
Search Improves Label for Active Learning

Alina Beygelzimer
Yahoo Research
New York, NY

beygel@yahoo-inc.com

Daniel Hsu
Columbia University

New York, NY
djhsu@cs.columbia.edu

John Langford
Microsoft Research

New York, NY
jcl@microsoft.com

Chicheng Zhang
UC San Diego
La Jolla, CA

chz038@cs.ucsd.edu

Abstract

We investigate active learning with access to two distinct oracles: LABEL (which
is standard) and SEARCH (which is not). The SEARCH oracle models the situation
where a human searches a database to seed or counterexample an existing solution.
SEARCH is stronger than LABEL while being natural to implement in many situ-
ations. We show that an algorithm using both oracles can provide exponentially
large problem-dependent improvements over LABEL alone.

1 Introduction

Most active learning theory is based on interacting with a LABEL oracle: An active learner observes
unlabeled examples, each with a label that is initially hidden. The learner provides an unlabeled
example to the oracle, and the oracle responds with the label. Using LABEL in an active learning
algorithm is known to give (sometimes exponentially large) problem-dependent improvements in
label complexity, even in the agnostic setting where no assumption is made about the underlying
distribution [e.g., Balcan et al., 2006, Hanneke, 2007, Dasgupta et al., 2007, Hanneke, 2014].

A well-known deficiency of LABEL arises in the presence of rare classes in classification problems,
frequently the case in practice [Attenberg and Provost, 2010, Simard et al., 2014]. Class imbalance
may be so extreme that simply finding an example from the rare class can exhaust the labeling budget.
Consider the problem of learning interval functions in [0, 1]. Any LABEL-only active learner needs at
least Ω(1/�) LABEL queries to learn an arbitrary target interval with error at most � [Dasgupta, 2005].
Given any positive example from the interval, however, the query complexity of learning intervals
collapses to O(log(1/�)), as we can just do a binary search for each of the end points.

A natural approach used to overcome this hurdle in practice is to search for known examples of the
rare class [Attenberg and Provost, 2010, Simard et al., 2014]. Domain experts are often adept at
finding examples of a class by various, often clever means. For instance, when building a hate speech
filter, a simple web search can readily produce a set of positive examples. Sending a random batch of
unlabeled text to LABEL is unlikely to produce any positive examples at all.

Another form of interaction common in practice is providing counterexamples to a learned predictor.
When monitoring the stream filtered by the current hate speech filter, a human editor may spot a
clear-cut example of hate speech that seeped through the filter. The editor, using all the search tools
available to her, may even be tasked with searching for such counterexamples. The goal of the
learning system is then to interactively restrict the searchable space, guiding the search process to
where it is most effective.

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

Counterexamples can be ineffective or misleading in practice as well. Reconsidering the intervals
example above, a counterexample on the boundary of an incorrect interval provides no useful
information about any other examples. What is a good counterexample? What is a natural way to
restrict the searchable space? How can the intervals problem be generalized?

We define a new oracle, SEARCH, that provides counterexamples to version spaces. Given a set of
possible classifiers H mapping unlabeled examples to labels, a version space V ⊆ H is the subset
of classifiers still under consideration by the algorithm. A counterexample to a version space is a
labeled example which every classifier in the version space classifies incorrectly. When there is no
counterexample to the version space, SEARCH returns nothing.

How can a counterexample to the version space be used? We consider a nested sequence of hypothesis
classes of increasing complexity, akin to Structural Risk Minimization (SRM) in passive learning
[see, e.g., Vapnik, 1982, Devroye et al., 1996]. When SEARCH produces a counterexample to the
version space, it gives a proof that the current hypothesis class is too simplistic to solve the problem
effectively. We show that this guided increase in hypothesis complexity results in a radically lower
LABEL complexity than directly learning on the complex space. Sample complexity bounds for
model selection in LABEL-only active learning were studied by Balcan et al. [2010], Hanneke [2011].

SEARCH can easily model the practice of seeding discussed earlier. If the first hypothesis class
has just the constant always-negative classifier h(x) = −1, a seed example with label +1 is a
counterexample to the version space. Our most basic algorithm uses SEARCH just once before using
LABEL, but it is clear from inspection that multiple seeds are not harmful, and they may be helpful if
they provide the proof required to operate with an appropriately complex hypothesis class.

Defining SEARCH with respect to a version space rather than a single classifier allows us to formalize
“counterexample far from the boundary” in a general fashion which is compatible with the way
LABEL-based active learning algorithms work.

Related work. The closest oracle considered in the literature is the Class Conditional Query
(CCQ) [Balcan and Hanneke, 2012] oracle. A query to CCQ specifies a finite set of unlabeled
examples and a label while returning an example in the subset with the specified label, if one exists.

In contrast, SEARCH has an implicit query set that is an entire region of the input space rather than
a finite set. Simple searches over this large implicit domain can more plausibly discover relevant
counterexamples: When building a detector for penguins in images, the input to CCQ might be a
set of images and the label “penguin”. Even if we are very lucky and the set happens to contain a
penguin image, a search amongst image tags may fail to find it in the subset because it is not tagged
appropriately. SEARCH is more likely to discover counterexamples—surely there are many images
correctly tagged as having penguins.

Why is it natural to define a query region implicitly via a version space? There is a practical
reason—it is a concise description of a natural region with an efficiently implementable membership
filter [Beygelzimer et al., 2010, 2011, Huang et al., 2015]. (Compare this to an oracle call that has
to explicitly enumerate a large set of examples. The algorithm of Balcan and Hanneke [2012] uses
samples of size roughly dν/�2.)

The use of SEARCH in this paper is also substantially different from the use of CCQ by Balcan and
Hanneke [2012]. Our motivation is to use SEARCH to assist LABEL, as opposed to using SEARCH
alone. This is especially useful in any setting where the cost of SEARCH is significantly higher
than the cost of LABEL—we hope to avoid using SEARCH queries whenever it is possible to make
progress using LABEL queries. This is consistent with how interactive learning systems are used in
practice. For example, the Interactive Classification and Extraction system of Simard et al. [2014]
combines LABEL with search in a production environment.

The final important distinction is that we require SEARCH to return the label of the optimal predictor
in the nested sequence. For many natural sequences of hypothesis classes, the Bayes optimal
classifier is eventually in the sequence, in which case it is equivalent to assuming that the label in a
counterexample is the most probable one, as opposed to a randomly-drawn label from the conditional
distribution (as in CCQ and LABEL).

Is this a reasonable assumption? Unlike with LABEL queries, where the labeler has no choice of
what to label, here the labeler chooses a counterexample. If a human editor finds an unquestionable

2

example of hate speech that seeped through the filter, it is quite reasonable to assume that this
counterexample is consistent with the Bayes optimal predictor for any sensible feature representation.

Organization. Section 2 formally introduces the setting. Section 3 shows that SEARCH is at least
as powerful as LABEL. Section 4 shows how to use SEARCH and LABEL jointly in the realizable
setting where a zero-error classifier exists in the nested sequence of hypothesis classes. Section 5
handles the agnostic setting where LABEL is subject to label noise, and shows an amortized approach
to combining the two oracles with a good guarantee on the total cost.

2 Definitions and Setting

In active learning, there is an underlying distribution D over X × Y , where X is the instance space
and Y := {−1,+1} is the label space. The learner can obtain independent draws from D, but the
label is hidden unless explicitly requested through a query to the LABEL oracle. Let DX denote the
marginal of D over X .

