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Abstract

We propose a stochastic optimization method for the minimization of the sum of
three convex functions, one of which has Lipschitz continuous gradient as well
as restricted strong convexity. Our approach is most suitable in the setting where
it is computationally advantageous to process smooth term in the decomposition
with its stochastic gradient estimate and the other two functions separately with
their proximal operators, such as doubly regularized empirical risk minimization
problems. We prove the convergence characterization of the proposed algorithm in
expectation under the standard assumptions for the stochastic gradient estimate of
the smooth term. Our method operates in the primal space and can be considered as
a stochastic extension of the three-operator splitting method. Numerical evidence
supports the effectiveness of our method in real-world problems.

1 Introduction

We propose a stochastic optimization method for the three-composite minimization problem:

minimize
x∈Rd

f(x) + g(x) + h(x), (1)

where f : Rd → R and g : Rd → R are proper, lower semicontinuous convex functions that admit
tractable proximal operators, and h : Rd → R is a smooth function with restricted strong convexity.
We assume that we have access to unbiased, stochastic estimates of the gradient of h in the sequel,
which is key to scale up optimization and to address streaming settings where data arrive in time.

Template (1) covers a large number of applications in machine learning, statistics, and signal process-
ing by appropriately choosing the individual terms. Operator splitting methods are powerful in this
setting, since they reduce the complex problem (1) into smaller subproblems. These algorithms are
easy to implement, and they typically exhibit state-of-the-art performance.

To our knowledge, there is no operator splitting framework that can currently tackle template (1)
using stochastic gradient of h and the proximal operators of f and g separately, which is critical to
the scalability of the methods. This paper specifically bridges this gap.

Our basic framework is closely related to the deterministic three operator splitting method proposed
in [11], but we avoid the computation of the gradient∇h and instead work with its unbiased estimates.
We provide rigorous convergence guarantees for our approach and provide guidance in selecting the
learning rate under different scenarios.

Road map. Section 2 introduces the basic optimization background. Section 3 then presents the
main algorithm and provides its convergence characterization. Section 4 places our contributions in
light of the existing work. Numerical evidence that illustrates our theory appears in Section 5. We
relegate the technical proofs to the supplementary material.
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2 Notation and background
This section recalls a few basic notions from the convex analysis and the probability theory, and
presents the notation used in the rest of the paper. Throughout, Γ0(Rd) denotes the set of all proper,
lower semicontinuous convex functions from Rd to [−∞,+∞], and 〈· | ·〉 is the standard scalar
product on Rd with its associated norm ‖ · ‖.

Subdifferential. The subdifferential of f ∈ Γ0(Rd) at a point x ∈ Rd is defined as

∂f(x) = {u ∈ Rd | f(y)− f(x) ≥ 〈y − x | u〉 ,∀y ∈ Rd}.
We denote the domain of ∂f as

dom(∂f) = {x ∈ Rd | ∂f(x) 6= ∅}.
If ∂f(x) is a singleton, then f is a differentiable function, and ∂f(x) = {∇f(x)}.

Indicator function. Given a nonempty subset C in Rd, the indicator function of C is given by

ιC(x) =

{
0 if x ∈ C,
+∞ if x 6∈ C. (2)

Proximal operator. The proximal operator of a function f ∈ Γ0(Rd) is defined as follows

proxf (x) = arg min
z∈Rd

{
f(z) +

1

2
‖z − x‖2

}
. (3)

Roughly speaking, the proximal operator is tractable when the computation of (3) is cheap. If f is
the indicator function of a nonempty, closed convex subset C, its proximity operator is the projection
operator on C.

Lipschitz continuos gradient. A function f ∈ Γ0(Rd) has Lipschitz continuous gradient with
Lipschitz constant L > 0 (or simply L-Lipschitz), if

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖, ∀x,y ∈ Rd.

Strong convexity. A function f ∈ Γ0(Rd) is called strongly convex with some parameter µ > 0 (or
simply µ-strongly convex), if

〈p− q | x− y〉 ≥ µ‖x− y‖2, ∀x,y ∈ dom(∂f), ∀p ∈ ∂f(x), ∀q ∈ ∂f(y).

