
A Properties of θ̂k(t) (Section 2)

Conditionnally to the actions A(1) up to A(t − 1), the log-likelihood of the observations
Z(1), . . . , Z(t− 1) may be written as

t−1∑
s=

K∑
k=1

L∑
l=1

1{Al(t) = k} [Zl(t) log(κlθk) + (1− Zl(t)) log(1− κlθk)]

=

K∑
k=1

L∑
l=1

Sk,l(t) log(κlθk) + (Nk,l(t)− Sk,l(t)) log(1− κlθk).

Differenciating twice with respect to θk and taking the expectation of (Sk,l(t))l, contional to
A(1), . . . , A(t− 1), yields the expression of I(θk) given in Section 2.

B Proof of Theorem 4

B.1 Proof of Lemma 2

Under the PBM, the conditional expectation of the log-likelihood ratio defined in (4) writes

Eθ[`(t)|A(1), . . . , A(t)] = Eθ

[
t∑

s=1

∑
a∈A

1{A(s) = a}
L∑
l=1

log
pal(Xl(s)Yl(s); θ)

pal(Xl(s)Yl(s);λ)

∣∣∣∣∣ A(1), . . . , A(t)

]

=

t∑
s=1

∑
a∈A

1{A(s) = a}
L∑
l=1

E

[
log

pal(Xl(s)Yl(s); θ)

pal(Xl(s)Yl(s);λ)

∣∣∣∣ A(s) = a

]

=
∑
a∈A

Na(t)

L∑
l=1

K∑
k=1

1{al = k}d(κlθk, κlλk)

=
∑
a∈A

Na(t)Ia(θ, λ),

using the notation Ia(θ, λ) =
∑L
l=1

∑K
k=1 1{al = k}d(κlθk, κlλk).

B.2 Details on the proof of Proposition 3

Lemma 12. Let θ = (θ1, . . . , θK) and λ = (λ1, . . . , λK) be two bandit models such that the
distributions of all arms in θ and λ are mutually absolutely continuous. Let σ be a stopping time
with respect to (Ft) such that (σ < +∞) a.s. under both models. Let E ∈ Fσ be an event such that
0 < Pθ(E) < 1. Then one has∑

a∈A
Ia(θ, λ)Eθ[Na(σ)] ≥ d(Pθ(E),Pλ(E)),

where Ia(θ, λ) is the conditional expectation of the log-likelihood ratio for the model of interest.

The proof of this lemma directly follows from the above expressions of the log-likelihood ratio and
from the proof of Lemma 1 in Appendix A.1 of [12].

We simply recall the following technical lemma for completeness.

Lemma 13. Let σ be any stopping time with respect to (Ft). For every event A ∈ Fσ ,

Pλ(A) = Eθ[1{A} exp(−`(σ))].

A full proof of Lemma 13 can be found in the Appendix A.3 of [12] (proof of Lemma 15).
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B.3 Lower bound proof (Theorem 4)

In order to prove the simplified lower bound of Theorem 4 we basically have two arguments:

1. a lower bound on f(θ) can be obtained by enlarging the feasible set, that is by relaxing some
constraints;

2. Lemma 15 can be used to lower bound the objective function of the problem.

The constant f(θ) is defined by

f(θ) = inf
c�0

∑
a 6=a∗(θ)

∆a(θ)ca (8)

s.t inf
λ∈B(θ)

∑
a∈A

Ia(θ, λ)ca ≥ 1. (9)

We begin by relaxing some constraints: we only allow the change of measure λ to belong to the sets
Bk(θ) := {λ ∈ Θ|∀j 6= k, θj = λj and µ∗(θ) < µ∗(λ)} defined in Section 3:

f(θ) = inf
c�0

∑
a6=a∗(θ)

∆a(θ)ca (10)

s.t ∀k /∈ a∗(θ), ∀λ ∈ Bk(θ),
∑
a∈A

Ia(θ, λ)ca ≥ 1. (11)

The K − L constraints (11) only let one parameter move and must be true for any value satisfying
the definition of the corresponding set Bk(θ). In practice, for each k, the parameter λk must be set to
at least θL. Consequently, these constraints may then be rewritten

f(θ) = inf
c�0

∑
a6=a∗(θ)

