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Abstract

The Stochastic Block Model (SBM) is a widely used random graph model for
networks with communities. Despite the recent burst of interest in community
detection under the SBM from statistical and computational points of view, there
are still gaps in understanding the fundamental limits of recovery. In this paper,
we consider the SBM in its full generality, where there is no restriction on the
number and sizes of communities or how they grow with the number of nodes, as
well as on the connectivity probabilities inside or across communities. For such
stochastic block models, we provide guarantees for exact recovery via a semidef-
inite program as well as upper and lower bounds on SBM parameters for exact
recoverability. Our results exploit the tradeoffs among the various parameters
of heterogenous SBM and provide recovery guarantees for many new interesting
SBM configurations.

1 Introduction

A fundamental problem in network science and machine learning is to discover structures in large,
complex networks (e.g., biological, social, or information networks). Community or cluster detec-
tion underlies many decision tasks, as a basic step that uses pairwise relations between data points
in order to understand more global structures in the data. Applications include recommendation
systems [27], image segmentation [24, 20], learning gene network structures in bioinformatics, e.g.,
in protein detection [9] and population genetics [17].

In spite of a long history of heuristic algorithms (see, e.g., [18] for an empirical overview), as well as
strong research interest in recent years on the theoretical side as briefly reviewed in the sequel, there
are still gaps in understanding the fundamental information theoretic limits of recoverability (i.e., if
there is enough information to reveal the communities) and computational tractability (if there are
efficient algorithms to recover them). This is particularly true in the case of sparse graphs (that test
the limits of recoverability), graphs with heterogeneous communities (communities varying greatly
in size and connectivity), graphs with a number of communities that grows with the number of nodes,
and partially observed graphs (with various observation models).
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1.1 Exact Recovery for Heterogenous Stochastic Block Model

The stochastic block model (SBM), first introduced and studied in mathematical sociology by Hol-
land, Laskey and Leinhardt in 1983 [16], can be described as follows. Consider n vertices partitioned
into r communities V1, V2, . . . , Vr , of sizes n1, n2, . . . , nr. We endow the kth community with an
Erdős-Rényi random graph model G(nk, pk) and draw an edge between pairs of nodes in different
communities independently with probability q; i.e., for any pair of nodes i and j , if i, j ∈ Vk for
some k ∈ {1, . . . , r} we draw an edge with probability pk, and draw an edge with probability q if
they are in different communities. We assume q < mink pk in order for the idea of communities to
make sense. This defines a distribution over random graphs known as the stochastic block model. In
this paper, we assume the above model while allowing the number of communities to grow with the
number of nodes (similar to [13, 15, 23]). We refer to this model as the heterogeneous stochastic
block model to contrast our study of this general setting with previous works on special cases of
SBM such as 1) homogenous SBM where the communities are equivalent (they are of the same size
and the connectivity probabilities are equal,) e.g., [12], or, 2) SBM with linear-sized communities,
where the number of communities is fixed and all community sizes are O(n); e.g., [1].

1.2 Statistical and Computational Regimes

What we can infer about the community structure from a single draw of the random graph varies
based on the regime of model parameters. Often, the following scenarios are considered.

1. Recovery, where the proportion of misclassified nodes is negligible; either 0 (corresponding to
exact recovery with strong consistency, and considered in [12, 1]) or asymptotically 0 (corre-
sponding to exact recovery with weak consistency as considered in [23, 22, 28]) as the number of
nodes grows.

2. Approximation, where a finite fraction (bounded away from 1) of the vertices is recovered. This
regime was first introduced in [13, 14], and has been considered in many other works since then;
e.g., see [15] and references therein.

Both recovery and approximation can be studied from statistical and computational points of view.

Statistically, one can ask about the parameter regimes for which the model can be recovered or ap-
proximated. Such characterizations are specially important when an information-theoretical lower
bound (below which recovery is not possible with high probability) is shown to be achievable with
an algorithm (with high probability), hence characterizing a phase transition in model parameters.
Recently, there has been significant interest in identifying such sharp thresholds for various param-
eter regimes.