Solution set. We denote optimum points of (1) by x?, and the solution set by X ?:

x? ∈ X ? = {x ∈ Rd | 0 ∈ ∇h(x) + ∂g(x) + ∂f(x)}.
Throughout this paper, we assume that X ? is not empty.

Restricted strong convexity. A function f ∈ Γ0(Rd) has restricted strong convexity with respect to
a point x? in a set M ⊂ dom(∂f), with parameter µ > 0, if

〈p− q | x− x?〉 ≥ µ‖x− x?‖2, ∀x ∈M, ∀p ∈ ∂f(x), ∀q ∈ ∂f(x?).

Let (Ω,F ,P) be a probability space. An Rd-valued random variable is a measurable function
x : Ω → Rd, where Rd is endowed with the Borel σ-algebra. We denote by σ(x) the σ-field
generated by x. The expectation of a random variable x is denoted by E[x]. The conditional
expectation of x given a σ-field A ⊂ F is denoted by E[x|A]. Given a random variable y : Ω→ Rd,
the conditional expectation of x given y is denoted by E[x|y]. See [17] for more details on probability
theory. An Rd-valued random process is a sequence (xn)n∈N of Rd-valued random variables.

3 Stochastic three-composite minimization algorithm and its analysis

We present stochastic three-composite minimization method (S3CM) in Algorithm 1, for solving the
three-composite template (1). Our approach combines the stochastic gradient of h, denoted as r, and
the proximal operators of f and g in essentially the same structrure as the three-operator splitting
method [11, Algorithm 2]. Our technique is a nontrivial combination of the algorithmic framework
of [11] with stochastic analysis.
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Algorithm 1 Stochastic three-composite minimization algorithm (S3CM)
Input: An initial point xf,0, a sequence of learning rates (γn)n∈N, and a sequence of squared
integrable Rd-valued stochastic gradient estimates (rn)n∈N.

Initialization:
xg,0 = proxγ0g(xf,0)

ug,0 = γ−1
0 (xf,0 − xg,0)

Main loop:
for n = 0, 1, 2, . . . do

xg,n+1 = proxγng(xf,n + γnug,n)

ug,n+1 = γ−1
n (xf,n − xg,n+1) + ug,n

xf,n+1 = proxγn+1f (xg,n+1 − γn+1ug,n+1 − γn+1rn+1)
end for
Output: xg,n as an approximation of an optimal solution x?.

Theorem 1 Assume that h is µh-strongly convex and has L-Lipschitz continuous gradient. Further
assume that g is µg-strongly convex, where we allow µg = 0. Consider the following update rule for
the learning rate:

γn+1 =
−γ2

nµhη +
√

(γ2
nµhη)2 + (1 + 2γnµg)γ2

n

1 + 2γnµg
, for some γ0 > 0 and η ∈]0, 1[.

Define Fn = σ(xf,k)0≤k≤n, and suppose that the following conditions hold for every n ∈ N:

1. E[rn+1|Fn] = ∇h(xg,n+1) almost surely,

2. There exists c ∈ [0,+∞[ and t ∈ R, that satisfies
∑n
k=0 E[‖rk −∇h(xg,k)‖2] ≤ cnt.

Then, the iterates of S3CM satisfy
E[‖xg,n − x?‖2] = O(1/n2) +O(1/n2−t). (4)

Remark 1 The variance condition of the stochastic gradient estimates in the theorems above is
satisfied when E[‖rn − ∇h(xg,n)‖2] ≤ c for all n ∈ N and for some constant c ∈ [0,+∞[. See
[15, 22, 26] for details.

Remark 2 When rn = ∇h(xn), S3CM reduces to the deterministic three-operator splitting scheme
[11, Algorithm 2] and we recover the convergence rate O(1/n2) as in [11]. When g is zero, S3CM
reduces to the standard stochastic proximal point algorithm [2, 13, 26].

Remark 3 Learning rate sequence (γn)n∈N in Theorem 1 depends on the strong convexity parameter
µh, which may not be available a priori. Our next result avoids the explicit reliance on the strong
convexity parameter, while providing essentially the same convergence rate.

Theorem 2 Assume that h is µh-strongly convex and has L-Lipschitz continuous gradient. Con-
sider a positive decreasing learning rate sequence γn = Θ(1/nα) for some α ∈]0, 1], and denote
β = limn→∞ 2µhn

αγn.