∆a(θ)ca (12)

s.t ∀k /∈ a∗(θ),
∑

a 6=a∗(θ)

ca

L∑
l=1

1{al = k}d(κlθk, κlθL) ≥ 1. (13)

Proposition 14 tells us that coefficients ca are all zeros except for actions a ∈ A which can be written

a = vk,lk where lk = arg minl≤L
∆vk,l

(θ)

d(κlθk,κlθL) . Thus, we obtain the desired lower bound by rewriting
(12) as

f(θ) ≥
K∑

k=L+1

min
l∈{1,...,L}

∆vk,l(θ)

d(κlθk, κlθL)
.

Proposition 14. Let c = {ca : a 6= a∗} be a solution of the linear problem (LP) in Theorem 4.
Coefficients are all zeros except for actions awhich can be written as a = (1, . . . , lk−1, k, lk, . . . , L−
1) := vk,lk where k > L and lk = arg minl≤L

∆vk,l
(θ)

d(κlθk,κlθL) .

Proof. We denote by πk(a) the position of item k ∈ {1, . . . ,K} in action a (0 if k /∈ a). Let lk be

the optimal position of item k > L for exploration: lk = arg minl≤L
∆vk,l

(θ)

d(κlθk,κlθL) . Following [6],
we show by contradiction that ca > 0 implies that a can be written vk,lk for a well chosen k > L.
Let α 6= a∗ be a suboptimal action such that ∀k > L, α 6= vk,lk and cα > 0. We need to show a
contradiction. Let us introduce a new set of coefficients c′ defined as follows, for any a 6= a∗:

c′a =


0 if a = α

ca +
d(κπk(α)θk,κπk(α)θL)

d(κlkθk,κlkθL) cα if ∃k > L s.t. a = vk,lk and k ∈ α
ca otherwise.

11



According to Lemma 15, these coefficients satisfy the constraints of the LP. We now show that these
new coefficients yield a strictly lower value to the optimization problem:

c(θ)− c′(θ) = cα∆α(θ)−
∑

k>L:k∈α

d(κπk(α)θk, κπk(α)θL)

d(κlkθk, κlkθL)
cα∆vk,lk

(θ)

> cα

( ∑
k>L:k∈α

∆vk,πk(α)
(θ)−

∑
k>L:k∈α

d(κπk(α)θk, κπk(α)θL)

d(κlkθk, κlkθL)
∆vk,lk

(θ)

)
. (14)

The strict inequality (14) is shown in Lemma 16. Let k > L be one of the suboptimal arms in α. By
definition of lk, the corresponding term of the sum in equation (14) is positive. Thus, we have that
c(θ) > c′(θ) and, hence, by contradiction, we showed that ca > 0 iff a can be written a = vk,lk for
some k > L.

Lemma 15. Let c be a vector of coefficients that satisfy constraints (13) of the optimization problem.
Then, coefficients c′ as defined in Proposition 14 also satisfy the constraints:

∀k /∈ a∗(θ),
∑

a6=a∗(θ)

c′a

L∑
l=1

1{al = k}d(κlθk, κlθL) ≥ 1.

Proof. We use the same α as introduced in Proposition 14. Let us fix k /∈ a∗(θ). Let us define

L(c) =
∑

a6=a∗(θ)

ca

L∑
l=1

1{al = k}d(κlθk, κlθL).

We have

L(c′)− L(c) = −cα
L∑
l=1

1{αl = k}d(κlθk, κlθL) +
∑
l:αl>L

d(κlθk, κlθL)

d(κlkθk, κlkθL)
cα

× 1{αl = k}d(κlkθk, κlkθL).

If k /∈ α, clearly, L(c′) − L(c) = 0. Else, k ∈ α and we note p its position in α: p = πk(α). We
rewrite:

L(c′)− L(c) = cαd(κpθk, κpθL)

(
−1 +

d(κlkθk, κlkθL)

d(κlkθk, κlkθL)

)
= 0.

Thus, the coefficients c′ satisfy the constraints from Proposition 14.

Lemma 16. Let α be as in the proof of Proposition 14.

∆α(θ) >
∑

k>L:k∈α

∆vk,πk(α)
(θ).

