈Ai

κ
(m)
t−1(x, x) ≤ CSE(2εn)2 +

η2

T
(m)
t (Ai)

<
γ2

βn
.

Therefore, β1/2
t σ

(m)
t−1(x) ≤ β1/2

n σ
(m)
t−1(x) < γ and we will not query insideAi until time n. Therefore,

the number of mth fidelity queries is bounded by Ωεn(Ĥ(m))
(

2η2

γ2 βn + 1
)

. The proof for the Matérn

kernel follows similarly using εn = γ2

8CMatβn
. Next, we bound T (m)

n (H(m)
τ,n ) for which we will use

the following Lemma. The proof is given in Section C.0.2.

Lemma 12. For βt as given in Theorem 10, we have the following with probability > 1− 5δ/6.

∀m ∈ {1, . . . ,M}, ∀ t ≥ 1, ∆(m)(xt) = f? − f (m)(xt) ≤ 2βtσ
(m)
t−1(xt) + 1/t2.

First, we will analyse the quantity R̃(m)
n =

∑
t:mt=m

xt∈H(m)
τ,n

∆(m)(xt) for m < M . Lemma 12 gives us

R̃
(m)
n ≤ 2β

1/2
n
∑
σ

(m)
t−1(xt) + π2/6. Then, using Lemma 9 and Jensen’s inequality we have,

(
R̃(m)
n − π2

6

)2

≤ 4βt T
(m)
n (H(m)

τ,n )
∑

t:mt=m

xt∈H(m)
τ,n

(
σ

(m)
t−1

)2
(xt) ≤ C1βt T

(m)
n (H(m)

τ,n )Ψ
T

(m)
n (H(m)

τ,n )
(H(m)

τ,n ).

(8)

We therefore have, R̃(m)
n ≤

√
C1nβnΨn(H(m)

τ,n ) + π2/6 since trivially T (m)
n (H(m)

τ,n ) < n. However,

since ∆(m)(x) > τ for x ∈ H(m)
τ,n we have T (m)

n (H(m)
τ,n ) < 1

τ

(√
C1nβnΨn(H(m)

τ,n ) + π2/6
)

.

Remark 13. Since Ψn(·) is typically sublinear in n, it is natural to ask if we can recursively
apply this to obtain a tighter bound on T (m)

n (H(m)
τ,n ). For instance, since Ψn(·) is polylog(n) for

the SE kernel (Srinivas et al. [28], Theorem 5) by repeating the argument above once we get,

T
(m)
n (H(m)

τ,n ) ∈ O
(

1
τ3/2

√
C1n1/2polylog(n)βnΨτ−3/2n1/2polylog(n)(H(m)

τ,n )
)

. However, while this
improves the dependence on n it worsens the dependence on τ . In fact, using a discretisation
argument similar to that in Lemma 14 and the variance bound in Lemma 11, a polylog(n)/poly(τ)
bound can be shown, with the poly(τ) term being τd+2 for the SE kernel and τ2d+2 for the Matérn
kernel. In fact, the same argument can be applied to GP-UCB to show that the number of plays on a
τ -suboptimal set is polylog(n)/poly(τ). If we are to avoid this 1/poly(τ) dependence for GP-UCB
the best you can achieve for GP-UCB is a O(n1/2) rate for the SE kernel and O(n

1
2 +

d(d+1)
2ν+d(d+1) ) for

the Matérn kernel.

Finally, to control the first term in (7), we will bound T (>m)
n (F (m)

n ). To that end we provide the
following Lemma. The proof is given in Section C.0.3.

Lemma 14. Consider any Ai,n ∈ F (m)
n where F (m)

n is as defined in (6) for any α ∈ (0, 1). Let ρ, βt
be as given in Theorem 10, Then for all u ≥ max{3, (2(ρ− ρ0)η)−2/3} we have,

P(T (>m)
n (Ai,n) > u) ≤ δ

π2
· 1

u1+4/α
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We will use the above result with u = nα/2. Applying the union bound we have,

P
(
∀m ∈ {1, . . . ,M}, T (>m)

n (F (m)
n ) > |F (m)

n |nα/2
)
≤

M∑

m=1

P
(
T (>m)
n (F (m)

n ) > |F (m)
n |nα/2

)

≤
M∑

m=1

∑

Ai,n∈F (m)
n

P
(
T (>m)
n (Ai,n) > nα/2

)
≤

M∑

m=1

|F (m)
n | δ

π2

1

n2+α/2
≤ |Fn|

δ

π2

1

n2+α/2
=

δ

π2

1

n2

Applying the union bound once again, we have T (>m)
n (F (m)

n ) ≤ nα for all m and all n ≥
max{3, (2(ρ − ρ0)η)2/3}2/α with probability > 1 − δ/6. Henceforth, all statements we make
will make use of the results in Lemmas 11, 12 and 14 and will hold with probability > 1− δ.