Define Fn = σ(xf,k)0≤k≤n, and suppose that the following conditions hold for every n ∈ N:

1. E[rn+1|Fn] = ∇h(xg,n+1) almost surely,

2. E[‖rn −∇h(xg,n)‖2] is uniformly bounded by some positive constant.

3. E[‖ug,n − x?‖2] is uniformly bounded by some positive constant.

Then, the iterates of S3CM satisfy

E[‖xg,n − x?‖2] =


O
(
1/nα

)
if 0 < α < 1

O
(
1/nβ

)
if α = 1, and β < 1

O
(
(log n)/n

)
if α = 1, and β = 1,

O
(
1/n

)
if α = 1, and β > 1.
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Proof outline. We consider the proof of three-operator splitting method as a baseline, and we use
the stochastic fixed point theory to derive the convergence of the iterates via the stochastic Fejér
monotone sequence. See the supplement for the complete proof.

Remark 4 Note that ug,n ∈ ∂g(xg,n). Hence, we can replace condition 3 in Theorem 2 with the
bounded subgradient assumption: ‖p‖ ≤ c,∀p ∈ ∂g(xg,n), for some positive constant c.

Remark 5 (Restricted strong convexity) Let M be a subset of Rd that contains (xg,n)n∈N and x?.
Suppose that h has restricted strong convexity on M with parameter µh. Then, Theorems 1 and 2
still hold. An example role of the restricted strong convexity assumption on algorithmic convergence
can be found in [1, 21].

Remark 6 (Extension to arbitrary number of non-smooth terms.) Using the product space tech-
nique [5, Section 6.1], S3CM can be applied to composite problems with arbitrary number of
non-smooth terms:

minimize
x∈Rd

m∑
i=1

fi(x) + h(x),

where fi : Rd → R are proper, lower semicontinuous convex functions, and h : Rd → R is a smooth
function with restricted strong convexity. We present this variant in Algorithm 2. Theorems 1 and 2
hold for this variant, replacing xg,n by xn, and ug,n by ui,n for i = 1, 2, . . . ,m.

Algorithm 2 Stochastic m(ulti)-composite minimization algorithm (SmCM)
Input: Initial points {xf1,0,xf2,0, . . . ,xfm,0}, a sequence of learning rates (γn)n∈N, and a se-
quence of squared integrable Rd-valued stochastic gradient estimates (rn)n∈N

Initialization:
x0 = m−1

∑m
i=1 xfi,0

for i=1,2,. . . ,m do
ui,0 = γ−1

0 (xfi,0 − x0)
end for
Main loop:
for n = 0, 1, 2, . . . do

xn+1 = m−1
∑m
i=1(xfi,n + γnui,n)

for i=1,2,. . . ,m do
ui,n+1 = γ−1

n (xfi,n − xn+1) + ui,n
xfi,n+1 = proxγn+1mfi(xn+1 − γn+1ui,n+1 − γn+1rn+1)

end for
end for
Output: xn as an approximation of an optimal solution x?.

Remark 7 With a proper learning rate, S3CM still converges even if h is not (restricted) strongly
convex under mild assumptions. Suppose that h has L-Lipschitz continuous gradient. Set the learning
rate such that ε ≤ γn ≡ γ ≤ α(2L−1 − ε), for some α and ε in ]0, 1[. Define Fn = σ(xf,k)0≤k≤n,
and suppose that the following conditions hold for every n ∈ N:

1. E[rn+1|Fn] = ∇h(xg,n+1) almost surely.

2.
∑
n∈N E[‖rn+1 −∇h(xg,n+1)‖2|Fn] < +∞ almost surely.

Then, (xg,n)n∈N converges to a X ?-valued random vector almost surely. See [7] for details.

Remark 8 All the results above hold for any separable Hilbert space, except that the strong con-
vergence in Remark 7 is replaced by weak convergence. Note however that extending Remark 7 to
variable metric setting as in [10, 27] is an open problem.
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4 Contributions in the light of prior work

Recent algorithms in the operator splitting, such as generalized forward-backward splitting [24],
forward-Douglas-Rachford splitting [5], and the three-operator splitting [11], apply to our problem
template (1). These key results, however, are in the deterministic setting.

Our basic framework can be viewed as a combination of the three-operator splitting method in [11]
with the stochastic analysis.