We consider learning with a nested sequence of hypotheses classes H0 ⊂ H1 ⊂ · · · ⊂ Hk · · · ,
where Hk ⊆ YX has VC dimension dk. For a set of labeled examples S ⊆ X × Y , let Hk(S) :=
{h ∈ Hk : ∀(x, y) ∈ S � h(x) = y} be the set of hypotheses in Hk consistent with S. Let
err(h) := Pr(x,y)∼D[h(x) �= y] denote the error rate of a hypothesis h with respect to distribution
D, and err(h, S) be the error rate of h on the labeled examples in S. Let h∗

k = argminh∈Hk
err(h)

breaking ties arbitrarily and let k∗ := argmink≥0 err(h
∗
k) breaking ties in favor of the smallest such

k. For simplicity, we assume the minimum is attained at some finite k∗. Finally, define h∗ := h∗
k∗ ,

the optimal hypothesis in the sequence of classes. The goal of the learner is to learn a hypothesis
with error rate not much more than that of h∗.

In addition to LABEL, the learner can also query SEARCH with a version space.

Oracle SEARCHH(V) (where H ∈ {Hk}∞k=0)

input: Set of hypotheses V ⊂ H
output: Labeled example (x, h∗(x)) s.t. h(x) �= h∗(x) for all h ∈ V , or ⊥ if there is no such

example.

Thus if SEARCHH(V) returns an example, this example is a systematic mistake made by all hypothe-
ses in V . (If V = ∅, we expect SEARCH to return some example, i.e., not ⊥.)

Our analysis is given in terms of the disagreement coefficient of Hanneke [2007], which has been
a central parameter for analyzing active learning algorithms. Define the region of disagreement of
a set of hypotheses V as Dis(V) := {x ∈ X : ∃h, h� ∈ V s.t. h(x) �= h�(x)}. The disagreement
coefficient of V at scale r is θV (r) := suph∈V,r�≥r PrDX [Dis(BV (h, r

�))]/r�, where BV (h, r
�) =

{h� ∈ V : Prx∼DX [h
�(x) �= h(x)] ≤ r�} is the ball of radius r� around h.

The Õ(·) notation hides factors that are polylogarithmic in 1/δ and quantities that do appear, where δ
is the usual confidence parameter.

3 The Relative Power of the Two Oracles

Although SEARCH cannot always implement LABEL efficiently, it is as effective at reducing the region
of disagreement. The clearest example is learning threshold classifiers H := {hw : w ∈ [0, 1]}
in the realizable case, where hw(x) = +1 if w ≤ x ≤ 1, and −1 if 0 ≤ x < w. A simple
binary search with LABEL achieves an exponential improvement in query complexity over passive
learning. The agreement region of any set of threshold classifiers with thresholds in [wmin, wmax] is
[0, wmin)∪[wmax, 1]. Since SEARCH is allowed to return any counterexample in the agreement region,
there is no mechanism for forcing SEARCH to return the label of a particular point we want. However,
this is not needed to achieve logarithmic query complexity with SEARCH: If binary search starts with
querying the label of x ∈ [0, 1], we can query SEARCHH(Vx), where Vx := {hw ∈ H : w < x}
instead. If SEARCH returns ⊥, we know that the target w∗ ≤ x and can safely reduce the region of
disagreement to [0, x). If SEARCH returns a counterexample (x0,−1) with x0 ≥ x, we know that
w∗ > x0 and can reduce the region of disagreement to (x0, 1].

3

This observation holds more generally. In the proposition below, we assume that LABEL(x) = h∗(x)
for simplicity. If LABEL(x) is noisy, the proposition holds for any active learning algorithm that
doesn’t eliminate any h ∈ H : h(x) = LABEL(x) from the version space.

Proposition 1. For any call x ∈ X to LABEL such that LABEL(x) = h∗(x), we can construct a call
to SEARCH that achieves a no lesser reduction in the region of disagreement.

Proof. For any V ⊆ H , let HSEARCH(V) be the hypotheses in H consistent with the output of
SEARCHH(V): if SEARCHH(V) returns a counterexample (x, y) to V , then HSEARCH(V) := {h ∈
H : h(x) = y}; otherwise, HSEARCH(V) := V . Let HLABEL(x) := {h ∈ H : h(x) = LABEL(x)}.
Also, let Vx := H+1(x) := {h ∈ H : h(x) = +1}. We will show that Vx is such that
HSEARCH(Vx) ⊆ HLABEL(x), and hence Dis(HSEARCH(Vx)) ⊆ Dis(HLABEL(x)).

There are two cases to consider: If h∗(x) = +1, then SEARCHH(Vx) returns ⊥. In this case,
HLABEL(x) = HSEARCH(Vx) = H+1(x), and we are done. If h∗(x) = −1, SEARCH(Vx) returns a
valid counterexample (possibly (x,−1)) in the region of agreement of H+1(x), eliminating all of
H+1(x). Thus HSEARCH(Vx) ⊂ H \H+1(x) = HLABEL(x), and the claim holds also.

As shown by the problem of learning intervals on the line, SEARCH can be exponentially more
powerful than LABEL.

4 Realizable Case

We now turn to general active learning algorithms that combine SEARCH and LABEL. We focus
on algorithms using both SEARCH and LABEL since LABEL is typically easier to implement than
SEARCH and hence should be used where SEARCH has no significant advantage. (Whenever SEARCH
is less expensive than LABEL, Section 3 suggests a transformation to a SEARCH-only algorithm.)

This section considers the realizable case, in which we assume that the hypothesis h∗ = h∗
k∗ ∈ Hk∗

has err(h∗) = 0. This means that LABEL(x) returns h∗(x) for any x in the support of DX .

4.1 Combining LABEL and SEARCH

Our algorithm (shown as Algorithm 1) is called LARCH, because it combines LABEL and SEARCH.
Like many selective sampling methods, LARCH uses a version space to determine its LABEL queries.

For concreteness, we use (a variant of) the algorithm of Cohn et al. [1994], denoted by CAL, as a
subroutine in LARCH. The inputs to CAL are: a version space V , the LABEL oracle, a target error
rate, and a confidence parameter; and its output is a set of labeled examples (implicitly defining a new
version space). CAL is described in Appendix B; its essential properties are specified in Lemma 1.

LARCH differs from LABEL-only active learners (like CAL) by first calling SEARCH in Step 3. If
SEARCH returns ⊥, LARCH checks to see if the last call to CAL resulted in a small-enough error,
halting if so in Step 6, and decreasing the allowed error rate if not in Step 8. If SEARCH instead
returns a counterexample, the hypothesis class Hk must be impoverished, so in Step 12, LARCH
increases the complexity of the hypothesis class to the minimum complexity sufficient to correctly
classify all known labeled examples in S. After the SEARCH, CAL is called in Step 14 to discover a
sufficiently low-error (or at least low-disagreement) version space with high probability.

When LARCH advances to index k (for any k ≤ k∗), its set of labeled examples S may imply a
version space Hk(S) ⊆ Hk that can be actively-learned more efficiently than the whole of Hk. In our
analysis, we quantify this through the disagreement coefficient of Hk(S), which may be markedly
smaller than that of the full Hk.

The following theorem bounds the oracle query complexity of Algorithm 1 for learning with both
SEARCH and LABEL in the realizable setting. The proof is in section 4.2.

