
Learning Multiagent Communication
with Backpropagation

Supplementary Material

Sainbayar Sukhbaatar
Dept. of Computer Science

Courant Institute, New York University
sainbar@cs.nyu.edu

Arthur Szlam
Facebook AI Research

New York
aszlam@fb.com

Rob Fergus
Facebook AI Research

New York
robfergus@fb.com

1 Reinforcement Training

We use policy gradient [5] with a state specific baseline for delivering a gradient to the model. Denote
the states in an episode by s(1), ..., s(T ), and the actions taken at each of those states as a(1), ..., a(T ),
where T is the length of the episode. The baseline is a scalar function of the states b(s, θ), computed
via an extra head on the model producing the action probabilities. Beside maximizing the expected
reward with policy gradient, the models are also trained to minimize the distance between the baseline
value and actual reward. Thus after finishing an episode, we update the model parameters θ by

∆θ =

T∑
t=1

∂ log p(a(t)|s(t), θ)
∂θ

(
T∑
i=t

r(i)− b(s(t), θ)

)
− α ∂

∂θ

(
T∑
i=t

r(i)− b(s(t), θ)

)2
 .

(1)
Here r(t) is reward given at time t, and the hyperparameter α is for balancing the reward and the
baseline objectives, which set to 0.03 in all experiments.

2 Lever Pulling Task Analysis

Figure 1: 3D PCA plot of hidden states of agents

Here we analyze a CommNet model trained with supervision on the lever pulling task. The supervision
uses the sorted ordering of agent IDs to assign target actions. For each agent, we concatenate its

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.



hidden layer activations during game playing. Fig. 1 shows 3D PCA plot of those vectors, where
color intensity represents agent’s ID. The smooth ordering suggests that agents are communicating
their IDs, enabling them to solve the task.

3 Details of Traffic Junction

We use curriculum learning [1] to make the training easier. In first 100 epochs of training, we set
parrive = 0.05, but linearly increased it to 0.2 during next 100 epochs. Finally, training continues for
another 100 epochs. The learning rate is fixed at 0.003 throughout. We also implemented additional
easy and hard versions of the game, the latter being shown in Fig.2.

The easy version is a junction of two one-way roads on a 7× 7 grid. There are two arrival points,
each with two possible routes. During curriculum, we increase Ntotal from 3 to 5, and parrive from 0.1
to 0.3.

The harder version consists from four connected junctions of two-way roads in 18× 18 as shown in
Fig. 2. There are 8 arrival points and 7 different routes for each arrival point. We set Ntotal = 20, and
increased parrive from 0.02 to 0.05 during curriculum.

4 junctions 

Figure 2: A harder version of traffic task with four connected junctions.

4 Traffic Junction Analysis

Here we visualize the average norm of the communication vectors in Fig. 3(left) and brake locations
over the 14× 14 spatial grid in Fig. 3(right). In each of the four incoming directions, there is one
location where communication signal is stronger. The brake pattern shows that cars coming from left
never yield to other directions.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

Figure 3: (left) Average norm of communication vectors (right) Brake locations

2



5 bAbI Tasks Details

Here we give further details of the model setup and training, as well as a breakdown of results in
Table 1.

Let the task be {s1, s2, ..., sJ , q, y∗}, where sj is j’th sentence of story, q is the question sentence
and y∗ is the correct answer word (when answer is multiple words, we simply concatenate them into
single word). Then the input to the model is

h0j = r(sj , θ0), c0j = r(q, θq).

Here, we use simple position encoding [4] as r to convert sentences into fixed size vectors. Also, the
initial communication is used to broadcast the question to all agents. Since the temporal ordering of
sentences is relevant in some tasks, we add special temporal word “t = J − j” to sj for all j.

For f module, we use a 2 layer network with skip connection, that is

hi+1
j = σ(Wiσ(Hihij + Cicij + h0j )),

where σ is ReLU non-linearity (bias terms are omitted for clarity). After K = 2 communication
steps, the model outputs an answer word by

y = Softmax(D

J∑
j=1

hKj )

Since we have the correct answer during training, we will do supervised learning by using cross en-
tropy cost on {y∗, y}. The hidden layer size is set 100 and weights are initialized from N(0, 0.2). We
train the model 100 epochs with learning rate 0.003 and mini-batch size 32 with Adam optimizer [2]
(β1 = 0.9, β2 = 0.99, ε = 10−6). We used 10% of training data as validation set to find optimal
hyper-parameters for the model.

Error on tasks (%) Mean error Failed tasks
2 3 15 16 17 18 19 (%) (err. > 5%)

LSTM [4] 81.9 83.1 78.7 51.9 50.1 6.8 90.3 36.4 16
MemN2N [4] 0.3 2.1 0.0 51.8 18.6 5.3 2.3 4.2 3
DMN+ [6] 0.3 1.1 0.0 45.3 4.2 2.1 0.0 2.8 1
Neural Reasoner+ [3] - - - - 0.9 - 1.6 - -
Independent (MLP module) 69.0 69.5 29.4 47.4 4.0 0.6 45.8 15.2 9
CommNet (MLP module) 3.2 68.3 0.0 51.3 15.1 1.4 0.0 7.1 3

Table 1: Experimental results on bAbI tasks. Only showing some of the task with high errors.

References

[1] Y. Bengio, J. Louradour, R. Collobert, and J. Weston. Curriculum learning. In ICML, 2009.
[2] D. Kingma and J. Ba. Adam: A method for stochastic optimization. In ICLR, 2015.
[3] B. Peng, Z. Lu, H. Li, and K. Wong. Towards Neural Network-based Reasoning. ArXiv preprint:

1508.05508, 2015.
[4] S. Sukhbaatar, A. Szlam, J. Weston, and R. Fergus. End-to-end memory networks. NIPS, 2015.
[5] R. J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement

learning. In Machine Learning, pages 229–256, 1992.
[6] C. Xiong, S. Merity, and R. Socher. Dynamic memory networks for visual and textual question

answering. ICML, 2016.

3


	Reinforcement Training
	Lever Pulling Task Analysis
	Details of Traffic Junction
	Traffic Junction Analysis
	bAbI Tasks Details