The idea of using unbiased estimates of the gradient dates back to [25]. Recent developments
of this idea can be viewed as proximal based methods for solving the generic composite convex
minimization template with a single non-smooth term [2, 9, 12, 13, 15, 16, 19, 26, 23]. This generic
form arises naturally in regularized or constrained composite problems [3, 13, 20], where the smooth
term typically encodes the data fidelity. These methods require the evaluation of the joint prox of f
and g when applied to the three-composite template (1).

Unfortunately, evaluation of the joint prox is arguably more expensive compared to the individual
prox operators. To make comparison stark, consider the simple example where f and g are indicator
functions for two convex sets. Even if the projection onto the individual sets are easy to compute,
projection onto the intersection of these sets can be challenging.

Related literature also contains algorithms that solve some specific instances of template (1). To point
out a few, random averaging projection method [28] handles multiple constraints simultaneously
but cannot deal with regularizers. On the other hand, accelerated stochastic gradient descent with
proximal average [29] can handle multiple regularizers simultaneously, but the algorithm imposes a
Lipschitz condition on regularizers, and hence, it cannot deal with constraints.

To our knowledge, our method is the first operator splitting framework that can tackle optimization
template (1) using the stochastic gradient estimate of h and the proximal operators of f and g
separately, without any restriction on the non-smooth parts except that their subdifferentials are
maximally monotone. When h is strongly convex, under mild assumptions, and with a proper learning
rate, our algorithm converges with O(1/n) rate, which is optimal for the stochastic methods under
strong convexity assumption for this problem class.

5 Numerical experiments

We present numerical evidence to assess the theoretical convergence guarantees of the proposed
algorithm. We provide two numerical examples from Markowitz portfolio optimization and support
vector machines.

As a baseline, we use the deterministic three-operator splitting method [11]. Even though the random
averaging projection method proposed in [28] does not apply to our template (1) with its all generality,
it does for the specific applications that we present below. In our numerical tests, however, we
observed that this method exhibits essentially the same convergence behavior as ours when used
with the same learning rate sequence. For the clarity of the presentation, we omit this method in our
results.

5.1 Portfolio optimization

Traditional Markowitz portfolio optimization aims to reduce risk by minimizing the variance for a
given expected return. Mathematically, we can formulate this as a convex optimization problem [6]:

minimize
x∈Rd

E
[
|aTi x− b|2

]
subject to x ∈ ∆, aTav x ≥ b,

where ∆ is the standard simplex for portfolios with no-short positions or a simple sum constraint,
aav = E [ai] is the average returns for each asset that is assumed to be known (or estimated), and b
encodes a minimum desired return.

This problem has a streaming nature where new data points arrive in time. Hence, we typically do not
have access to the whole dataset, and the stochastic setting is more favorable. For implementation,
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we replace the expectation with the empirical sample average:

minimize
x∈Rd

1

p

p∑
i=1

(aTi x− b)2 subject to x ∈ ∆, aTav x ≥ b. (5)

This problem fits into our optimization template (1) by setting

h(x) =
1

p

p∑
i=1

(aTi x− b)2, g(x) = ι∆(x), and f(x) = ι{x | aT
avx≥b}(x).

We compute the unbiased estimates of the gradient by rn = 2(aTinx − b)ain , where index in is
chosen uniformly random.

We use 5 different real portfolio datasets: Dow Jones industrial average (DJIA, with 30 stocks for
507 days), New York stock exchange (NYSE, with 36 stocks for 5651 days), Standard & Poor’s 500
(SP500, with 25 stocks for 1276 days), Toronto stock exchange (TSE, with 88 stocks for 1258 days)
that are also considered in [4]; and one dataset by Fama and French (FF100, 100 portfolios formed
on size and book-to-market, 23,647 days) that is commonly used in financial literature, e.g., [6, 14].
We impute the missing data in FF100 using nearest-neighbor method with Euclidean distance.

Figure 1: Comparison of the deterministic three-operators splitting method [11, Algorithm 2] and
our stochastic three-composite minimization method (S3CM) for Markowitz portfolio optimization
(5). Results are averaged over 100 Monte-Carlo simulations, and the boundaries of the shaded area
are the best and worst instances.