Computationally, one might be interested to study algorithms for recovery or approximation. In
the older approach, algorithms were studied to provide upper bounds on the parameter regimes for
recovery or approximation. See [10] or [1, Section 5] for a summary of such results. More recently,
the paradigm has shifted towards understanding the limitations and strengths of tractable methods
(e.g. see [21] on semidefinite programming based methods) and assessing whether successful re-
trieval can be achieved by tractable algorithms at the sharp statistical thresholds or there is a gap.
So far, it is understood that there is no such gap in the case of exact recovery (weak and strong)
and approximation of binary SBM as well as the exact recovery of linear-sized communities [1].
However, this is still an open question for more general cases; e.g., see [2] and the list of unresolved
conjectures therein.

The statistical-computational picture for SBM with only two equivalent communities has been fully
characterized in a series of recent papers. Apart from the binary SBM, the best understood cases are
where there is a finite number r of equivalent or linear-sized communities. Outside of the settings
described above, the full picture has not yet emerged and many questions are unresolved.

1.3 This paper

The community detection problem studied in this paper is stated as: given the adjacency matrix of
a graph generated by the heterogenous stochastic block model, for what SBM parameters we can
recover the labels of all vertices, with high probability, using an algorithm that has been proved to
do so. We consider a convex program in (2.4) and an estimator similar to the maximum likelihood
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estimator in (2.5) and characterize parts of the model space for which exact recovery is possible via
these algorithms. Theorems 1 and 2 provide sufficient conditions for the convex recovery program
and Theorem 3 provides sufficient conditions for the modified maximum likelihood estimator to
exactly recover the underlying model. In Section 2.3, we extend the above bounds to the case of
partial observations, i.e., when each entry of the matrix is observed uniformly at random with some
probability γ and the results are recorded. We also provide an information-theoretic lower bound,
describing an impossibility regime for exact recovery in heterogenous SBM in Theorem 4. All of
our results only hold with high probability, as this is the best one can hope for; with tiny probability
the model can generate graphs like the complete graph where the partition is unrecoverable.

The results of this paper provide a clear improvement in the understanding of stochastic block mod-
els by exploiting tradeoffs among SBM parameters. We identify a key parameter (or summary
statistic), defined in (2.1) and referred to as relative density, which shows up in our results and pro-
vides improvements in the statistical assessment and efficient computational approaches for certain
configurations of heterogenous SBM; examples are given in in Section 3 to illustrate a number of
such beneficial tradeoffs such as

• semidefinite programming can successfully recover communities of size O(
√
logn) under

mild conditions on other communities (see Example 3 for details) while logn has long been
believed to be the threshold for the smallest community size.

• The sizes of the communities can be very spread, or the inter- and intra-community prob-
abilities can be very close, and the model still be efficiently recoverable, while existing
methods (e.g., peeling strategy [3]) providing false negatives.

While these results are a step towards understanding the information-computational picture about
the heterogenous SBM with a growing number of communities, we cannot comment on phase tran-
sitions or a possible information-computational gap (see Section 1.2) in this setup based on the
results of this paper.

2 Main Results

Consider the heterogenous stochastic block model described above. In the proofs, we can allow
for isolated nodes (communities of size 1) which are omitted from the model here to simplify the
presentation. Denote by Y the set of admissible adjacency matrices according to a community
assignment as above, i.e.,

Y := {Y ∈ {0, 1}n×n : Y is a valid community matrix w.r.t. V1, . . . , Vr where |Vk| = nk} .