Proof. Let k1, . . . , kp be the suboptimal arms in α by increasing position. Let v(α) be the action in
A with lower regret such that it contains all the suboptimal arms of α in the same positions. Thus,
v(α) = (1, . . . , πk1(α)− 1, k1, πk1(α), . . . , πk2(α)− 2, k2, πk2(α)− 1, . . . , L− p). By definition,
one has that ∆α(θ) ≥ ∆v(α)(θ). In the following, we show that ∆v(α)(θ) ≥

∑
k>L:k∈α ∆vk,πk(α)

(θ)

for p = 2 (that is to say α contains 2 suboptimal arms k1 and k2).

For the sake of readability, we write πi instead of πki(α) in the following.

∆v(α)(θ) =

L∑
l=1

κl(θl − θ(vk1,π1 )l) +

L∑
l=1

κl(θ(vk1,π1 )l − θv(α)l)

= ∆vk1,π1
(θ) + [κπ2θπ2−1 + . . .+ κLθL−1]− [κπ2θk2 + κπ2+1θπ2−1 + . . .+ κLθL−2]

= ∆vk1,π1
(θ) + ∆vk2,π2

(θ) + [κπ2
(θπ2−1 − θπ2

) + . . .+ κL(θL−1 − θL)]−
[κπ2+1(θπ2−1 − θπ2

) + . . .+ κL(θL−2 − θL−1)]

= ∆vk1,π1
(θ) + ∆vk2,π2

(θ) +R(θ).

12



Thus, one has to show that R(θ) = κπ2(θπ2−1 − θπ2) + κπ2+1(2θπ2 − θπ2−1 − θπ2+1) + . . . +
κL(2θL−1 − θL−2 − θL) > 0. In fact, using that κl ≥ κl+1 for all l < L, we have

R(θ) ≥ κπ2+1(θπ2−1 − θπ2
+ 2θπ2

− θπ2−1 − θπ2+1) + . . .+ κL(2θL−1 − θL−2 − θL)

≥ κπ2+2(θπ2+1 − θπ2+2) + . . .+ κL(2θL−1 − θL−2 − θL)

≥ . . .
≥ κL(θL−1 − θL)

> 0.

C Proof of Proposition 8

In this section, we fix an arm k ∈ {1, . . . ,K} and obtain an upper confidence bound for the estimator
θ̂k(t) := Sk(t)/Ñk(t). Let τi be the instant of the i-th draw of arm k (the τi are stopping times w.r.t.
Ft). We introduce the centered sequence of successive observations from arm k

Z̄k,i =

L∑
l=1

1{Al(τi) = k}(Xl(τi)Yl(τi)− θkκl). (15)

Introducing the filtration Gi = Fτi+1−1, one has E[Z̄k,i|Gi−1] = 0, and therefore, the sequence

Mk,n =

n∑
i=1

Z̄k,i

is a martingale with bounded increments, w.r.t. the filtration (Gn)n. By construction, one has

Mk,Nk(t) = Sk(t)− Ñk(t)θk = Ñk(t)(θ̂k(t)− θk).

We use the so-called peeling technique together with the maximal version of Azuma-Hoeffding’s
inequality [3]. For any γ > 0 one has

P
(
Mk,Nk(t) < −

√
Nk(t)δ/2

)
≤

log(t)
log(1+γ)∑
i=1

P
(
Mk,Nk(t) < −

√
Nk(t)δ/2 , Nk(t) ∈ [(1 + γ)i−1, (1 + γ)i)

)

≤

log(t)
log(1+γ)∑
i=1

P
(
∃i ∈ {1, . . . , (1 + γ)i} : Mk,i < −

√
(1 + γ)i−1δ/2

)

≤

log(t)
log(1+γ)∑
i=1

exp

(
−δ(1 + γ)i−1

(1 + γ)i

)
=

log(t)

log(1 + γ)
exp

(
− δ

(1 + γ)

)
.

Choosing γ = 1/(δ − 1), gives

P

(
θ̂k(t)− θk < −

√
Nk(t)δ/2

Ñk(t)

)
≤ δe log(t)e−δ.