Theorem 1. Assume that err(h∗) = 0. For each k� ≥ 0, let θk�(·) be the disagreement coefficient
of Hk�(S[k�]), where S[k�] is the set of labeled examples S in LARCH at the first time that k ≥ k�.
Fix any �, δ ∈ (0, 1). If LARCH is run with inputs hypothesis classes {Hk}∞k=0, oracles LABEL and
SEARCH, and learning parameters �, δ, then with probability at least 1− δ: LARCH halts after at
most k∗+log2(1/�) for-loop iterations and returns a classifier with error rate at most �; furthermore,

4

Algorithm 1 LARCH

input: Nested hypothesis classes H0 ⊂ H1 ⊂ · · · ; oracles LABEL and SEARCH; learning parame-
ters �, δ ∈ (0, 1)

1: initialize S ← ∅, (index) k ← 0, � ← 0
2: for i = 1, 2, . . . do
3: e ← SEARCHHk

(Hk(S))
4: if e = ⊥ then # no counterexample found
5: if 2−� ≤ � then
6: return any h ∈ Hk(S)
7: else
8: � ← �+ 1
9: end if

10: else # counterexample found
11: S ← S ∪ {e}
12: k ← min{k� : Hk�(S) �= ∅}
13: end if
14: S ← S ∪ CAL(Hk(S), LABEL, 2−�, δ/(i2 + i))
15: end for

it draws at most Õ(k∗dk∗/�) unlabeled examples from DX , makes at most k∗ + log2(1/�) queries to
SEARCH, and at most Õ (

�
k∗ + log(1/�)

�
· (maxk�≤k∗ θk�(�)) · dk∗ · log2(1/�)) queries to LABEL.

Union-of-intervals example. We now show an implication of Theorem 1 in the case where the
target hypothesis h∗ is the union of non-trivial intervals in X := [0, 1], assuming that DX is uniform.
For k ≥ 0, let Hk be the hypothesis class of the union of up to k intervals in [0, 1] with H0 containing
only the always-negative hypothesis. (Thus, h∗ is the union of k∗ non-empty intervals.) The
disagreement coefficient of H1 is Ω(1/�), and hence LABEL-only active learners like CAL are not
very effective at learning with such classes. However, the first SEARCH query by LARCH provides a
counterexample to H0, which must be a positive example (x1,+1). Hence, H1(S[1]) (where S[1] is
defined in Theorem 1) is the class of intervals that contain x1 with disagreement coefficient θ1 ≤ 4.

Now consider the inductive case. Just before LARCH advances its index to a value k (for any k ≤ k∗),
SEARCH returns a counterexample (x, h∗(x)) to the version space; every hypothesis in this version
space (which could be empty) is a union of fewer than k intervals. If the version space is empty, then
S must already contain positive examples from at least k different intervals in h∗ and at least k − 1
negative examples separating them. If the version space is not empty, then the point x is either a
positive example belonging to a previously uncovered interval in h∗ or a negative example splitting
an existing interval. In either case, S[k] contains positive examples from at least k distinct intervals
separated by at least k − 1 negative examples. The disagreement coefficient of the set of unions of k
intervals consistent with S[k] is at most 4k, independent of �.

The VC dimension of Hk is O(k), so Theorem 1 implies that with high probability, LARCH makes at
most k∗ + log(1/�) queries to SEARCH and Õ((k∗)3 log(1/�) + (k∗)2 log3(1/�)) queries to LABEL.

4.2 Proof of Theorem 1

The proof of Theorem 1 uses the following lemma regarding the CAL subroutine, proved in Ap-
pendix B. It is similar to a result of Hanneke [2011], but an important difference here is that the input
version space V is not assumed to contain h∗.
Lemma 1. Assume LABEL(x) = h∗(x) for every x in the support of DX . For any hypothesis set
V ⊆ YX with VC dimension d < ∞, and any �, δ ∈ (0, 1), the following holds with probability at
least 1− δ. CAL(V, LABEL, �, δ) returns labeled examples T ⊆ {(x, h∗(x)) : x ∈ X} such that for
any h in V (T), Pr(x,y)∼D[h(x) �= y ∧ x ∈ Dis(V (T))] ≤ �; furthermore, it draws at most Õ(d/�)

unlabeled examples from DX , and makes at most Õ (θV (�) · d · log2(1/�)) queries to LABEL.

We now prove Theorem 1. By Lemma 1 and a union bound, there is an event with probability
at least 1 −�i≥1 δ/(i

2 + i) ≥ 1 − δ such that each call to CAL made by LARCH satisfies the
high-probability guarantee from Lemma 1. We henceforth condition on this event.

5

We first establish the guarantee on the error rate of a hypothesis returned by LARCH. By the
assumed properties of LABEL and SEARCH, and the properties of CAL from Lemma 1, the labeled
examples S in LARCH are always consistent with h∗. Moreover, the return property of CAL
implies that at the end of any loop iteration, with the present values of S, k, and �, we have
Pr(x,y)∼D[h(x) �= y ∧ x ∈ Dis(Hk(S))] ≤ 2−� for all h ∈ Hk(S). (The same holds trivially before
the first loop iteration.) Therefore, if LARCH halts and returns a hypothesis h ∈ Hk(S), then there is
no counterexample to Hk(S), and Pr(x,y)∼D[h(x) �= y∧x ∈ Dis(Hk(S))] ≤ �. These consequences
and the law of total probability imply err(h) = Pr(x,y)∼D[h(x) �= y ∧ x ∈ Dis(Hk(S))] ≤ �.

We next consider the number of for-loop iterations executed by LARCH. Let Si, ki, and �i be,
respectively, the values of S, k, and � at the start of the i-th for-loop iteration in LARCH. We claim
that if LARCH does not halt in the i-th iteration, then one of k and � is incremented by at least one.
Clearly, if there is no counterexample to Hki

(Si) and 2−�i > �, then � is incremented by one (Step 8).
If, instead, there is a counterexample (x, y), then Hki

(Si∪{(x, y)}) = ∅, and hence k is incremented
to some index larger than ki (Step 12). This proves that ki+1 + �i+1 ≥ ki + �i + 1. We also have
ki ≤ k∗, since h∗ ∈ Hk∗ is consistent with S, and �i ≤ log2(1/�), as long as LARCH does not halt
in for-loop iteration i. So the total number of for-loop iterations is at most k∗ + log2(1/�). Together
with Lemma 1, this bounds the number of unlabeled examples drawn from DX .

Finally, we bound the number of queries to SEARCH and LABEL. The number of queries to SEARCH
is the same as the number of for-loop iterations—this is at most k∗ + log2(1/�). By Lemma 1 and
the fact that V (S� ∪ S��) ⊆ V (S�) for any hypothesis space V and sets of labeled examples S�, S��,
the number of LABEL queries made by CAL in the i-th for-loop iteration is at most Õ(θki

(�) · dki
·

�2i · polylog(i)). The claimed bound on the number of LABEL queries made by LARCH now readily
follows by taking a max over i, and using the facts that i ≤ k∗ and dk� ≤ dk∗ for all k� ≤ k.

4.3 An Improved Algorithm

LARCH is somewhat conservative in its use of SEARCH, interleaving just one SEARCH query between
sequences of LABEL queries (from CAL). Often, it is advantageous to advance to higher complexity
hypothesis classes quickly, as long as there is justification to do so. Counterexamples from SEARCH
provide such justification, and a ⊥ result from SEARCH also provides useful feedback about the
current version space: outside of its disagreement region, the version space is in complete agreement
with h∗ (even if the version space does not contain h∗). Based on these observations, we propose an
improved algorithm for the realizable setting, which we call SEABEL. Due to space limitations, we
present it in Appendix C. We prove the following performance guarantee for SEABEL.
Theorem 2. Assume that err(h∗) = 0. Let θk(·) denote the disagreement coefficient of V ki

i
at the first iteration i in SEABEL where ki ≥ k. Fix any �, δ ∈ (0, 1). If SEABEL is run
with inputs hypothesis classes {Hk}∞k=0, oracles SEARCH and LABEL, and learning parame-
ters �, δ ∈ (0, 1), then with probability 1 − δ: SEABEL halts and returns a classifier with
error rate at most �; furthermore, it draws at most Õ((dk∗ + log k∗)/�) unlabeled examples
from DX , makes at most k∗ + O (log(dk∗/�) + log log k∗) queries to SEARCH, and at most
Õ (maxk≤k∗ θk(2�) · (dk∗ log2(1/�) + log k∗)) queries to LABEL.