Define the relative density of community k as

ρk = (pk − q)nk (2.1)

which can be seen as the increase in the average degree of a node in community k in the SBM,
relative to its average degree in an Erdős-Rényi model. Define nmin and nmax as the minimum
and maximum of n1, . . . , nk respectively. The total variance over the kth community is defined as
σ2
k = nkpk(1 − pk) , and we let σ2

0 = nq(1− q) . Moreover, consider

σ2
max = max

k=1,...,r
σ2
k = max

k=1,...,r
nkpk(1− pk) . (2.2)

A Bernoulli random variable with parameter p is denoted by Ber(p) , and a Binomial random vari-
able with parameters n and p is denoted by Bin(n, p) . The Neyman Chi-square divergence between
the two discrete random variables Ber(p) and Ber(q) is given by

D̃(p, q) :=
(p− q)2

q(1 − q)
(2.3)

and we have D̃(p, q) ≥ DKL(p, q) := DKL(Ber(p),Ber(q)) . Chi-square divergence is an instance
of a more general family of divergence functions called f -divergences or Ali-Silvey distances. This
family also has KL-divergence, total variation distance, Hellinger distance and Chernoff distance as
special cases. Moreover, the divergence used in [1] is an f -divergence.

Lastly, log denotes the natural logarithm (base e), and the notation θ & 1 is equivalent to θ ≥ O(1) .
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2.1 Convex Recovery

Inspired by the success of semidefinite programs in community detection (e.g., see [15, 21]) we
consider a natural convex relaxation of the maximum likelihood estimator, similar to the one used
in [12], for exact recovery of the heterogeneous SBM with a growing number of communities. As-
suming that ζ =

∑r
k=1 n

2
k is known, we solve

Ŷ = argmax
Y

∑
i,j AijYij

subject to ‖Y ‖⋆ ≤ n ,
∑

i,j Yij = ζ , 0 ≤ Yij ≤ 1 .
(2.4)

where ‖ · ‖⋆ denotes the nuclear norm (the sum of singular values of the matrix).

We prove two theorems giving conditions under which the above convex program outputs the true
community matrix with high probability. In establishing these performance guarantees, we follow
the standard dual certificate argument in convex analysis while utilizing strong matrix concentra-
tion results from random matrix theory [8, 25, 26, 5]. These results allow us to bound the spectral
radius of the matrix A−E[A] where A is an instance of adjacency matrix generated under heteroge-
nous SBM. The proofs for both theorems along with the matrix concentration bounds are given in
Appendix A.

Theorem 1 Under the heterogenous stochastic block model, the output of the semidefinite program
in (2.4) coincides with Y ⋆ with high probability, provided that

ρ2k & σ2
k log nk , D̃(pmin, q) &

lognmin

nmin
, ρ2min & max{σ2

max, nq(1− q), logn}

and
∑r

k=1 n
−α
k = o(1) for some α > 0 .

Proof Sketch. For Y ⋆ to be the unique solution of (2.4), we need to show that for any feasible
Y 6= Y ⋆ , the following quantity

〈A, Y ⋆ − Y 〉 = 〈E[A], Y ⋆ − Y 〉+ 〈A− E[A], Y ⋆ − Y 〉
is strictly positive. In bounding the second term above, we make use of the constraint ‖Y ‖⋆ ≤ n =
‖Y ⋆‖⋆ by constructing a dual certificate from A − E[A] . This is where the bounds on the spectral
norm (dual norm for the nuclear norm) of A − E[A] enter and we use matrix concentration bounds
(see Lemma 7 in Appendix A).

The first condition of Theorem 1 is equivalent to each community being connected, second condition
ensures that each community is identifiable (pmin − q is large enough), and the third condition
requires minimal density to dominate global variability. The assumption

∑r
k=1 n

−α
k = o(1) is

tantamount to saying that the number of tiny communities cannot be too large (e.g., the number
of polylogarithmic-size communities cannot be a power of n). In other words, one needs to have
mostly large communities (growing like nǫ, for some ǫ > 0) for this assumption to be satisfied.
Note, however, that the condition does not restrict the number of communities of size nǫ for any
fixed ǫ > 0 . In fact, Theorem 1 allows us to describe a regime in which tiny communities of
size O(

√
logn) are recoverable provided that they are very dense and that only few tiny or small

communities exist; see Example 3. The second theorem imposes more stringent conditions on the
relative density, hence only allowing for communities of size down to logn , but relaxes the condition
that only a small number of nodes can be in small communities.