D Regret analysis for PBM-UCB (Theorem 9)

We proceed as Kveton et al. (2015) [15]. We start by considering separately rounds when one of the
confidence intervals is violated. We denote by Bt,k =

√
Nk(t)(1 + ε) log t/2/Ñk(t) the PBM-UCB

exploration bonus and by B+
t,k =

√
Nk(t)(1 + ε) log T/2/Ñk(t) an upper bound of this bonus (for

t ≤ T ). We define the event Et = {∃k ∈ A(t) : |θ̂k(t) − θk| > Bt,k}. Then, the regret can be
decomposed into

R(T ) =

T∑
t=1

∆A(t)1Et + ∆A(t)1Ēt .
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and, similarly to [15] (Appendix A.1), the first term of this sum can be bounded from above in
expectation by a constant C0(ε) that does not depend on T using Proposition 8. So, it remains to
bound the regret suffered even when confidence intervals are respected, that is the sum on the r.h.s of

E[R(T )] < C0(ε) + E[

T∑
t=1

∆A(t)1{Ēt,∆A(t) > 0}].

It can be done using techniques from [7, 15]. We start by defining events Ft, Gt, Ht in order to
decompose the part of the regret at stake. Then, we show an equivalent of Lemma 2 of [15] for our
case and finally we refer to the proof of Theorem 3 in Appendix A.3 of [15].

For each round t ≥ 1, we define the set of arms St = {1 ≤ l ≤ L : NAl(t)(t) ≤
8(1+ε) log T(

∑L
s=1 κs)

2

κ2
L∆2

A(t)

} and the related events

• Ft = {∆A(t) > 0, ∆A(t) ≤ 2
∑L
l=1 κlB

+
t,Al(t)

};

• Gt = {|St| ≥ l};

• Ht = {|St| < l , ∃k ∈ A(t), Nk(t) ≤ 8(1+ε) log T(
∑l
s=1 κs)

2

κ2
L∆2

A(t)

}, where the constraint on

Nk(t) only differs from the first one by its numerator which is smaller than the previous
one, leading to an even stronger constraint.

Fact 17. According to Lemma 1 in [15], the following inequality is still valid with our own definition
of Ft :

T∑
t=1

∆A(t)1{Ēt,∆A(t) > 0} ≤
T∑
t=1

∆A(t)1{Ft}.

Proof. Invoking Lemma 1 from [15] needs to be justified as our setting is quite different. Taking
action A(t) means that

L∑
l=1

κlUAl(t)(t) ≥
L∑
l=1

κlUl(t).

Under event Ēt, all UCB’s are above the true parameter θk so we have

L∑
l=1

κl(θAl(t) + 2Bt,Al(t)) ≥
L∑
l=1

κl(θl +Bt,l) ≥
L∑
l=1

κlθl.

Rearranging the terms above and using Bt,l(t) ≤ B+
t,l(t), we obtain

L∑
l=1

κlB
+
t,Al(t)

≥ 2

L∑
l=1

κlBt,Al(t) ≥ ∆A(t).

We now have to prove an equivalent of Lemma 2 in [7] that would allow us to split the right-hand
side above in two parts. Let us show that Ft ⊂ (Gt ∪Ht) by showing its contrapositive: if Ft is true
then we cannot have (Ḡt ∩ H̄t). Assume both of these events are true. Then, we have

∆A(t)

Ft
≤ 2

L∑
l=1

κlB
+
t,Al(t)

≤ 2

L∑
l=1

κl

√
NAl(t)(t)

ÑAl(t)(t)

√
(1 + ε) log(T )

2ÑAl(t)(t)

= 2

L∑
l=1

κl
NAl(t)(t)

ÑAl(t)(t)

√
(1 + ε) log(T )

2NAl(t)(t)
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≤
√

2(1 + ε) log T

κL

L∑
l=1

κl√
NAl(t)(t)

=

√
2(1 + ε) log T

κL

∑
l/∈St

κl√
NAl(t)(t)

+
∑
l∈St

κl√
NAl(t)(t)


(Ḡt∩H̄t)
<

√
2(1 + ε) log T

κL

κL∆A(t)

2
√

2(1 + ε) log T

(∑
l/∈St κl∑L
s=1 κs

+

∑
l∈St κl∑l
s=1 κs

)
≤ ∆A(t)

which is a contradiction. The end of the proof proceeds exactly as in the end of the proof of Theorem
6 in of [7]: events Gt and Ht are split into subevents corresponding to rounds where each specific
suboptimal arm of the list is in St or verifies the condition of Ht. We define

Gk,t = Gt ∩ {k ∈ A(t), Nk(t) ≤
8(1 + ε) log T

(∑L
s=1 κs

)2

κ2
L∆2

A(t)

},

Hk,t = Ht ∩ {k ∈ A(t), Nk(t) ≤
8(1 + ε) log T

(∑l
s=1 κs

)2

κ2
L∆2

A(t)

}.