It is not generally possible to directly compare Theorems 1 and 2 on account of the algorithm-
dependent disagreement coefficient bounds. However, in cases where these disagreement coefficients
are comparable (as in the union-of-intervals example), the SEARCH complexity in Theorem 2 is
slightly higher (by additive log terms), but the LABEL complexity is smaller than that from Theorem 1
by roughly a factor of k∗. For the union-of-intervals example, SEABEL would learn target union of
k∗ intervals with k∗ +O(log(k∗/�)) queries to SEARCH and Õ((k∗)2 log2(1/�)) queries to LABEL.

5 Non-Realizable Case

In this section, we consider the case where the optimal hypothesis h∗ may have non-zero error rate,
i.e., the non-realizable (or agnostic) setting. In this case, the algorithm LARCH, which was designed
for the realizable setting, is no longer applicable. First, examples obtained by LABEL and SEARCH
are of different quality: those returned by SEARCH always agree with h∗, whereas the labels given
by LABEL need not agree with h∗. Moreover, the version spaces (even when k = k∗) as defined by
LARCH may always be empty due to the noisy labels.

6

Another complication arises in our SRM setting that differentiates it from the usual agnostic active
learning setting. When working with a specific hypothesis class Hk in the nested sequence, we
may observe high error rates because (i) the finite sample error is too high (but additional labeled
examples could reduce it), or (ii) the current hypothesis class Hk is impoverished. In case (ii), the best
hypothesis in Hk may have a much larger error rate than h∗, and hence lower bounds [Kääriäinen,
2006] imply that active learning on Hk instead of Hk∗ may be substantially more difficult.

These difficulties in the SRM setting are circumvented by an algorithm that adaptively estimates the
error of h∗. The algorithm, A-LARCH (Algorithm 5), is presented in Appendix D.

Theorem 3. Assume err(h∗) = ν. Let θk(·) denote the disagreement coefficient of V ki
i at the first

iteration i in A-LARCH where ki ≥ k. Fix any �, δ ∈ (0, 1). If A-LARCH is run with inputs hypothe-
sis classes {Hk}∞k=0, oracles SEARCH and LABEL, learning parameter δ, and unlabeled example
budget Õ((dk∗ + log k∗)(ν + �)/�2), then with probability 1 − δ: A-LARCH returns a classifier
with error rate ≤ ν + �; it makes at most k∗ +O (log(dk∗/�) + log log k∗) queries to SEARCH, and
Õ (maxk≤k∗ θk(2ν + 2�) · (dk∗ log2(1/�) + log k∗) · (1 + ν2/�2)) queries to LABEL.

The proof is in Appendix D. The LABEL query complexity is at least a factor of k∗ better than
that in Hanneke [2011], and sometimes exponentially better thanks to the reduced disagreement
coefficient of the version space when consistency constraints are incorporated.

5.1 AA-LARCH: an Opportunistic Anytime Algorithm

In many practical scenarios, termination conditions based on quantities like a target excess error rate
� are undesirable. The target � is unknown, and we instead prefer an algorithm that performs as well
as possible until a cost budget is exhausted. Fortunately, when the primary cost being considered are
LABEL queries, there are many LABEL-only active learning algorithms that readily work in such an
“anytime” setting [see, e.g., Dasgupta et al., 2007, Hanneke, 2014].

The situation is more complicated when we consider both SEARCH and LABEL: we can often make
substantially more progress with SEARCH queries than with LABEL queries (as the error rate of the
best hypothesis in Hk� for k� > k can be far lower than in Hk). AA-LARCH (Algorithm 2) shows
that although these queries come at a higher cost, the cost can be amortized.

AA-LARCH relies on several subroutines: SAMPLE-AND-LABEL, ERROR-CHECK,
PRUNE-VERSION-SPACE and UPGRADE-VERSION-SPACE (Algorithms 6, 7, 8, and 9).
The detailed descriptions are deferred to Appendix E. SAMPLE-AND-LABEL performs standard
disagreement-based selective sampling using oracle LABEL; labels of examples in the disagreement
region are queried, otherwise inferred. PRUNE-VERSION-SPACE prunes the version space given the
labeled examples collected, based on standard generalization error bounds. ERROR-CHECK checks if
the best hypothesis in the version space has large error; SEARCH is used to find a systematic mistake
for the version space; if either event happens, AA-LARCH calls UPGRADE-VERSION-SPACE to
increase k, the level of our working hypothesis class.

Theorem 4. Assume err(h∗) = ν. Let θk�(·) denote the disagreement coefficient of Vi at the first
iteration i after which k ≥ k�. Fix any � ∈ (0, 1). Let n� = Õ(maxk≤k∗ θk(2ν+2�)dk∗(1+ν2/�2))
and define C� = 2(n� + k∗τ). Run Algorithm 2 with a nested sequence of hypotheses {Hk}∞k=0,
oracles LABEL and SEARCH, confidence parameter δ, cost ratio τ ≥ 1, and upper bound N =
Õ(dk∗/�2). If the cost spent is at least C�, then with probability 1− δ, the current hypothesis h̃ has
error at most ν + �.

The proof is in Appendix E. A comparison to Theorem 3 shows that AA-LARCH is adaptive: for any
cost complexity C, the excess error rate � is roughly at most twice that achieved by A-LARCH.

6 Discussion

The SEARCH oracle captures a powerful form of interaction that is useful for machine learning. Our
theoretical analyses of LARCH and variants demonstrate that SEARCH can substantially improve
LABEL-based active learners, while being plausibly cheaper to implement than oracles like CCQ.

7

Algorithm 2 AA-LARCH

input: Nested hypothesis set H0 ⊆ H1 ⊆ · · · ; oracles LABEL and SEARCH; learning parameter
δ ∈ (0, 1); SEARCH-to-LABEL cost ratio τ , dataset size upper bound N .

output: hypothesis h̃.
1: Initialize: consistency constraints S ← ∅, counter c ← 0, k ← 0, verified labeled dataset L̃ ← ∅,

working labeled dataset L0 ← ∅, unlabeled examples processed i ← 0, Vi ← Hk(S).
2: loop
3: Reset counter c ← 0.
4: repeat
5: if ERROR-CHECK(Vi, Li, δi) then
6: (k, S, Vi) ← UPGRADE-VERSION-SPACE(k, S, ∅)
7: Vi ← PRUNE-VERSION-SPACE(Vi, L̃, δi)

8: Li ← L̃
9: continue loop

10: end if
11: i ← i+ 1
12: (Li, c) ← SAMPLE-AND-LABEL(Vi−1, LABEL, Li−1, c)
13: Vi ← PRUNE-VERSION-SPACE(Vi−1, Li, δi)
14: until c = τ or li = N
15: e ← SEARCHHk

(Vi)
16: if e �= ⊥ then
17: (k, S, Vi) ← UPGRADE-VERSION-SPACE(k, S, {e})
18: Vi ← PRUNE-VERSION-SPACE(Vi, L̃, δi)

19: Li ← L̃
20: else
21: Update verified dataset L̃ ← Li.
22: Store temporary solution h̃ = argminh�∈Vi

err(h�, L̃).
23: end if
24: end loop

Are there examples where CCQ is substantially more powerful than SEARCH? This is a key question,
because a good active learning system should use minimally powerful oracles. Another key question
is: Can the benefits of SEARCH be provided in a computationally efficient general purpose manner?

References
Josh Attenberg and Foster J. Provost. Why label when you can search? alternatives to active learning

for applying human resources to build classification models under extreme class imbalance. In
Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, Washington, DC, USA, July 25-28, 2010, pages 423–432, 2010.

Maria-Florina Balcan and Steve Hanneke. Robust interactive learning. In COLT, 2012.

Maria-Florina Balcan, Alina Beygelzimer, and John Langford. Agnostic active learning. In ICML,
2006.

