
Algorithm 1 COEVOLUTIONARY LATENT FEATURE PROCESSES

1: Input: Events T , learning rate ⇠. Output: ⌘,X
2: Choose to initialize ⌘0,X0,Z0

1 ,Z
0
2

3: for k = 1 to MaxIter do
4: Compute Xk =

�
Xk�1 � ⇠rXf(Xk�1,⌘k�1,Zk�1

1 ,Zk�1
2 )

�
+

5: Compute ⌘k =
�
⌘k�1 � ⇠r⌘f(X

k�1,⌘k�1,Zk�1
1 ,Zk�1

2 )
�
+

6: Find (u1,v1) as top singular vector pairs of �rZ1f(X
k,⌘k,Zk�1

1 ,Zk�1
2 )

7: Find (u2,v2) as top singular vector pairs of �rZ2f(X
k,⌘k,Zk�1

1 ,Zk�1
2 )

8: Set �k = 2
k+1 and find ✓ik by solving ✓ik = argmin✓>0 h

i(✓ik) for i 2 {1, 2}.
9: Zk

1 = (1� �k)Z
k�1
1 + �k✓

1
ku1v

>
1 , Zk

2 = (1� �k)Z
k�1
2 + �k✓

2
ku2v

>
2

10: end for

A Generalized Conditional Gradient Algorithm

In this section, we provide details on the latest generalized conditional gradient descent algorithm
proposed in [9]. We first provide an alternative formulation of the objective function, and then present
the general algorithm.

A.1 Alternative Formulation

Directly solving the objective (7) is difficult since the nonnegative constraints are entangled with
the non-smooth nuclear norm penalty. To address this challenge, we use a simple penalty method.
Specifically, given ⇢ > 0, we arrive at the next formulation (8) by introducing two auxiliary variables
Z1 and Z2 with some penalty function, such as the squared Frobenius norm.

min

⌘>0,X>0,Z1,Z2

` (⌘,X) + �kX �X>k2F + ↵kZ1k⇤ + �kZ2k⇤ + ⇢k⌘ �Z1k2F + ⇢kX �Z2k2F
(8)

The new formulation (8) allows us to handle the non-negativity constraints and nuclear norm regular-
ization terms separately.
A.2 Alternating Updates between Proximal Graident and Conditional Gradient
Now, we present Algorithm 1 that can solve (8) efficiently. For notation simplicity, we first set

f(⌘,X,Z1,Z2) = `(⌘,X) + �kX �X>k2F + ⇢k⌘ �Z1k2F + ⇢kX �Z2k2F
At each iteration, we apply cheap projection gradient for block {⌘,X} and cheap linear minimization
for block {Z1,Z2}. Specifically, the algorithm consists of two main alternating subroutines:

Proximal Gradient. When updating {⌘,X}, we directly compute the associated proximal operator,
which in our case, reduces to the simple projection as follows,

Xk
=

�
Xk�1 � ⇠rXf(Xk�1,⌘k�1,Zk�1

1 ,Zk�1
2 )

�
+

⌘k
=

�
⌘k�1 � ⇠r⌘f(Xk�1,⌘k�1,Zk�1

1 ,Zk�1
2 )

�
+

where (·)+ simply sets the negative coordinates to zero.

Conditional Gradient. When updating {Z1,Z2}, we use the conditional gradient algorithm that
successively linearizes f and finds a descent direction by solving:

Y k
1 = argmin

kY k⇤61

D
Y ,rZ1f(Xk,⌘k,Zk�1

1 ,Zk�1
2 )

E
(9)

and then takes the convex combination Zk
1 = (1 � �k)Z

k�1
1 + �k✓kY k

1 with a suitable step size
⌘k and scaling factor ✓k. The minimizer of (9) is the outer product of the top singular vector
pair of �rZ1f(Xk,⌘k,Zk�1

1 ,Zk�1
2 ), which can be computed efficiently in linear time using

Lanczos algorithm [8]. Next we perform a line search to find ✓k = argmin✓>0 h1
(✓k), where

h1
(✓k) = f(Zk

1 ) + ↵�k✓k. Here h1
(✓k) is the upper bound of the objective function at Zk

1 , and one
can compute ✓k efficiently in close form. Similarly, one can repeat the same procedure for computing
Zk

2 , and we use h2
(✓k) to denote the linear search function for Zk

2 .

10


	Introduction
	Background on Temporal Point Processes
	Coevolutionary Latent Feature Processes
	Event Representation
	Latent Feature Processes
	User-Item Interactions as Temporal Point Processes

	Parameter Estimation
	Convex Objective Function
	Generalized Conditional Gradient Algorithm

	Experiments
	Competitors
	Experiments on Synthetic Data
	Experiments on Real-World Data

	Conclusion
	Generalized Conditional Gradient Algorithm
	Alternative Formulation
	Alternating Updates between Proximal Graident and Conditional Gradient