First using equation (7) and noting T (m)
n (F (`)

n ) ≤ T
(>`)
n (F (`)

n ) for ` < m we bound T (m)
n (X ) for

m < M .

T (m)
n (X ) ≤ (m− 1)nα +

1

τ

(√
C1nβnΨn(H(m)

τ,n ) +
π2

6

)
+ Ωεn(Ĥ(m))

(
2η2

γ2
βn + 1

)
.

Using this bound we can control R̃n,1 in (4). To bound R̃n,2 and R̃n,3 we set Z = H(M)
τ,nΛ and use

Lemma 12 noting that when mt = M , rt = ∆(M)(xt). Using similar calculations to (8) and as

T
(M)
n (H(m)

τ,n ) ≤ n, we have R̃n,2 ≤
√
C1nβnΨn(H(m)

τ,n ) +
∑

xt∈Z 1/t2. Next, using Lemma 14

and observing Z = H(M)
τ,n ⊂

⋃M−1
`=1 F

(m)
n ⊂

̂
H(M), we have,

R̃n,3 =
∑

t:mt=M
xt∈Z

(
f? − f (M)(xt)

)
≤

∑

t:mt=M

xt∈
⋃M−1
`=1 F(m)

n

2β
1/2
t σ

(m)
t−1(xt) +

∑

xt∈Z

1

t2

≤
√
C1MnαβnΨMnα(

̂
H(M)) +

∑

xt∈Z

1

t2
.

Plugging these bounds back into (4), we obtain a bound on the regret similar to the one given in the
theorem except with n replaced by 2nΛ. The last step in the proof will be to show that for sufficiently
large Λ, N ≤ 2nΛ which will complete the proof. For this we turn back to our bounds for T (m)

n (X ),
m < M . Next, we can show that the following term upper bounds the number of queries at fidelities
less than M ,

(M − 1)nα +

M−1∑

m=1

1

τ

(√
2C1nΛβ2nΛ

Ψ2nΛ
(H(m)

τ,nΛ) +
π2

6

)
+

M−1∑

m=1

Ωεn(Ĥ(m))

(
2η2

γ2
βn + 1

)
.

Assume n0 is large enough so that n0 ≥ max{3, (2(ρ− ρ0)η)−2/3}2/α and for all n ≥ n0, n/2 is
larger than the above upper bound. We can find such an n0 since the bound is o(n). Therefore, for
all n ≥ n0, T (M)

n (X ) > n/2. Since our bounds hold with probability > 1 − δ uniformly over n
we can invert the above inequality to bound the number of plays N after capital Λ: N ≤ 2Λ/λ(M)

with probability > 1 − δ if Λ ≥ Λ0 = λ(M)(n0 + 1). The theorem follows with the observation
N ≥ nΛ =⇒ H(m)

τ,N ⊂ H
(m)
τ,nΛ =⇒ ΨN (H(m)

τ,N ) ≤ ΨN (H(m)
τ,nΛ) ≤ Ψ2nΛ

(H(m)
τ,nΛ).

C.0.1 Proof of Lemma 11

Since the posterior variance only decreases with more observations, we can upper bound κ′(x, x)
for any x ∈ A by considering its posterior variance with only the s observations in A. Next the
maximum variance within A occurs if we pick 2 points x1, x2 that are distance D apart and have all
observations at x1; then x2 has the highest posterior variance. Therefore, we will bound κ′(x, x) for
any x ∈ A with κ(x2, x2) in the above scenario. Let κ0 = κ(x, x) and κ(x, x′) = κ0φ(‖x− x′‖2),
where φ(·) ≤ 1 depends on the kernel. Denote the gram matrix in the scenario described above by
∆ = κ011

> + η2I . Then using the Sherman-Morrison formula, the posterior variance (1) can be
bounded via,

κ′(x, x) ≤ κ′(x2, x2) = κ(x2, x2)− [κ(x1, x2)1]
>

∆−1 [κ(x1, x2)1]
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= κ0 − κ0φ
2(D)1>


κ0

η2
I −

(
κ0

η2

)2

11>

1 + κ0

η2 s


1 = κ0 − κ0φ

2(D)


κ0

η2
s−

(
κ0

η2

)2

s2

1 + κ0

η2 s




= κ0 − κ0φ
2(D)

s
η2

κ0
+ s

=
1

1 + η2

κ0s

(
κ0 − κ0φ

2(D) +
η2

s

)

≤ κ0(1− φ2(D)) +
η2

s
.