Maria-Florina Balcan, Steve Hanneke, and Jennifer Wortman Vaughan. The true sample complexity
of active learning. Machine learning, 80(2-3):111–139, 2010.

Alina Beygelzimer, Daniel Hsu, John Langford, and Tong Zhang. Agnostic active learning without
constraints. In Advances in Neural Information Processing Systems 23, 2010.

Alina Beygelzimer, Daniel Hsu, Nikos Karampatziakis, John Langford, and Tong Zhang. Efficient
active learning. In ICML Workshop on Online Trading of Exploration and Exploitation, 2011.

David A. Cohn, Les E. Atlas, and Richard E. Ladner. Improving generalization with active learning.
Machine Learning, 15(2):201–221, 1994.

8

Sanjoy Dasgupta. Coarse sample complexity bounds for active learning. In Advances in Neural
Information Processing Systems 18, 2005.

Sanjoy Dasgupta, Daniel Hsu, and Claire Monteleoni. A general agnostic active learning algorithm.
In Advances in Neural Information Processing Systems 20, 2007.

Luc Devroye, László Györfi, and Gabor Lugosi. A Probabilistic Theory of Pattern Recognition.
Springer Verlag, 1996.

Steve Hanneke. A bound on the label complexity of agnostic active learning. In ICML, pages
249–278, 2007.

Steve Hanneke. Rates of convergence in active learning. The Annals of Statistics, 39(1):333–361,
2011.

Steve Hanneke. Theory of disagreement-based active learning. Foundations and Trends R� in Machine
Learning, 7(2-3):131–309, 2014. ISSN 1935-8237. doi: 10.1561/2200000037.

Tzu-Kuo Huang, Alekh Agarwal, Daniel Hsu, John Langford, and Robert E. Schapire. Efficient and
parsimonious agnostic active learning. In Advances in Neural Information Processing Systems 28,
2015.

Matti Kääriäinen. Active learning in the non-realizable case. In Algorithmic Learning Theory, 17th
International Conference, ALT 2006, Barcelona, Spain, October 7-10, 2006, Proceedings, pages
63–77, 2006.

Patrice Y. Simard, David Maxwell Chickering, Aparna Lakshmiratan, Denis Xavier Charles, Léon
Bottou, Carlos Garcia Jurado Suarez, David Grangier, Saleema Amershi, Johan Verwey, and Jina
Suh. ICE: enabling non-experts to build models interactively for large-scale lopsided problems.
CoRR, abs/1409.4814, 2014. URL http://arxiv.org/abs/1409.4814.

Vladimir N. Vapnik. Estimation of Dependences Based on Empirical Data. Springer-Verlag, 1982.

Vladimir N. Vapnik and Alexey Ya. Chervonenkis. On the uniform convergence of relative frequencies
of events to their probabilities. Theory of Probability and Its Applications, 16(2):264–280, 1971.

9

A Basic Facts and Notations Used in Proofs

A.1 Concentration Inequalities

Lemma 2 (Bernstein’s Inequality). Let X1, . . . , Xn be independent zero-mean random variables.
Suppose that |Xi| ≤ M almost surely. Then for all positive t,

Pr

n�

i=1

Xi > t

 ≤ exp

�
− t2/2�n

j=1 E[X
2
j] +Mt/3

�
.

Lemma 3. Let Z1, . . . , Zn be independent Bernoulli random variables with mean p. Let Z̄ =
1
n

�n
i=1 Zi. Then with probability 1− δ,

Z̄ ≤ p+

�
2p ln(1/δ)

n
+

2 ln(1/δ)

3n
.

Proof. Let Xi = Zi − p for all i, note that |Xi| ≤ 1. The lemma follows from Bernstein’s Inequality
and algebra.

Lemma 4 (Freedman’s Inequality). Let X1, . . . , Xn be a martingale difference sequence, and
|Xi| ≤ M almost surely. Let V be the sum of the conditional variances, i.e.

V =

n�

i=1

E[X2
i |X1,Xi−1]

Then, for every t, v > 0,

Pr

n�

i=1

Xi > t and V ≤ v

 ≤ exp

�
− t2/2

v +Mt/3

�
.

Lemma 5. Let Z1, . . . , Zn be a sequence of Bernoulli random variables, where
E[Zi|Z1, . . . , Zi−1] = pi. Then, for every δ > 0, with probability 1− δ:

n�

i=1

Zi ≤ 2vn +

�
4vn ln

log 4n

δ
+

2

3
ln

log 4n

δ
.

where vn = max(
�n

i=1 pi, 1).

Proof. Let Xi = Zi − pi for all i, note that {Xi} is a martingale difference sequence and |Xi| ≤ 1.
From Freedman’s Inequality and algebra, for any v,

Pr

 1
n

n�

i=1

Zi > v +

�
2v ln log 4n

δ

n
+

2 ln log 4n
δ

3n
and

n�

i=1

pi ≤ v

 ≤ δ

log n+ 2
.

The proof follows by taking union bound over v = 2i, i = 0, 1, . . . , �log n�.

Define

φ(d,m, δ) :=
1

m

�
d log em2 + log

2

δ

�
. (1)

Theorem 5 (Vapnik and Chervonenkis, 1971). Let F be a family of functions f : Z → {0, 1} on
a domain Z with VC dimension at most d, and let P be a distribution on Z . Let Pn denote the
empirical measure from an iid sample of size n from P . For any δ ∈ (0, 1), with probability at least
1− δ, for all f ∈ F ,

−min
�
ε+
�
Pfε,

�
Pnfε

�
≤ Pf − Pnf ≤ min

�
ε+
�

Pnfε,
�
Pfε

�

where ε := φ(d, n, δ).

10

A.2 Notations

For convenience, we define
σ(d,m, δ) := φ(d,m, δ/3) , (2)

as we will often split the overall allowed failure probability δ across two or three separate events.

Because we apply the deviation inequalities to the hypothesis classes from {Hk}∞k=0, we also define:

σk(m, δ) := σ(dk,m, δ), (3)

where dk is the VC dimension of Hk. We have the following simple fact.

Fact 1.

σ

�
d,m,

δ

2 logm(logm+ 1)

�
≥ � =⇒ m ≤ 64

�

�
d log

512

�
+ log

24

δ

�
.

For integers i ≥ 1 and k ≥ 0, define

δi :=
δ

i(i+ 1)
, δi,k :=

δi
(k + 1)(k + 2)

Note that
�∞

i=1 δi = δ and
�∞

k=0 δi,k = δi.

Finally, for any distribution D̃ over X × Y and any hypothesis h : X → Y , we use err(h, D̃) :=

Pr(x,y)∼D̃[h(x) �= y] to denote the probability with respect to D̃ that h makes a classification error.

B Active Learning Algorithm CAL

In this section, we describe and analyze a variant of the LABEL-only active learning algorithm of
Cohn et al. [1994], which we refer to as CAL. Note that Hanneke [2011] provides a label complexity
analysis of CAL in terms of the disagreement coefficient under the assumption that the LABEL oracle
is consistent with some hypothesis in the hypothesis class used by CAL. We cannot use that analysis
because we call CAL as a subroutine in LARCH with sets of hypotheses V that do not necessarily
contain the optimal hypothesis h∗.

B.1 Description of CAL

CAL takes as input a set of hypotheses V , the LABEL oracle (which always returns h∗(x) when
queried with a point x), and learning parameters �, δ ∈ (0, 1).

The pseudocode for CAL is given in Algorithm 3 below, where we use the notation

U≤i :=

i�

j=1

Uj

for any sequence of sets (Uj)j∈N.

B.2 Proof of Lemma 1

We now give the proof of Lemma 1.

Let V0 := V and Vi := V (T≤i) for each i ≥ 1. Clearly V0 ⊇ V1 ⊇ · · · , and hence Dis(V0) ⊇
Dis(V1) ⊇ · · · as well.