The way we defined these subevents allows to write the two following bounds :
K∑
k=1

1{Gk,t} = 1{Gt}
K∑
k=1

1{k ∈ St} ≥ l1{Gt}

so 1{Gt} ≤
∑
k 1{Gk,t}/l. And,

1{Ht} ≤
K∑
k=1

1{Hk,t}.

We can now bound the regret using these two results:
T∑
t=1

∆A(t)(1{Gt}+ 1{Ht}) ≤
T∑
t=1

K∑
k=1

∆A(t)

l
1{Gk,t}+

T∑
t=1

K∑
k=1

∆A(t)1{Hk,t}

=

T∑
t=1

K∑
k=1

∆A(t)

l
1{Gk,t, A(t) 6= a∗}+

T∑
t=1

K∑
k=1

∆A(t)1{Hk,t, A(t) 6= a∗}.

For each arm k, there is a finite number Ck := |Ak| of actions inA containing k; we order them such
that the corresponding gaps are in decreasing order ∆k,1 ≥ . . . ≥ ∆k,Ck > 0. So we decompose
each sum above on the different actions A(t) possible:

. . . ≤
T∑
t=1

K∑
k=1

∑
a∈Ak

∆k,a

l
1{Gk,t, A(t) = a}+

T∑
t=1

K∑
k=1

∑
a∈Ak

∆k,a1{Hk,t, A(t) = a}.

The two sums on the right hand side look alike. For arm k fixed, events Gk,t and Hk,t imply almost
the same condition on Nk(t), only Hk,t is stronger because the bounding term is smaller. We now
rely on a technical result by [7] that allows to bound each sum.
Lemma 18. ([7], Lemma 2 in Appendix B.4) Let k be a fixed item and |Ak| ≥ 1, C > 0, we have

T∑
t=1

∑
a∈Ak

1{k ∈ A(t), Nk(t) ≤ C/∆2
k,a, A(t) = a}∆k,a ≤

2C

∆min,k

where ∆min,k is the smallest gap among all suboptimal actions containing arm k. In particular, when
k /∈ a∗ the smallest gap is ∆min,k = κL(θL − θk). While, when k ∈ a∗ it is less obvious what the
minimal gap is, however it corresponds the second best action A2 containing only optimal arms:
∆min,k = ∆A2

.
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So, bounding each sum with the above lemma, we obtain

T∑
t=1

∆A(t)(1{Gt}+1{Ht}) ≤
16(1 + ε) log T

κ2
L


(∑L

s=1 κs

)2

l
+

(
l∑

s=1

κs

)2


︸ ︷︷ ︸
C(l;κ)

(
L

∆A2

+
∑
k/∈a∗

1

κL(θL − θk)

)
.

This bound can be optimized by minimizing C(l;κ) over l.

E Regret analysis for PBM-PIE (Theorem 11)

The proof follows the decomposition of [6]. For all t ≥ 1, we denote f(t, ε) = (1 + ε) log t.

E.1 Controlling leaders and estimations

Define η0 = mink∈{1,...,L−1}(θk − θk+1)/2 and let η < η0. We define the following set of rounds

A = {t ≥ 1 : L(t) 6= (1, . . . , L)}.

Our goal is to upper bound the expected size of A. Let us introduce the following sets of rounds:

B = {t ≥ 1 : ∃k ∈ L(t), |θ̂k(t)− θk| ≥ η},
C = {t ≥ 1 : ∃k ≤ L,Uk(t) ≤ θk},
D = {t ≥ 1 : t ∈ A \ (B ∪ C),∃k ≤ L, k /∈ L(t), |θ̂k(t)− θk| ≥ η}.