For the deterministic algorithm, we set η = 0.1. We evaluate the Lipschitz constant L and the strong
convexity parameter µh to determine the step-size. For the stochastic algorithm, we do not have
access to the whole data, so we cannot compute these parameter. Hence, we adopt the learning
rate sequence defined in Theorem 2. We simply use γn = γ0/(n+ 1) with γ0 = 1 for FF100, and
γ0 = 103 for others.1 We start both algorithms from the zero vector.

1Note that a fine-tuned learning rate with a more complex definition can improve the empirical performance,
e.g., γn = γ0/(n+ ζ) for some positive constants γ0 and ζ.
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We split all the datasets into test (10%) and train (90%) partitions randomly. We set the desired
return as the average return over all assets in the training set, b = mean(aav). Other b values exhibit
qualitatively similar behavior.

The results of this experiment are compiled in Figure 1. We compute the objective function over
the datapoints in the test partition, htest. We compare our algorithm against the deterministic three-
operator splitting method [11, Algorithm 2]. Since we seek statistical solutions, we compare the
algorithms to achieve low to medium accuracy. [11] provides other variants of the deterministic algo-
rithm, including two ergodic averaging schemes that feature improved theoretical rate of convergence.
However, these variants performed worse in practice than the original method, and are omitted.

Solid lines in Figure 1 present the average results over 100 Monte-Carlo simulations, and the
boundaries of the shaded area are the best and worst instances. We also assess empirical evidence of
the O(1/n) convergence rate guaranteed in Theorem 2, by presenting squared relative distance to the
optimum solution for FF100 dataset. Here, we approximate the ground truth by solving the problem
to high accuracy with the deterministic algorithm for 105 iterations.

5.2 Nonlinear support vector machines classification

This section demonstrates S3CM on a support vector machines (SVM) for binary classification
problem. We are given a training set A = {a1,a2, . . . ,ad} and the corresponding class labels
{b1, b2, . . . , bd}, where ai ∈ Rp and bi ∈ {−1, 1}. The goal is to build a model that assigns new
examples into one class or the other correctly.

As common in practice, we solve the dual soft-margin SVM formulation:

minimize
x∈Rd

1

2

d∑
i=1

d∑
j=1

K(ai,aj)bibjxixj −
d∑
i=1

xi subject to x ∈ [0, C]d, bTx = 0,

where C ∈ [0,+∞[ is the penalty parameter and K : Rp × Rp → R is a kernel function. In our
example we use the Gaussian kernel given by Kσ(ai,aj) = exp(−σ‖ai − aj‖2) for some σ > 0.

Define symmetric positive semidefinite matrix M ∈ Rd×d with entries Mij = Kσ(ai,aj)bibj .
Then the problem takes the form

minimize
x∈Rd

1

2
xTMx−

d∑
i=1

xi subject to x ∈ [0, C]d, bTx = 0. (6)

This problem fits into three-composite optimization template (1) with

h(x) =
1

2
xTMx−

d∑
i=1

xi, g(x) = ι[0,C]d(x), and f(x) = ι{x | bTx=0}(x).

One can solve this problem using three-operator splitting method [11, Algorithm 1]. Note that proxf
and proxg, which are projections onto the corresponding constraint sets, incur O(d) computational
cost, whereas the cost of computing the gradient is O(d2).

To compute an unbiased gradient estimate, we choose an index in uniformly random, and we form
rn = dM inxin−1. Here M in denotes ithn column of matrix M , and 1 represents the vector of ones.
We can compute rn in O(d) computations, hence each iteration of S3CM costs an order cheaper
compared to deterministic algorithm.

We use UCI machine learning dataset “a1a”, with d = 1605 datapoints and p = 123 features [8, 18].
Note that our goal here is to demonstrate the optimization performance of our algorithm for a real
world problem, rather than competing the prediction quality of the best engineered solvers. Hence,
to keep experiments simple, we fix problem parameters C = 1 and σ = 2−2, and we focus on the
effects of algorithmic parameters on the convergence behavior.