Let Ei be the event in which the following hold:

1. If CAL executes iteration i, then every h ∈ Vi satisfies

Pr
x∼DX

[h(x) �= h∗(x) ∧ x ∈ Dis(Vi)] ≤ φ(d, 2i, δi/2) .

11

Algorithm 3 CAL

input: Hypothesis set V with VC dimension ≤d; oracle LABEL; learning parameters �, δ ∈ (0, 1)
output: Labeled examples T

1: for i = 1, 2, . . . do
2: Ti ← ∅
3: for j = 1, 2, . . . , 2i do
4: xi,j ← independent draw from DX (the corresponding label is hidden)
5: if xi,j ∈ Dis(V (T≤i−1)) then
6: Ti ← Ti ∪ {(xi,j , LABEL(xi,j))}
7: end if
8: end for
9: if φ(d, 2i, δi/2) ≤ � or V (T≤i) = ∅ then

10: return T≤i

11: end if
12: end for

2. If CAL executes iteration i, then the number of LABEL queries in iteration i is at most

2iµi +O
��

2iµi log(2/δi) + log(2/δi)
�
,

where
µi := θVi−1

(�) · 2φ(d, 2i−1, δi−1/2) .

We claim that E0 ∩ E1 ∩ · · · ∩ Ei holds with probability at least 1−�i
i�=1 δi� ≥ 1− δ. The proof

is by induction. The base case is trivial, as E0 holds deterministically. For the inductive case, we just
have to show that Pr(Ei | E0 ∩ E1 ∩ · · · ∩ Ei−1) ≥ 1− δi.

Condition on the event E0∩E1∩· · ·∩Ei−1. Suppose CAL executes iteration i. For all x /∈ Dis(Vi−1),
let Vi−1(x) denote the label assigned by every h ∈ Vi−1 to x. Define

Ŝi :=
�
(xi,j , ŷi,j) : j ∈ {1, 2, . . . , 2i} , xi,j /∈ Dis(Vi−1), ŷi,j = Vi−1(xi,j)

�
.

Observe that Ŝi ∪ Ti is an iid sample of size 2i from a distribution (which we call Di−1) over labeled
examples (x, y), where x ∼ DX and y is given by

y :=

�
Vi−1(x) if x /∈ Dis(Vi−1) ,

h∗(x) if x ∈ Dis(Vi−1) .

In fact, for any h ∈ Vi−1, we have

errDi−1
(h) = Pr

(x,y)∼Di−1

[h(x) �= y] = Pr
x∼DX

[h(x) �= h∗(x) ∧ x ∈ Dis(Vi−1)] . (4)

The VC inequality (Theorem 5) implies that, with probability at least 1− δi/2,

∀h ∈ V �
�
err(h, Ŝi ∪ Ti) = 0 =⇒ errDi−1

(h) ≤ φ(d, 2i, δi/2)
�
. (5)

Consider any h ∈ Vi. We have err(h, Ti) = 0 by definition of Vi. We also have err(h, Ŝi) = 0 since
h ∈ Vi ⊆ Vi−1. So in the event that (5) holds, we have

Pr
x∼DX

[h(x) �= h∗(x) ∧ x ∈ Dis(Vi)] ≤ Pr
x∼DX

[h(x) �= h∗(x) ∧ x ∈ Dis(Vi−1)]

= errDi−1
(h)

≤ φ(d, 2i, δi/2) ,

where the first inequality follows because Dis(Vi) ⊆ Dis(Vi−1), and the equality follows from (4).

Now we prove the LABEL query bound.
Claim 1. On event Ei−1 for every h, h� ∈ Vi−1,

Pr
x∼DX

[h(x) �= h�(x)] ≤ 2φ(d, 2i−1, δi−1/2)

12

Proof. On event Ei−1, every h ∈ Vi−1 satisfies

Pr
x∼DX

[h(x) �= h∗(x), x ∈ Dis(Vi−1)] ≤ φ(d, 2i−1, δi−1/2) .

Therefore, for any h, h� ∈ Vi−1, we have

Pr
x∼DX

[h(x) �= h�(x)] = Pr
x∼DX

[h(x) �= h�(x), x ∈ Dis(Vi−1)]

≤ Pr
x∼DX

[h(x) �= h∗(x), x ∈ Dis(Vi−1)]

+ Pr
x∼DX

[h�(x) �= h∗(x), x ∈ Dis(Vi−1)]

≤ 2φ(d, 2i−1, δi−1/2) .

Since CAL does not halt before iteration i, we have 2φ(d, 2i−1, δi−1/2) ≥ �, and hence the above
claim and the definition of the disagreement coefficient imply

Pr
x∼DX

[x ∈ Dis(Vi−1)] ≤ θVi−1(�) · 2φ(d, 2i−1, δi−1/2) = µi .

Therefore, µi is an upper bound on the probability that LABEL is queried on xi,j , for each j =
1, 2, . . . , 2i. By Lemma 3, the number of queries to LABEL is at most

2iµi +O
��

2iµi log(2/δi) + log(2/δi)
�
.

with probability at least 1−δi/2. We conclude by a union bound that Pr(Ei | E0∩E1∩· · ·∩Ei−1) ≥
1− δi as required.

We now show that in the event E0∩E1∩ · · · , which holds with probability at least 1− δ, the required
consequences from Lemma 1 are satisfied. The definition of φ from (1) and the halting condition in
CAL imply that the number of iterations I executed by CAL satisfies

σ(d, 2I−1, δI−1/2) ≥ � .

Thus by Fact 1,

2I ≤ O

�
1

�

�
d log

1

�
+ log

1

δ

��
,

which immediately gives the required bound on the number of unlabeled points drawn from DX .
Moreover, I can be bounded as

I = O
�
log(d/�) + log log(1/δ)

�
.

Therefore, in the event E0 ∩ E1 ∩ · · · ∩ EI , CAL returns a set of labeled examples T := T≤I in
which every h ∈ V (T) satisfies

Pr
x∼DX

[h(x) �= h∗(x) ∧ x ∈ Dis(V (T))] ≤ � ,

and the number of LABEL queries is bounded by
I�

i=1

�
2iµi +O

��
2iµi log(2/δi) + log(2/δi)

��

=

I�

i=1

O

2i ·

�
θVi−1

(�)
d log 2i + log(2/δi)

2i

�
+ log(2/δi)

=

I�

i=1

O
�
θVi−1(�) ·

�
d · i+ log(1/δ)

��

= O

�
θV (�) ·

�
d ·
�
log(d/�) + log log(1/δ)

�2
+
�
log(d/�) + log log(1/δ)

�
· log(1/δ)

��

= Õ
�
θV (�) · d · log2(1/�)

�

as claimed.

13

Algorithm 4 SEABEL

input: Nested hypothesis classes H0 ⊆ H1 ⊆ · · · ; oracles SEARCH and LABEL; learning parame-
ters �, δ ∈ (0, 1)

1: initialize S0 ← ∅, k0 ← 0.
2: Draw x1,1, x1,2 at random from DX , T1 ←

�
(x1,1, LABEL(x1,1)), (x1,2, LABEL(x1,2))

�
3: for iteration i = 1, 2, . . . do
4: S ← Si−1, k ← min

�
k� ≥ ki−1 : Hk�(Si−1 ∪ Ti) �= ∅

�
Verification stage (Steps 4–13)

5: loop
6: e ← SEARCHHk

(Hk(S ∪ Ti))
7: if e �= ⊥ then
8: S ← S ∪ {e}
9: k ← min

�
k� > k : Hk�(S ∪ Ti) �= ∅

�
10: else
11: break
12: end if
13: end loop
14: Si ← S, ki ← k # Sampling stage (Steps 14–19)
15: Define new version space V ki

i = Hki(Si ∪ Ti)
16: Ti+1 ← ∅
17: for j = 1, 2, . . . , 2i+1 do
18: Ti+1 ← SAMPLE-AND-LABEL(V ki

i , LABEL, Ti+1)
19: end for
20: if σki

(2i, δi,ki
) ≤ � then

21: return any ĥ ∈ V ki
i

22: end if
23: end for

C An Improved Algorithm for the Realizable Case

In this section, we present an improved algorithm for using SEARCH and LABEL in the realizable
section. We call this algorithm SEABEL (Algorithm 4).