We first show that A ⊂ (B ∪C ∪D). Let t ∈ A \ (B ∪C). Let k, k′ ∈ L(t) such that k < k′. Since
t /∈ B, we have that |θ̂k(t)− θk| ≤ η and |θ̂k′(t)− θk′ | ≤ η. Since η ≤ (θk − θk′)/2, we conclude
that θ̂k(t) ≥ θ̂k′(t). This proves that (L1(t), . . . ,LL(t) is an increasing sequence. We have that
LL(t) > L otherwise L(t) = (1, . . . , L) which is a contradiction because t ∈ A. Since LL(t) > L,
there exists k ≤ L such that k /∈ L(t). We show by contradiction that |θ̂k(t)− θk| ≥ η. Assume that
|θ̂k(t)− θk| ≤ η. We also have that θ̂LL(t)(t)− θLL(t) ≤ η because LL(t) ∈ L(t) and t /∈ B. Thus,
θ̂k(t) > θ̂LL(t)(t). We have a contradiction because this would imply that k ∈ L(t). Finally we have
proven that if t ∈ A \ (B ∪ C), then t ∈ D so A ⊂ (B ∪ C ∪D).

By a union bound, we obtain
E[|A|] ≤ [|B|] + [|C|] + [|D|].

In the following, we upper bound each set of rounds individually.

Controlling E[|B|]: We decompose B =
⋃K
k=1(Bk,1 ∪Bk,2) where

Bk,1 = {t ≥ 1 : k ∈ L(t),LL(t) 6= k, |θ̂k(t)− θk| ≥ η}
Bk,2 = {t ≥ 1 : k ∈ L(t),LL(t) = k, |θ̂k(t)− θk| ≥ η}

Let t ∈ Bk,1: k ∈ A(t) so E[k ∈ A(t)|t ∈ Bk,1] = 1. Furthermore, for all t, 1{t ∈ Bk,1} is Ft−1

measurable. Then we can apply Lemma 22 (with H = Bk,1 and c = 1).

E[|Bk,1|] ≤ 2(2 + κ−2
L η−2).

Let t ∈ Bk,2: k ∈ B(t) but because of the randomization of the algorithm, k ∈ A(t) with probability
1/2, i.e. E[k ∈ A(t)|t ∈ Bk,2] ≥ 1/2. We get

E[|Bk,2|] ≤ 4(4 + κ−2
L η−2)

By union bound over k, we get E[|B|] ≤ 2K(10 + 3κ−2
L η−2).
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Controlling E[|C|]: We decompose C =
⋃L
k=1 Ck where Ck = {t ≥ 1 : Uk(t) ≤ θk}

We first require to prove Proposition 10.

Proof. Theorem 2 of [17] implies that

P

(
L∑
l=1

Nk,l(t)d(
Sk,l(t)

Nk,l(t)
, κlθk) ≥ δ

)
≤ e−δ

(
dδ log(t)e δ

L

)L
eL+1.

The function Φ : x→
∑L
l=1Nk,l(t)d

(
Sk,l(t)
Nk,l(t)

, κlx
)

is convex and non-decreasing on [θmink (t), 1];

the convexity is easily checked and θmink (t) is defined as the minimum of this convex function. By
definition, we have, either, Uk(t, δ) = 1 and then Uk(t, δ) > θk, or, Uk(t, δ) < 1 and Φ(Uk(t, δ)) =
δ, consequently

P (Uk(t, δ) < θk) = P (Φ(Uk(t, δ)) ≤ Φ(θk)) = P (δ ≤ Φ(θk)) .

Remember that Uk(t) = Uk(t, (1 + ε) log(t)) = Uk(t, f(t, ε)). Thus, applying Proposition 10, we
obtain for arm k,

E[|Ck|] ≤
∞∑
t=1

P(Uk(t) ≤ θk) ≤ deL+1e+
eL+1

LL

∞∑
t=deL+1e+1

(2 + ε)2L(log t)3L

t1+ε
≤ C3(ε),

for some constant C3(ε).

Controlling E[|D|]: Decompose D as D =
⋃L
k=1Dk where

Dk = {t ≥ 1 : t ∈ A \ (B ∪ C), k /∈ L(t), |θ̂k(t)− θk| ≥ η}.