Theorem 2 Under the heterogenous stochastic block model, the output of the semidefinite program
in (2.4) coincides with Y ⋆ , with high probability, provided that

ρ2k & σ2
k logn , D̃(pmin, q) &

logn
nmin

, ρ2min & max{σ2
max , nq(1− q)} .

The proof of Theorem 2 is similar to the proof of Theorem 1 except that we use a different matrix
concentration bound (see Lemma 10 in Appendix A).

2.2 Recoverability Lower and Upper Bounds

Next, we consider an estimator, inspired by maximum likelihood estimation, and identify a subset of
the model space which is exactly recoverable via this estimator. The proposed estimation approach
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is not computationally tractable and is only used to examine the conditions for which exact recovery
is possible. For a fixed Y ∈ Y and an observed matrix A , the likelihood function is given by

PY (A) =
∏

i<j

p
AijYij

τ(i,j) (1− pτ(i,j))
(1−Aij)YijqAij(1−Yij)(1 − q)(1−Aij)(1−Yij),

where τ : {1, . . . , n}2 → {1, . . . , r} and τ(i, j) = k if and only if i, j ∈ Vk , and arbitrary in
{1, . . . , r} otherwise. The log-likelihood function is given by

logPY (A) =
∑

i<j

log
(1− q)pτ(i,j)
q(1− pτ(i,j))

AijYij +
∑

i<j

log
1− pτ(i,j)

1− q
Yij + terms not involving {Yij}.

Maximizing the log-likelihood involves maximizing a weighted sum of {Yij}’s where the weights
depend on the (usually unknown) values of q, p1, . . . , pr . To be able to work with less information,
we will use the following modification of maximum likelihood estimation, which only uses the
knowledge of n1, . . . , nr ,

Ŷ = argmax
Y ∈Y

n∑

i,j=1

AijYij . (2.5)

Theorem 3 Suppose nmin ≥ 2 and n ≥ 8 . Under the heterogenous stochastic block model, if

ρmin ≥ 4(17 + η)

(
1

3
+

pmin(1 − pmin) + q(1 − q)

pmin − q

)
logn ,

for some choice of η > 0 , then the optimal solution Ŷ of the non-convex recovery program in (2.5)
coincides with Y ⋆, with a probability not less than 1− 7 pmax−q

pmin−q n
2−η .

Notice that ρmin = mink=1,...,r nk(pk − q) and pmin = mink=1,...,r pk do not necessarily corre-
spond to the same community. Similar to the proof of Theorem 1, we establish 〈A, Y ⋆ − Y 〉 > 0
for any Y ∈ Y , while this time, we use a counting argument (see Lemma 11 in Appendix B) similar
to the one in [12]. The proofs for this Theorem and the next one are given in Appendix B.

Finally, to provide a better picture of community detection for heterogenous SBM we provide the

following necessary conditions for exact recovery. Notice that Theorems 1 and 2 require D̃(q, pk)

(in their first condition) and D̃(pk, q) (in their second condition) to be bounded from below for
recoverability by the SDP. Similarly, the conditions of Theorem 4 can be seen as average-case and
worst-case upper bounds on these divergences.

Theorem 4 If any of the following conditions holds,

(1) 2 ≤ nk ≤ n/e , and 4
∑r

k=1 n
2
kD̃(pk, q) ≤ 1

2

∑
k nk log

n
nk

− r − 2

(2) n ≥ 128 , r ≥ 2 and maxk
{
nkD̃(pk, q) + nkD̃(q, pk)

}
≤ 1

12 log(n− nmin)

then inf Ŷ supY ⋆∈Y P[Ŷ 6= Y ⋆] ≥ 1
2 where the infimum is taken over all measurable estimators Ŷ

based on the realization A generated according to the heterogenous stochastic block model.