C.1 Description of SEABEL

SEABEL proceeds in iterations like LARCH, but takes more advantage of SEARCH. Each iteration is
split into two stages: the verification stage, and the sampling stage.

In the verification stage (Steps 4–13), SEABEL makes repeated calls to SEARCH to advance to as high
of a complexity class as possible, until ⊥ is returned. When ⊥ is returned, it guarantees that whenever
the latest version space completely agrees on an unlabeled point, then it is also in agreement with h∗,
even if it does not contain h∗.

In the sampling stage (Steps 14–19), SEABEL performs selective sampling, querying and infering
labels based on disagreement over the new version space V ki

i . The preceding verification stage
ensures that whenever a label is inferred, it is guaranteed to be in agreement with h∗.

The algorithm calls Algorithm 6 in Appendix E, where we slightly abuse the notation in
SAMPLE-AND-LABEL that if the counter parameter is missing then it simply does not get updated.

C.2 Proof of Theorem 2

Observe that Ti+1 is an iid sample of size 2i+1 from a distribution (which we call Di) over labeled
examples (x, y), where x ∼ DX , and

y :=

�
V ki
i (x) if x /∈ Dis(V ki

i) ,

h∗(x) if x ∈ Dis(V ki
i) ,

for every x in the support of DX . (T1 is an iid sample from D0 := D; also note k0 = 0 and S0 = ∅.)

14

Lemma 6. Algorithm 4 maintains the following invariants:

1. The loop in the verification stage of iteration i terminates for all i ≥ 1.

2. ki ≤ k∗ for all i ≥ 0.

3. h∗(x) = V ki
i (x) for all x /∈ Dis(V ki

i) for all i ≥ 1.

4. h∗ is consistent with Si ∪ Ti+1 for all i ≥ 0.

Proof. It is easy to see that S only contains examples provided by SEARCH, and hence the labels are
consistent with h∗.

Now we prove that the invariants hold by induction on i, starting with i = 0. For the base case, only
the last invariant needs checking, and it is true because the labels in T1 are obtained from LABEL.

For the inductive step, fix any i ≥ 1, and assume that ki−1 ≤ k∗, and that h∗ is consistent
with Ti. Now consider the verification stage in iteration i. We first prove that the loop in the
verification stage will terminate and establish some properties upon termination. Observe that k
and S are initially ki−1 and Si−1, respectively. Throughout the loop, the examples added to S
are obtained from SEARCH, and hence are consistent with h∗. Thus, h∗ ∈ Hk∗(S ∪ Ti), implying
Hk∗(S∪Ti) �= ∅. If k = k∗, then SEARCHHk∗ (Hk∗(S∪Ti)) would return ⊥ and Algorithm 4 would
exit the loop. If SEARCHHk

(Hk(S ∪ Ti)) �= ⊥, then k < k∗, and k cannot be increased beyond
k∗ since Hk∗(S ∪ Ti) �= ∅. Thus, the loop must terminate with k ≤ k∗, implying ki ≤ k∗. This
establishes invariants 1 and 2. Moreover, because the loop terminates with SEARCHHk

(Hk(S ∪ Ti))

returning ⊥ (and here, k = ki and Hk(S ∪ Ti) = V ki
i), there is no counterexample x ∈ X such

that h∗ disagrees with every h ∈ V ki
i . This implies that h∗(x) = V ki

i (x) for all x /∈ Dis(V ki
i), i.e.,

invariant 3.

Now consider any (x, y) added to Ti+1 in the sampling stage. If x ∈ Dis(V ki
i), the label is obtained

from LABEL, and hence is consistent with h∗; if x /∈ Dis(V ki
i), the label is V ki

i (x), which is the
same as h∗(x) as previously argued. So h∗ is consistent with all examples in Ti+1, and hence also all
examples in Si ∪ Ti+1, proving invariant 4. This completes the induction.

Let Ei be the event in which the following hold:

1. For every k ≥ 0, every h ∈ Hk satisfies

err(h,Di−1) ≤ err(h, Ti) +
�

err(h, Ti)σk(2i, δi,k) + σk(2
i, δi,k) .

2. The number of LABEL queries in iteration i (to form Ti+1) is at most

2i+1 Pr
x∼DX

[x ∈ Dis(V ki
i)] +O

��
2i+1 Pr

x∼DX
[x ∈ Dis(V ki

i)] log(1/δi) + log(1/δi)

�
,

Using Theorem 5 and Lemma 3, along with the union bound, Pr(Ei) ≥ 1− δi. Define E := ∩∞
i=1Ei;

a union bound implies that Pr(E) ≥ 1− δ.

We now prove Theorem 2, starting with the error rate guarantee. Condition on the event E. Since
ki ≤ k∗ (Lemma 6), the definition of σk from (3), the halting condition in Algorithm 4, and Fact 1
imply that the algorithm must halt after at most I iterations, where

2I ≤ O

�
1

�

�
dk∗ log

1

�
+ log

k∗

δ

��
. (6)

So let I denote the iteration in which Algorithm 4 halts. By definition of EI , we have

err(ĥ, Di−1) ≤ err(ĥ, Ti) +

�
err(ĥ, Ti)σki

(2i, δi,ki
) + σki

(2i, δi,ki
)

= σki
(2i, δi,ki

) ≤ � ,

15

where the second inequality follows from the termination condition. By Lemma 6, h∗(x) = V
ki−1

i−1 (x)

for all x /∈ Dis(V
ki−1

i−1). Therefore, D(· | x) = Di−1(· | x) for every x in the support of DX , and

err(ĥ, D) = err(ĥ, Di−1) ≤ � .

Now we bound the unlabeled, LABEL, and SEARCH complexities, all conditioned on event E. First,
as argued above, the algorithm halts after at most I iterations, where 2I is bounded as in (6). The
number of unlabeled examples drawn from DX across all iterations is within a factor of two of the
number of examples drawn in the final sampling stage, which is O(2I). Thus (6) also gives the bound
on the number of unlabeled examples drawn.

Next, we consider the SEARCH complexity. For each iteration i, each call to SEARCH either returns a
counterexample that forces k to increment (but never past k∗, as implied by Lemma 6), or returns ⊥
which causes an exit from the verification stage loop. Therefore, the total number of SEARCH calls is
at most

k∗ + I = k∗ +O

�
log

dk∗

�
+ log log

k∗

δ

�
.

Finally, we consider the LABEL complexity. For i ≤ I , we first show that the version space
V ki
i is always contained in a ball of small radius (with respect to the disagreement pseudometric).

Specifically, for every h, h� in V ki
i , err(h, Ti) = 0 and err(h, Ti) = 0. By definition of Ei, this

implies that
err(h,Di−1) ≤ σki

(2i, δi,ki
) and err(h�, Di−1) ≤ σki

(2i, δi,ki
).

Therefore, by the triangle inequality and the fact ki ≤ k∗,
Pr
x∼D

[h(x) �= h�(x)] ≤ 2σki(2
i, δi,ki) ≤ 2σk∗(2i, δi,k∗).

Also, the upper bound 2I ≤ Õ(dk∗/�) from (6) implies the lower bound σk∗(2i, δi,k∗) ≥ �/2 for
i ≤ I . Thus, the probability mass of the disagreement region can be bounded as

Pr
x∼DX

[x ∈ Dis(V ki
i)] ≤ θki

(�) · 2σk∗(2i, δi,k∗).