For a given k ≤ L, Dk is the set of rounds at which k is not one of the leaders, and is not accurately
estimated. Let t ∈ Dk. Since k /∈ L(t), we must have LL(t) > L. In turn, since t /∈ B, we have
|θ̂LL(t)(t)− θLL(t)| ≤ η, so that

θ̂LL(t) ≤ θLL(t) + η ≤ θL + η ≤ (θL + θL+1)/2.

Furthermore, since t /∈ C and 1 ≤ k ≤ L, we have Uk(t) ≥ θk ≥ θL ≥ (θL + θL+1)/2 ≥ θ̂LL(t).
This implies that k ∈ B(t) thus E[k ∈ A(t)|t ∈ Dk] ≥ 1/(2K). We apply Lemma 22 with H ≡ Dk

and c = 1/(2K) to get

E[|D|] ≤
L∑
k=1

E[|Dk|] ≤ 4K(4K + κ−2
L η−2).

E.2 Regret decomposition

We decompose the regret by distinguishing rounds in A ∪B and other rounds. More specifically, we
introduce the following sets of rounds for arm k > L:

Ek = {t ≥ 1 : t /∈ (B ∪ C ∪D),L(t) = a∗, A(t) = vk,L}.
The set of instants at which a suboptimal action is selected now can be expressed as follows

{t ≥ 1 : A(t) 6= a∗} ⊂ (B ∪ C ∪D) ∪ (∪k=L+1Ek).

Using a union bound, we obtain the upper bound

E[R(T )] ≤

(
L∑
l=1

κl

)
E[|B ∪ C ∪D|] +

K∑
k=L+1

∆vk,L(θ)E[|Ek|].

From previous boundaries, putting it all together, there exist C1(η) and C3(ε), such that(
L∑
l=1

κl

)
(E[|B|] + E[|C|] + E[|D|]) ≤ C1(η) + C3(ε).

At this step, it suffices to bound events Ek for all k > L.
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E.3 Bounding event Ek

We proceed similarly to [10]. Let us fix an arm k > L. Let t ∈ Ek: arm k is pulled in position L, so
by construction of the algorithm, we have that k ∈ B(t) and thus Uk(t) ≥ θ̂LL(t)(t). We first show
that this implies that Uk(t) ≥ θL − η. Since t ∈ Ek, we know that LL(t) = L, and since t /∈ B,
|θ̂L(t)− θL| ≤ η. This leads to

Uk(t) ≥ θ̂LL(t)(t) = θ̂L(t) ≥ θL − η.

Recall that Nk,L(t) is the number of times arm k was played in position L. By denoting d+(x, y) =
1{x < y}d(x, y), we have that

Nk,L(t)d+(Sk,L(t)/Nk,L(t), κL(θL − η)) ≤ Nk,L(t)d+(Sk,L(t)/Nk,L(t), κLUk(t))

≤
L∑
l=1

Nk,l(t)d
+(Sk,l(t)/Nk,l(t), κlUk(t)) ≤ f(t, ε).

This implies that 1{t ∈ Ek} ≤ 1{Nk,L(t)d+(Sk,L(t)/Nk,L(t), κL(θL − η)) ≤ f(t, ε)}.
Lemma 19. ([10], Lemma 7) Denoting by ν̂Lk,s the empirical mean of the first s samples of Zk,L, we
have

T∑
t=1

1{A(t) = vk,L, Nk,L(t)d+(Sk,L(t)/Nk,L(t), κL(θL − η)) ≤ f(t, ε)}

≤
T∑
s=1

1{sd+(ν̂Lk,s, κL(θL − η)) ≤ f(T, ε)}.

We apply Lemma 19 which is a direct translation of Lemma 7 from [10] to our problem. This yields

|Ek| ≤
T∑
s=1

1{sd+(ν̂Lk,s, κL(θL − η)) ≤ f(T, ε)}.

Let γ > 0. We define KT = (1+γ)f(T,ε)
d+(κLθk,κL(θL−η)) . We now rewrite the last inequality splitting the sum

in two parts.