Since p < d, M is rank deficient and h is not strongly convex. Nevertheless we use S3CM with the
learning rate γn = γ0/(n+ 1) for various values of γ0. We observe O(1/n) empirical convergence
rate on the squared relative error for large enough γ0, which is guaranteed under restricted strong
convexity assumption. See Figure 2 for the results.
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Figure 2: [Left] Convergence of S3CM in the squared relative error with learning rate
γn = γ0/(n+ 1). [Right] Comparison of the deterministic three-operators splitting method [11,
Algorithm 1] and S3CM with γ0 = 1 for SVM classification problem. Results are averaged over 100
Monte-Carlo simulations. Boundaries of the shaded area are the best and worst instances.
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Appendix: Proof of the main result

In this supplement, we provide the proofs of Theorem 1 and Theorem 2.

Proof of Theorem 1. For every n ∈ N, we have

uf,n = γ−1
n (xg,n − xf,n)− (ug,n + rn) ∈ ∂f(xf,n)

ug,n ∈ ∂g(xg,n)

γn(ug,n+1 − ug,n) = xf,n − xg,n+1

γn(uf,n + ug,n + rn) = xg,n − xf,n
γn(ug,n+1 + uf,n + rn) = xg,n − xg,n+1.

Now, let us define

χn = 2γn 〈xf,n − x? | uf,n + rn〉+ 2γn 〈xg,n+1 − x? | ug,n+1〉
χ1,n = 2 〈xg,n+1 − x? | xg,n − xg,n+1〉
χ2,n = 2 〈xf,n − xg,n+1 | xg,n − xf,n〉
χ3,n = 2γn

〈
xg,n+1 − xf,n | ug,n − u?g

〉
= 2γ2

n

〈
ug,n − ug,n+1 | ug,n − u?g

〉
χ4,n = 2γn

〈
xg,n+1 − xf,n | u?g

〉
,

where u?g ∈ ∂g(x?). Then, by simple calculations we get
χ2,n = ‖xg,n − xg,n+1‖2 − ‖xf,n − xg,n+1‖2 − ‖xg,n − xf,n‖2
χ1,n = ‖xg,n − x?‖2 − ‖xg,n+1 − x?‖2 − ‖xg,n − xg,n+1‖2
χ3,n = γ2

n‖ug,n+1 − ug,n‖2 + γ2
n‖ug,n − u?g‖2 − γ2

n‖ug,n+1 − u?g‖2
= γ2

n‖ug,n − u?g‖2 − γ2
n‖ug,n+1 − u?g‖2 + ‖xf,n − xg,n+1‖2.

(7)

Furthermore, for every n ∈ N, we can express χn as follows:

χn = 2γn 〈xf,n − xg,n+1 | uf,n + rn〉+ 2γn 〈xg,n+1 − x? | ug,n+1 + uf,n + rn〉
= χ1,n + 2γn 〈xf,n − xg,n+1 | uf,n + rn〉
= χ1,n + 2γn

(
〈xf,n − xg,n+1 | uf,n + rn + ug,n〉 − 〈xf,n − xg,n+1 | ug,n〉

)
= χ1,n + χ2,n + 2γn 〈xg,n+1 − xf,n | ug,n〉
= χ1,n + χ2,n + 2γn

〈
xg,n+1 − xf,n | u?g

〉
+ 2γn

〈
xg,n+1 − xf,n | ug,n − u?g

〉
= χ1,n + χ2,n + χ3,n + χ4,n.

Now, summing the equalities in (7), we obtain,

χn = γ2
n

(
‖ug,n − u?g‖2 − ‖ug,n+1 − u?g‖2

)
+ ‖xg,n − x?‖2 − ‖xg,n+1 − x?‖2

− ‖xg,n − xf,n‖2 + χ4,n.

Denote u?f ∈ ∂f(x?). We have
〈
xf,n − x? | uf,n − u?f

〉
≥ 0, since f is convex. Hence,

χn = 2γn
( 〈

xf,n − x? | uf,n − u?f
〉

+
〈
xf,n − x? | u?f + rn

〉
+ 〈xg,n+1 − x? | ug,n+1〉

)
≥ 2γn

( 〈
xf,n − x? | u?f + rn

〉
+ 〈xg,n+1 − x? | ug,n+1〉

)
= 2γn

( 〈
xf,n − x? | u?f + rn

〉
+
〈
xg,n+1 − x? | u?g

〉
+
〈
xg,n+1 − x? | ug,n+1 − u?g

〉 )
≥ 2γn

( 〈
xf,n − x? | u?f + rn

〉
+ µg‖xg,n+1 − x?‖2 +

〈
xg,n+1 − x? | u?g

〉 )
, (8)

where the last inequality follows from the assumption that g is µg-strongly convex. Set

xef,n = proxγnf
(
(xg,n − γnug,n − γn∇h(xg,n)

)
.