2.3 Partial Observations

In the general stochastic block model, we assume that the entries of a symmetric adjacency matrix
A ∈ {0, 1}n×n have been generated according to a combination of Erdős-Rényi models with pa-
rameters that depend on the true community matrix. In the case of partial observations, we assume
that the entries of A has been observed independently with probability γ . In fact, every entry of
the input matrix falls into one of these categories: observed as one denoted by Ω1, observed as zero
denoted by Ω0, and unobserved which corresponds to Ωc where Ω = Ω0 ∪Ω1 . If an estimator only
takes the observed part of the matrix as the input, one can revise the underlying probabilistic model
to incorporate both the stochastic block model and the observation model; i.e. a revised distribution
for entries of A as

Aij =

{
Ber(γpk) i, j ∈ Vk for some k

Ber(γq) i ∈ Vk and j ∈ Vl for k 6= l .
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yields the same output from an estimator that only takes in the observed values. Therefore, the
estimators in (2.4) and (2.5), as well as the results of Theorems 1, 2, 3, can be easily adapted to the
case of partially observed graphs. It is worth mentioning that the above model for partially observed
SBM (which is another SBM) is different from another random model known as Censored Block
Model (CBM) [4]. In SBM, absence of an edge provides information, whereas in CBM it does not.

3 Tradeoffs in Heterogenous SBM

As it can be seen from the results presented in this paper, and the main summary statistics they uti-
lize (the relative densities ρ1, . . . , ρr), the parameters of SBM can vary significantly and still satisfy
the same recoverability conditions. In the following, we examine a number of such tradeoffs which
leads to recovery guarantees for interesting SBM configurations. Here, a configuration is a list of
community sizes nk, their connectivity probabilities pk, and the inter-community connectivity prob-
ability q . A triple (m, p, k) represents k communities of size m each, with connectivity parameter p .
We do not worry about whether m and k are always integers; if they are not, one can always round
up or down as needed so that the total number of vertices is n, without changing the asymptotics.
Moreover, when the O(·) notation is used, we mean that appropriate constants can be determined.
A detailed list of computations for the examples in this section are given in Appendix D.

Table 1: A summary of examples in Section 3. Each row gives the important aspect of the
corresponding example as well as whether, under appropriate regimes of parameters, it would
satisfy the conditions of the theorems proved in this paper.

convex recovery convex recovery recoverability
importance by Thm. 1 by Thm. 2 by Thm. 3

Ex. 1 {ρk} instead of (pmin, nmin) × × X
Ex. 2 stronger guarantees for convex recovery X X X
Ex. 3 nmin =

√
log n X × ×

Ex. 4 many small communities, nmax = O(n) X X X
Ex. 5 nmin = O(log n), spread in sizes × X X
Ex. 6 small pmin − q X X X

Better Summary Statistics. It is intuitive that using summary statistics such as (pmin, nmin), for
a heterogenous SBM where nk’s and pk’s are allowed to take very different values, can be very
limiting. Examples 1 and 2 are intended to give configurations that are guaranteed to be recoverable
by our results but fail the existing recoverability conditions in the literature.

Example 1 Suppose we have two communities of sizes n1 = n−√
n, n2 =

√
n, with p1 = n−2/3

and p2 = 1/ logn while q = n−2/3−0.01 . The bound we obtain here in Theorem 3 makes it clear
that this case is theoretically solvable (the modified maximum likelihood estimator successfully
recovers it). By contrast, Theorem 3.1 in [7] (specialized for the case of no outliers), requiring

n2
min(pmin − q)2 & (

√
pminnmin +

√
nq)2 logn , (3.1)

would fail and provide no guarantee for recoverability.