T∑
s=1

P(sd+(ν̂Lk,s,κL(θL − η)) ≤ f(T, ε)) ≤ KT +

∞∑
s=KT+1

P(KT d
+(ν̂Lk,s, κL(θL − η)) ≤ f(T, ε))

≤ KT +

∞∑
s=KT+1

P(d+(ν̂Lk,s, κL(θL − η)) ≤ d(κLθk, κL(θL − η))/(1 + γ))

≤ KT +
C2(γ, η)

T β(γ,η)
,

where last inequality comes from Lemma 20. Fixing γ < ε, we obtain the desired result, which
concludes the proof.
Lemma 20. For each γ > 0, there exists C2(γ, η) > 0 and β(γ, η) > 0 such that

∞∑
s=KT+1

P

(
d+(ν̂Lk,s, κL(θL − η)) ≤ d(κLθk, κL(θL − η)

1 + γ

)
≤ C2(γ, η)

T β(γ,η)
.

Proof. If d+(ν̂Lk,s, κL(θL − η)) ≤ d(κLθk,κL(θL−η))
1+γ , then there exists some r(γ, η) ∈ (θk, θL − η)

such that ν̂Lk,s > κLr(γ, η) and

d(κLr(γ, η), κL(θL − η)) =
d(κLθk, κL(θL − η))

1 + γ
.
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Hence,

P

(
d+(ν̂k,s, κLθL) <

d(κLθk, κLθL)

1 + γ

)
≤ P (d(ν̂k,s, κLθk) > d(κLr(γ, η), κLθk), ν̂k,s > κLθk)

≤ P(ν̂k,s > κLr(γ, η)) ≤ exp(−sd(κLr(γ, η), κLθk)).

We obtain,
∞∑

t=KT

P

(
d+(ν̂k,s, κLθL) <

d(κLθk, κLθL)

1 + γ

)
≤ exp(−KT d(κLr(γ, η), κLθk))

1− exp(−d(κLr(γ, η), κLθk))
≤ C2(γ, η)

T β(γ,η)
,

for well chosen C2(γ, η) and β(γ, η).

F Lemmas

In this section, we recall two necessary concentration lemmas directly adapted from Lemma 4 and 5
in Appendix A of [6]. Although more involved from a probabilistic point of view, these results are
simpler to establish than proposition 8 as their adaptation to the case of the PBM relies on a crude
lower bound for Ñk(t), which is sufficient for proving Theorem 11..
Lemma 21. For k ∈ {1, . . . ,K} consider the martingale Mk,n =

∑n
i=1 Z̄k,i, where Z̄k,i is defined

in (15). Consider Φ a stopping time such that either Nk(Φ) ≥ s or Φ = T + 1. Then

P[|Mk,Nk(Φ)| ≥ Nk(Φ)η,Nk(Φ) ≥ s] ≤ 2 exp(−2sη2). (16)

As a consequence,

P[|θ̂k(Φ)− θk| ≥ η, Φ ≤ T ] ≤ 2 exp(−2sκ2
Lη

2). (17)

Proof. The first result is a direct application of Lemma 4 of [6] as (Zl(t))t with Zl(t) = Xl(t)Yl(t)
is an independent sequence of [0, 1]-valued variables.

For the second inequality, we use the fact that Ñk(t) ≥ κLNk(t). Hence,

P[|θ̂k(Φ)− θk| ≥ η, Φ ≤ T ] ≤ P
[ |Mk,Nk(Φ)|
κLNk(Φ)

≥ η, Φ ≤ T
]
.

which is upper bounded using (16).

Lemma 22. Fix c > 0 and k ∈ {1, . . . ,K}. Consider a random set of rounds H ⊂ N, such that,
for all t, 1{t ∈ H} is Ft−1 measurable and such that for all t ∈ H , {k ∈ B(t)} is true. Further
assume, for all t, one has E[1{k ∈ A(t)}|t ∈ H] ≥ c > 0. We define τs a stopping time such that∑τs
t=1 1{t ∈ H} ≥ s. Consider the random set Λ = {τs : s ≥ 1}. Then, for all k,∑

t≥0

P[t ∈ Λ, |θ̂k(t)− θk| ≥ η] ≤ 2c−1(2c−1 + κ−2
L η−2)

The proof of this lemma follows that of Lemma 5 in [6] using the same lower bound for Ñk(t) as
above.
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