Then, using the non-expansiveness of proxγnf , we get

‖xef,n − xf,n‖ ≤ γn‖∇h(xg,n)− rn‖.
Now, let us define 

χ5,n =
〈
xf,n − xef,n | rn −∇h(xg,n)

〉
χ6,n =

〈
xef,n − x? | rn −∇h(xg,n)

〉
χ7,n = χ5,n + χ6,n = 〈xf,n − x? | rn −∇h(xg,n)〉 .
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Then, we have

χ5,n =
〈
xf,n − xef,n | rn −∇h(xg,n)

〉
≤ ‖xf,n − xef,n‖ · ‖rn −∇h(xg,n)‖
≤ γn‖rn −∇h(xg,n)‖2,

and since xef,n is Fn−1-measurable (by induction), we obtain

E[χ6,n|Fn−1] =
〈
xef,n − x? | E[rn −∇h(xg,n)|Fn−1]

〉
= 0.

Furthermore, for any η ∈ ]0, 1[, since h is µh-strongly convex and has L-Lipschitz continuous
gradient, we have

2 〈xf,n − x? | rn〉 = 2 〈xf,n − x? | ∇h(xg,n)〉+ 2 〈xf,n − x? | rn −∇h(xg,n)〉
= 2 〈xf,n − xg,n | ∇h(xg,n)−∇h(x?)〉+ 2 〈xg,n − x? | ∇h(xg,n)−∇h(x?)〉

+ 2 〈xf,n − x? | ∇h(x?)〉+ 2χ7,n

≥ −L
2(1− η)

‖xf,n − xg,n‖2 − 2
(1− η)

L
‖∇h(xg,n)−∇h(x?)‖2 + 2ηµh‖xg,n − x?‖2

+ 2χ7,n + 2
(1− η)

L
‖∇h(xg,n)−∇h(x?)‖2 + 2 〈xf,n − x? | ∇h(x?)〉

≥ −L
2(1− η)

‖xf,n − xg,n‖2 + 2ηµh‖xg,n − x?‖2 + 2χ7,n + 2 〈xf,n − x? | ∇h(x?)〉 . (9)

Now, inserting (9) into (8), we arrive at

χn ≥ 2γn
〈
xf,n − x? | u?f +∇h(x?)

〉
+ 2γn

〈
xg,n+1 − x? | u?g

〉
+ 2γnχ7,n

+ 2ηµhγn‖xg,n − x?‖2 + 2µgγn‖xg,n+1 − x?‖2 − γnL

2(1− η)
‖xf,n − xg,n‖2, (10)

since it follows that

2γn
〈
xf,n − x? | u?f +∇h(x?)

〉
+ 2γn

〈
xg,n+1 − x? | u?g

〉 )
− χ4,n

= 2γn(
〈
xf,n − x? | u?f + u?g +∇h(x?)

〉
= 0.

We derive from (10) and (8) that

(1 + 2γnµg)‖xg,n+1 − x?‖2 + γ2
n‖ug,n+1 − x?‖2 + (1− γnL

2(1− η)
)‖xf,n − xg,n‖2

≤ (1− 2γnµhη)‖xg,n − x?‖2 + γ2
n‖ug,n − x?‖2 − 2γnχ7,n.

Since (γn)n∈N is a nonnegative sequence that converges to 0, there exists some positive integer n0

such that (1− γnL
2(1−η) ) ≥ 0 for any n ≥ n0. Hence,

(1 + 2γnµg)‖xg,n+1 − x?‖2 + γ2
n‖ug,n+1 − x?‖2

≤ (1− 2γnµhη)‖xg,n − x?‖2 + γ2
n‖ug,n − x?‖2 − 2γnχ7,n, ∀n ≥ n0.