Example 2 Consider a configuration as

(n− n2/3, n−1/3+ǫ, 1) , (
√
n, O( 1

logn ), n
1/6) , q = n−2/3+3ǫ

where ǫ is a small quantity, e.g., ǫ = 0.1 . Either of Theorems 1 and 2 certify this case as recoverable

via the semidefinite program (2.4) with high probability. By contrast, using the pmin = n−1/3+ǫ and
nmin =

√
n heuristic, neither the condition of Theorem 3.1 in [7] (given in (3.1)) nor the condition

of Theorem 2.5 in [12] is fulfilled, hence providing no recovery guarantee for this configuration.

3.1 Small communities can be efficiently recovered

Most algorithms for clustering the SBM run into the problem of small communities [11, 6, 19],
often because the models employed do not allow for enough parameter variation to identify the key
quantities involved. The next three examples attempt to provide an idea of how small the community
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sizes can be, how many small communities are allowed, and how wide the spread of community sizes
can be, as characterized by our results.

Example 3 (smallest community size for convex recovery) Consider a configuration as

(
√
logn, O(1), m) , (n2, O( log n√

n
),
√
n) , q = O( log n

n )

where n2 =
√
n−m

√
logn/n to ensure a total of n vertices. Here, we assume m ≤ n/(2

√
logn)

which implies n2 ≥ √
n/2 . It is straightforward to verify the conditions of Theorem 1.

To our knowledge, this is the first example in the literature for which semidefinite programming
based recovery works and allows the recovery of (a few) communities of size smaller than logn.
Previously, logn was considered to be the standard bound on the community size for exact recovery,
as illustrated by Theorem 2.5 of [12] in the case of equivalent communities. We have thus shown
that it is possible, in the right circumstances (when sizes are spread and the smaller the community
the denser it is), to recover very small communities (up to

√
logn size), if there are just a few of

them (at most polylogarithmic in n). The significant improvement we made in the bound on the
size of the smallest community is due to the fact that we were able to perform a closer analysis of
the semidefinite program by utilizing stronger matrix concentration bounds, mainly borrowed from
[8, 25, 26, 5]. For more details, see Appendix A.2.

Notice that the condition of Theorem 3 is not satisfied. This is not an inconsistency (as Theorem 3
gives only an upper bound for the threshold), but indicates the limitation of this theorem in charac-
terizing all recoverable cases.

Spreading the sizes. As mentioned before, while Theorem 1 allows for going lower than the stan-
dard logn bound on the community size for exact recovery, it requires the number of very small
communities to be relatively small. On the other hand, Theorem 2 provides us with the option of
having many small communities but requires the smallest community to be of size O(log n) . We
explore two cases with many small communities in the following.

Example 4 Consider a configuration where small communities are dense and there is one big
community,

(12n
ǫ, O(1), n1−ǫ) , (12n, n

−α logn, 1) , q = O(n−β logn)

with 0 < ǫ < 1 and 0 < α < β < 1. We are interested to see how large the number of small
communities can be. Then the conditions of Theorems 1 and 2 both require that

1
2 (1− α) < ǫ < 2(1− α) , ǫ > 2α− β (3.2)

and are depicted in Figure 1. Since we have not specified the constants in our results, we only
consider strict inequalities.

2α
+
ǫ
=
2

α+ 2ǫ = 1

2α = β + ǫ

α
0 0.25 0.5 0.75

β
0 1/3 2/3 1

ǫ

0

0.2

0.4

0.6

0.8

1

Figure 1: The space of parameters in Equation (3.2). The face defined by β = α is shown
with dotted edges. The three gray faces in the back correspond to β = 1 , α = 0 and ǫ = 1.
The green plane (corresponding to the last condition in (3.2)) comes from controlling the intra-
community interactions uniformly (interested reader is referred to Equations (A.8) and (A.9)
in the supplement material) which might be only an artifact of our proof and can be possibly
improved.

Notice that the small communities are as dense as can be, but the large one is not necessarily very
dense. By picking ǫ to be just over 1/4, we can make α just shy of 1/2, and β very close to 1. As
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far as we can tell, there are no results in the literature surveyed that cover such a case, although
the clever “peeling” strategy introduced in [3] would recover the largest community. The strongest
result in [3] that seems applicable here is Corollary 4 (which works for non-constant probabilities).