For the SE kernel φ2(D) = exp
(
−D2

2h2

)2

= exp
(
−D2

h2

)
≤ 1 − D2

h2 . Plugging this into the bound

above retrieves the first result with CSE = κ0/h
2. For the Matérn kernel we use a Lipschtiz constant

LMat of φ. Then 1− φ2(D) = (1− φ(D))(1 + φ(D)) ≤ 2(φ(0)− φ(D)) ≤ 2LMatD. We get the
second result with CMat = 2κ0LMat. Since the SE kernel decays fast, we get a stronger result on its
posterior variance which translates to a better bound in our theorems.

C.0.2 Proof of Lemma 12

The first part of the proof mimics the arguments in Lemmas 5.6, 5.7 of Srinivas et al. [28]. By
assumption 8 and the union bound we can show,

P
(
∀m ∈ {1, . . . ,M}, ∀ i ∈ {1, . . . , d}, ∀x ∈ X ,

∣∣∣∂f
(m)(x)

∂xi

∣∣∣ < b log

(
6Mad

δ

))
≥ 1− δ

6
.

Now we construct a discretisation Ft ofX of size (νt)
d such that we have for all x ∈ X , ‖x−[x]t‖1 ≤

rd/νt. Here [x]t is the closest point to x in the discretisation. (Note that this is different from the
discretisation appearing in Theorem 10 even though we have used the same notation). By choosing
νt = t2brd

√
6Mad/δ and using the above we have

∀x ∈ X , |f (m)(x)− f (m)([x]t)| ≤ b log(6Mad/δ)‖x− [x]t‖1 ≤ 1/t2 (9)

for all f (m)’s with probability > 1− δ/6.

Noting that βt ≥ 2 log(M |Ft|π2t2/2δ) for the given choice of νt we have the following with
probability > 1− δ/3.

∀ t ≥ 1, ∀m ∈ {1, . . . ,M}, ∀ a ∈ Ft, |f (m)(a)− µ(m)
t−1(a)| ≤ β

1/2
t σ

(m)
t−1(a). (10)

The proof uses Gaussian concentration by only conditioning on D(m)
t . Note that instead of a fixed set

over all t, we change the set at which we have confidence based on the discretisation. Similarly we
can show that with probability > 1 − δ/3 we also have confidence on the decisions xt at all time
steps. Precisely,

∀ t ≥ 1, ∀m ∈ {1, . . . ,M}, |f (m)(xt)− µ(m)
t−1(xt)| ≤ β

1/2
t σ

(m)
t−1(xt). (11)

Using (9),(10) and (11) the following statements hold with probability > 1 − 5δ/6. First, using
assumption A2 we can upper bound f? by,

f? ≤ f (m)(x?) + ζ(m) ≤ f (m)([x?]t) + ζ(m) +
1

t2
≤ ϕ

(m)
t ([x?]t) +

1

t2
. (12)

Since the above holds for all m, we have f? ≤ ϕt([x?]t) + 1/t2. Now, we bound ∆(m)(xt).

∆(m)(xt) = f? − f (m)(xt)− ζ(m) ≤ ϕt([x?]t) +
1

t2
− f (m)(xt)− ζ(m)

≤ ϕt(xt)− f (m)(xt)− ζ(m) +
1

t2
≤ ϕ

(m)
t (xt)− µ(M)

t−1 (xt) + β
1/2
t σ

(M)
t−1 (xt)− ζ(m) +

1

t2

≤ 2β
1/2
t σ

(M)
t−1 (xt) +

1

t2
.
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C.0.3 Proof of Lemma 14

First, we will invoke the same discretisation used in the proof of Lemma 12 via which we have
ϕt([x?]t) ≥ f? − 1/t2 (12). (Therefore, Lemma 14 holds only with probability > 1 − δ/6,
but this event has already been accounted for in Lemma 12.) Let bi,n,t = argmaxx∈Ai,n ϕt(x)
be the maximiser of the upper confidence bound in Ai,n at time t. Now using the relaxation
xt ∈ Ai,n =⇒ ϕt(bi,n,t) > ϕt([x?]t) =⇒ ϕ