Now, taking the conditonal expectation with respect to Fn−1, we obtain

(1 + 2γnµg)E[‖xg,n+1 − x?‖2|Fn−1] + γ2
nE[‖ug,n+1 − x?‖2|Fn−1]

≤ (1− 2γnµhη)‖xg,n − x?‖2 + γ2
n‖ug,n − x?‖2 − 2γnE[χ7,n|Fn−1] (11)

= (1− 2γnµhη)‖xg,n − x?‖2 + γ2
n‖ug,n − x?‖2 − 2γnE[χ5,n|Fn−1]

≤ (1− 2γnµhη)‖xg,n − x?‖2 + γ2
n‖ug,n − x?‖2 + 2γ2

nE[‖rn −∇h(xg,n)‖2|Fn−1], ∀n ≥ n0.

As indicated in the proof of [11], we have

γ−2
n (1 + 2γnµg) = γ−2

n+1(1− 2γn+1µhη).

and
lim
n→∞

(n+ 1)γn = (ηµh + µg)
−1. (12)
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Therefore, by dividing both sides of (11) by γ2
n, and taking the expectations, we obtain

γ−2
n+1(1− 2γn+1µhη)E[‖xg,n+1 − x?‖2] + E[‖ug,n+1 − x?‖2]

≤ γ−2
n (1− 2γnµhη)E[‖xg,n − x?‖2] + E[‖ug,n − x?‖2] + 2E[‖rn −∇h(xg,n)‖2].

Now, summing this inequality from n = n0 to n = N , we get

γ−2
N+1(1− 2γN+1µhη)E[‖xg,N+1 − x?‖2] (13)

≤ γ−2
n0

(1− 2γn0µhη)E[‖xg,n0 − x?‖2] + E[‖ug,n0 − x?‖2] +

N∑
k=n0

E[‖rk −∇h(xg,k)‖2].

In view of (12), (4) follows from (13). �

We now present the key lemma for the proof of Theorem 2. This lemma is a direct corollary from
[26, Lemma 4.4], hence we omit the proof.

Lemma 1 Let α ∈]0, 1], let c and τ be in ]0,+∞[, and let n0 be a positive integer. Let (θn)n∈N be
a positive sequence defined by θn = cn−α. Let (sn)n∈N be a sequence that satisfies

0 ≤ sn+1 ≤ (1− θn)sn + τθ2
n, ∀n ≥ n0.

Then, sn satisfies

sn =


O
(
1/nα

)
if 0 < α < 1

O
(
1/nc

)
if α = 1, and 0 < c < 1

O
(
(log n)/n

)
if α = 1, and c = 1

O
(
1/n

)
if α = 1, and c > 1.

Proof of Theorem 2. Taking the expectations of both sides in (11), we get

E[‖xg,n+1 − x?‖2] (14)

≤ (1 + 2γnµg)E[‖xg,n+1 − x?‖2] + γ2
nE[‖ug,n+1 − x?‖2]

≤ (1− 2γnµhη)E[‖xg,n − x?‖2]+γ2
nE[‖ug,n − x?‖2]+2γ2

nE[‖rn −∇h(xg,n)‖2], ∀n ≥ n0.

Since the learning rate γn = Θ(n−α), we can find two positive real numbers c0 ≤ c1 and a positive
integer n1 ≥ n0, such that c0n−α ≤ γn ≤ c1n−α for any n ≥ n1. Then, we obtain

E[‖xg,n+1 − x?‖2] ≤ (1− 2µhηc0n
−α)E[‖xg,n − x?‖2]

+ (c1n
−α)2

(
E[‖ug,n − x?‖2]+2E[‖rn −∇h(xg,n)‖2]

)
, ∀n ≥ n1.

E[‖rn −∇h(xg,n)‖2] and E[‖ug,n − x?‖2] are uniformly bounded by some positive constants by
assumption. Denote these constants by τ0 and τ1, then we have

E[‖xg,n+1 − x?‖2] ≤ (1− 2µhηc0n
−α)E[‖xg,n − x?‖2] + (2τ0 + τ1)(c1n

−α)2, ∀n ≥ n1.

Setting θn = 2µhηc0n
−α and τ = c21(2τ0 + τ1)(2µhηc0)−2, we get

E[‖xg,n+1 − x?‖2] ≤ (1− θn)E[‖xg,n − x?‖2] + τθ2
n, ∀n ≥ n1.

Proof follows from Lemma 1. �
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