The algorithm in [3] works to recover a large community (larger than O(
√
n log2 n)), subject to

existence of a gap in the community sizes (roughly, there should be no community sizes between

O(
√
n) and O(

√
n log2 n)). Therefore, in this example, after a single iteration, the algorithm will

stop, despite the continued existence of a gap, as there is no community with size above the gap.
Hence the “peeling” strategy on this example would fail to recover all the communities.

Example 5 Consider a configuration with many small dense communities of size logn . We are in-
terested to see how large the spread of community sizes can be for the semidefinite program to work.
As required by Theorems 1 and 2 and to control σmax (defined in (2.2)), the larger a community
the smaller its connectivity probability should be; therefore we choose the largest community at the
threshold of connectivity (required for recovery). Consider the community sizes and probabilities:

(log n, O(1), n/logn−m
√
n/logn) , (

√
n logn, O(

√
(logn)/n), m) , q = O((log n)/n)

where m is a constant. Again, we round up or down where necessary to make sure the sizes are
integers and the total number of vertices is n. All the conditions of Theorem 2 are satisfied and
exact convex recovery is possible via the semidefinite program. Note that the last condition of
Theorem 1 is not satisfied since there are too many small communities. Also note that alternative
methods proposed in the literature surveyed would not be applicable; in particular, the gap condition
in [3] is not satisfied for this case from the start.

3.2 Weak communities are efficiently recoverable

The following examples illustrate how small pmin − q can be in order for the recovery, respectively,
the convex recovery algorithms to still be guaranteed to work. When some pk is very close to q ,
the Erdős-Rényi model G(nk, pk) looks very similar to the ambient edges from G(n, q) . Again, we
are going to exploit the possible tradeoffs in the parameters of SBM to guarantee recovery. Note
that the difference in pmin − q for the two types of recovery is noticeable, indicating that there is a
significant difference between what we know to be recoverable and what we can recover efficiently
by our convex method. We consider both dense graphs (where pmin is O(1)) and sparse ones.

Example 6 Consider a configuration where all of the probabilities are O(1) and

(n1, pmin, 1) , (nmin, p2, 1) , (n3, p3,
n−n1−nmin

n3
) , q = O(1)

where p2 − q and p3 − q are O(1) . On the other hand, we assume pmin − q = f(n) is small. For
recoverability by Theorem 3, we need f(n) & (logn)/nmin and f2(n) & (logn)/n1 . Notice that,

since n & n1 & nmin , we should have f(n) &
√
log n/n . For the convex program to recover this

configuration (by Theorem 1 or 2), we need nmin &
√
n and f2(n) & max{n/n2

1 , logn/nmin} ,
while all the probabilities are O(1) .

Note that if all the probabilities, as well as pmin − q , are O(1), then by Theorem 3 all communities
down to a logarithmic size should be recoverable. However, the success of convex recovery is
guaranteed by Theorems 1 and 2 when nmin &

√
n .

For a similar configuration to Example 6, where the probabilities are not O(1) , recoverability by

Theorem 3 requires f(n) & max{
√
pmin(logn)/n , n−c} for some appropriate c > 0 .

4 Discussion

We have provided a series of extensions to prior works (especially [12, 1]) by considering the exact
recovery for stochastic block model in its full generality with a growing number of communities. By
capturing the tradeoffs among the various parameters of SBM, we have identified interesting SBM
configurations that are efficiently recoverable via semidefinite programs. However there are still
interesting problems that remain open. Sharp thresholds for recovery or approximation of heteroge-
nous SBM, models for partial observation (non-uniform, based on prior information, or adaptive as
in [28]), as well as overlapping communities (e.g., [1]) are important future directions. Moreover,
other estimators similar to the ones considered in this paper can be analyzed; e.g. when the un-
known parameters in the maximum likelihood estimator, or ζ in (2.4), are estimated from the given
observations.
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