(m)
t (bi,n,t) > f? − 1/t2 and proceeding,

P(T (>m)
n (Ai,n) > u) ≤ P

(
∃t : u+ 1 ≤ t ≤ n, ϕ

(m)
t (bi,n,t) > f? − 1/t2 ∧ β

1/2
t σ

(m)
t−1(bi,n,t) < γ

)

≤
n∑

t=u+1

P
(
µ

(m)
t−1(bi,n,t)− f (m)(bi,n,t) > ∆(m)(bi,n,t)− β1/2

t σ
(m)
t−1(bi,n,t)− 1/t2 ∧

β
1/2
t σ

(m)
t−1(bi,n,t) < γ

)

≤
n∑

t=u+1

P
(
µ

(m)
t−1(bi,n,t)− f (m)(bi,n,t) > (ρ− 1)β

1/2
t σ

(m)
t−1(bi,n,t)− 1/t2

)

≤
n∑

t=u+1

PZ∼N (0,1)

(
Z > (ρ0 − 1)β

1/2
t

)
≤

n∑

t=u+1

1

2
exp

(
(ρ0 − 1)2

2
βt

)
(13)

≤ 1

2

(
δ

Mπ2

)(ρ0−1)2 n∑

t=u+1

t−(ρ0−1)2(2+2d) ≤ δ

Mπ2
u−(ρ0−1)2(2+2d)+1 ≤ δ

π2

1

u1+4/α
.

In the second step we have rearranged the terms and used the definition of ∆(m)(x). In the third step,

as Ai,n ⊂ J
(m)

max(τ,ργ), ∆(m)(bi,n,t) > ργ > ρβ
1/2
t σ

(m)
t−1(bi,n,t). In the fourth step we have used the

following facts, t > u ≥ max{3, (2(ρ − ρ0)η)−2/3}, Mπ2/2δ > 1 and σ(m)
t−1(bi,n,t) > η/

√
t to

conclude,

(ρ− ρ0)
η
√

4 log(t)√
t

>
1

t2
=⇒ (ρ− ρ0) ·

√
2 log

(
Mπ2t2

2δ

)
· η√

t
>

1

t2

=⇒ (ρ− ρ0)β
1/2
t σ

(m)
t−1(bi,n,t) >

1

t2
.

In the seventh step of (13) we have bound the sum by an integral and used ρ0 ≥ 2 twice. Finally, the
last step follows by ρ0 ≥ 1 +

√
(1 + 2/α)/(1 + d) and noting M ≥ 1.

D Addendum to Experiments

D.1 Other Baselines

For MF-NAIVE we limited the number of first fidelity evalutions to max
(

1
2

Λ
λ(1) , 500

)
where Λ was

the total budget used in the experiment. The 500 limit was set to avoid unnecessary computation –
for all of these problems, 500 queries are not required to find the maximum. While there are other
methods for multi-fidelity optimisation (discussed under Related Work) none of them had made their
code available nor were their methods straightforward to implement - this includes MF-SKO.

In addition to the baselines presented in the figures, we also compared our method to the following
methods. The first two are single fidelity and the last two are mutlti-fidelity methods.

• The probability of improvement (PI) criterion for BO. We found that in general either GP-UCB
or EI performed better.
• Querying uniformly at random at the highest fidelity and taking the maximum. On all problems

this performed worse than other methods.
• A variant of MF-NAIVE where instead of GP-UCB we queried at the first fidelity uniformly at

random. On some problems this did better than querying with GP-UCB, probably since unlike
GP-UCB it wasn’t stuck at the maximum of f (1). However, generally it performed worse.
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• The multi-fidelity method from Forrester et al. [9] also based on GPs. We found that this method
didn’t perform as desired: in particular, it barely queried beyond the first fidelity.

A straightforward way to incorporate lower fidelity information to GP-UCB and EI is to query at
lower fidelities and use them in learning the kernel κ by jointly maximising the marginal likelihood.
While the idea seems natural, we got mixed results in practice. On some problems this improved
the performance of all GP methods (including MF-GP-UCB), but on others all performed poorly.
One explanation is that while lower fidelities approximate function values, they are not always best
described by the same kernel. The results presented do not use lower fidelities to learn κ as it was
more robust. For MF-GP-UCB, each κ(m) was learned independently using only the queries at
fidelity m.

D.2 Description of Synthetic Experiments

The following are the descriptions of the synthetic functions used. The first three functions and their
approximations were taken from [32].

Currin exponential function: The domain is X = [0, 1]2. The second and first fidelity functions
are,

f (2)(x) =

(
1− exp

( −1

2x2

))(
2300x3

1 + 1900x2
1 + 2092x1 + 60

100x3
1 + 500x2

1 + 4x1 + 20

)
,

f (1)(x) =
1

4
f (2)(x1 + 0.05, x2 + 0.05) +

1

4
f (2)(x1 + 0.05,max(0, x2 − 0.05))+

1

4
f (2)(x1 − 0.05, x2 + 0.05) +

1

4
f (2)(x1 − 0.05,max(0, x2 − 0.05)).

Park function: The domain is X = [0, 1]4. The second and first fidelity functions are,

f (2)(x) =
x1

2

(√
1 + (x2 + x2

3)
x4

x2
1

− 1

)
+ (x1 + 3x4) exp(1 + sin(x3)),

f (1)(x) =

(
1 +

sin(x1)

10

)
f (2)(x)− 2x2

1 + x2
2 + x2

3 + 0.5.

Borehole function: The second and first fidelity functions are,

f (2)(x) =
2πx3(x4 − x6)

log(x2/x1)
(

1 + 2x7x3

log(x2/x1)x2
1x8

+ x3

x5

) , f (1)(x) =
5x3(x4 − x6)

log(x2/x1)
(

1.5 + 2x7x3

log(x2/x1)x2
1x8

+ x3

x5

) .

The domain of the function is [0.05, 0.15; 100, 50K; 63.07K, 115.6K;
990, 1110; 63.1, 116; 700, 820; 1120, 1680; 9855, 12045] but we first linear transform the vari-
ables to lie in [0, 1]8.

Hartmann-3D function: The M th fidelity function is f (M)(x) =∑4
i=1 αi exp

(
−∑3

j=1Aij(xj − Pij)2
)

where A,P ∈ R4×3 are fixed matrices given be-
low and α = [1.0, 1.2, 3.0, 3.2]. For the lower fidelities we use the same form except change α to
α(m) = α+ (M −m)δ where δ = [0.01,−0.01,−0.1, 0.1] and M = 3. The domain is X = [0, 1]3.

A =




3 10 30
0.1 10 35
3 10 30

0.1 10 35


 , P = 10−4 ×




3689 1170 2673
4699 4387 7470
1091 8732 5547
381 5743 8828




Hartmann-6D function: The 6-D Hartmann takes the same form as above except A,P ∈ R4×6 are
as given below. We use the same modification to obtain the lower fidelities using M = 4.

A =




10 3 17 3.5 1.7 8
0.05 10 17 0.1 8 14

3 3.5 1.7 10 17 8
17 8 0.05 10 0.1 14


 , P = 10−4×




1312 1696 5569 124 8283 5886
2329 4135 8307 3736 1004 9991
2348 1451 3522 2883 3047 6650
4047 8828 8732 5743 1091 381



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Figure 8: The simple regret S(Λ) against the spent capitcal Λ on the synthetic functions. The title states the
function, its dimensionality, the number of fidelities and the costs we used for each fidelity in the experiment.
All curves barring DiRect (which is a deterministic), were produced by averaging over 20 experiments. The
error bars indicate one standard error.
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Figure 9: (a) illustrates the functions used in the Bad Currin Exponential experiment where we took f (1) =

−f (2) and (b) shows the simple regret for this experiment. See caption under Fig. 8 for more details.

D.3 More Results on Synthetic Experiments

Figure 8 shows the simple regret S(Λ) for the synthetic functions not presented in the main text.

It is natural to ask how MF-GP-UCB performs with bad approximations at lower fidelities. We
found that our implementation with the heuristics suggested in Section 5 to be quite robust. We
demonstrate this using the Currin exponential function, but using the negative of f (2) as the first
fidelity approximation, i.e. f (1)(x) = −f (2)(x). Figure 9 illustrates f (1), f (2) and gives the simple
regret S(Λ). Understandably, it loses to the single fidelity methods since the first fidelity queries
are wasted and it spends some time at the second fidelity recovering from the bad approximation.
However, it eventually is able to achieve low regret.

Finally, we present results on the cumulative regret for the synthetic functions in Figure 10.
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Figure 10: The cumulative regret R(Λ) against the spent capitcal Λ on the synthetic functions. The title states
the function, its dimensionality, the number of fidelities and the costs we used for each fidelity in the experiment.
All curves barring DiRect (which is a deterministic), were produced by averaging over 20 experiments. The
error bars indicate one standard error.
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