By definition of Ei, the number of queries to LABEL at iteration i is at most

2i+1 Pr
x∼DX

[x ∈ Dis(V ki
i)] +O

��
2i+1 Pr

x∼DX
[x ∈ Dis(V ki

i)] log(1/δi,k) + log(1/δi)

�
,

which is at most
O
�
2i · θki

(�) · σk∗(2i, δi,k∗)
�
.

We conclude that the total number of LABEL queries by Algorithm 4 is bounded by

2 +

I�

i=1

O
�
2i · θki

(�) · σk∗(2i, δi,k∗)
�

= 2 +

I�

i=1

O

�
2i · max

k≤k∗
θk(�) · σk∗(2i, δi,k∗)

�

= O

max

k≤k∗
θk(�) ·

I�

i=1

2i · d ln(2
i) + ln((i

2+i)(k∗)2

δ)

2i

= O

�
max
k≤k∗

θk(�) ·
�
dk∗I2 + I log

k∗

δ

��

= O

max

k≤k∗
θk(�) ·

�
dk∗

�
log

dk∗

�
+ log log

k∗

δ

�2

+

�
log

dk∗

�
+ log log

k∗

δ

�
log

k∗

δ

�

= Õ

�
max
k≤k∗

θk(�) ·
�
dk∗ · log2 1

�
+ log k∗

��

as claimed.

16

D A-LARCH: An Adaptive Agnostic Algorithm

In this section, we present a generalization of SEABEL that works in the agnostic setting. We call this
algorithm A-LARCH (Algorithm 5).

D.1 Description of A-LARCH

A-LARCH proceeds in iterations like SEABEL. Each iteration is split into three stages: the error
estimation stage, the verification stage, and the sampling stage.

In the error estimation stage, A-LARCH uses a structural risk minimization approach (Step 4) to
compute γi−1, a (tight) upper bound on Pr[h∗(x) �= y, x ∈ Dis(Vi−1)]. (See item 1 of Lemma 7 for
justification.)

The verification stage (Steps 5–18) and sampling stage (Steps 20–23) in A-LARCH are similar to the
corresponding stages in SEABEL.

Same as SEABEL, the algorithm calls Algorithm 6, 8 and 9 in Appendix E (SAMPLE-AND-LABEL,
PRUNE-VERSION-SPACE and UPGRADE-VERSION-SPACE, respectively), where we slightly abuse
the notation in SAMPLE-AND-LABEL that if the counter parameter is missing then it simply does not
get updated.

Algorithm 5 A-LARCH

input: Nested hypothesis set H0 ⊆ H1 ⊆ · · · ; oracles LABEL and SEARCH; learning parameter
δ ∈ (0, 1); unlabeled examples budget m = 2I+2.

output: hypothesis ĥ.
1: initialize S ← ∅, k0 ← 0.
2: Draw x1,1, x1,2 at random from DX , T1 ←

�
(x1,1, LABEL(x1,1)), (x1,2, LABEL(x1,2))

�
3: for i = 1, 2, . . . , I do
4: γi−1 ← mink�≥ki−1,h∈Hk�

�
err(h, Ti) +

�
err(h, Ti)σk�(2i, δi,k�) + σk�(2i, δi,k�)

�
Error

estimation stage (Step 4)
5: S ← Si−1, k ← ki−1. # Verification stage (Steps 5–18)
6: V k

i ← PRUNE-VERSION-SPACE(Hk(S), Ti, δi)
7: loop
8: if minh∈Hk(S) err(h, Ti) > γi−1 +

�
γi−1σk(2i, δi,k) + σk(2

i, δi,k) then
9: (k, S, V k

i) ← UPGRADE-VERSION-SPACE(k, S, ∅)
10: else
11: e ← SEARCHHk

(V k
i)

12: if e �= ⊥ then
13: (k, S, V k

i) ← UPGRADE-VERSION-SPACE(k, S, {e})
14: else
15: break
16: end if
17: end if
18: end loop
19: Si ← S, ki ← k
20: Ti+1 ← ∅ # Sampling stage (Steps 20–23)
21: for j = 1, 2, . . . , 2i+1 do
22: Ti+1 ← SAMPLE-AND-LABEL(V ki

i , LABEL, Ti+1)
23: end for
24: end for
25: return any ĥ ∈ V kI

I .

17

D.2 Proof of Theorem 3

Let

M(ν, k∗, �, δ) := min

�
2n : n ∈ N, 6

�
νσk∗(2n, δn,k∗) + 21σk∗(2n, δn,k∗) ≤ �

�

= O

�
(dk∗ log(1/�) + log(k∗/δ))(ν + �)

�2

�
.

where the second line is from Fact 1.
Theorem 6 (Restatement of Theorem 3). Assume err(h∗) = ν. If Algorithm 5 is run with inputs hy-
pothesis classes {Hk}∞k=0, oracles SEARCH and LABEL, learning parameter δ, unlabeled examples
budget m = M(ν, k∗, �, δ) and the disagreement coefficient of Hk(S) is at most θk(·), then, with
probability 1− δ:
(1) The returned hypothesis ĥ satisfies

err(ĥ) ≤ ν + � .

(2) The total number of queries to oracle SEARCH is at most

k∗ + logm ≤ k∗ +O

�
log

dk∗

�
+ log log

k∗

δ

�
.

(3) The total number of queries to oracle LABEL is at most

Õ

max

k≤k∗
θk(2ν + 2�) · dk∗

�
log

1

�

�2

·
�
1 +

ν2

�2

�
 .

The proof relies on an auxillary lemma. First, we need to introduce the following notation.

Observe that Ti+1 is an iid sample of size 2i+1 from a distribution (which we call Di) over labeled
examples (x, y), where x ∼ DX and the conditional distribution is

Di(y | x) :=

�
1{y = V ki

i (x)} if x /∈ Dis(V ki
i) ,

D(y | x) if x ∈ Dis(V ki
i) .

T1 is a sample of size 2 from D0 := D.

Let Ei be the event in which the following hold:

1. For every k ≥ 0, every h ∈ Hk satisfies

err(h,Di−1) ≤ err(h, Ti) +
�
err(h, Ti)σk(2i, δi,k) + σk(2

i, δi,k) ,

err(h, Ti) ≤ err(h,Di−1) +
�

err(h,Di−1)σk(2i, δi,k) + σk(2
i, δi,k) .

2. The number of LABEL queries at iteration i is at most

2i+1 Pr
x∼DX

[x ∈ Dis(V ki
i)] +O

��
2i+1 Pr

x∼DX
[x ∈ Dis(V ki

i)] log(1/δi) + log(1/δi)

�
.

Using Theorem 5 and Lemma 3, along with the union bound, Pr(Ei) ≥ 1− δi. Define E := ∩∞
i=1Ei,

by union bound, Pr(E) ≥ 1− δ. Recall that ki is the value of k at the end of iteration i.
Lemma 7. On event E, Algorithm 5 maintains the following invariants:

1. For all i ≥ 1, γi−1 is such that

err(h∗, Di−1) ≤ γi−1 ≤ err(h∗, Di−1)+2
�

err(h∗, Di−1)σk∗(2i, δi,k∗)+3σk∗(2i, δi,k∗).

2. The loop in the verification stage of iteration i terminates for all i ≥ 1.

18

3. ki ≤ k∗ for all i ≥ 0.

4. h∗(x) = V ki
i (x) for all x /∈ Dis(V ki

i) for all i ≥ 1.

5. For all i ≥ 0, for every hypothesis h, err(h,Di)− err(h∗, Di) ≥ err(h,D)− err(h∗, D).
Therefore, h∗ is the optimal hypothesis among ∪kHk with respect to Di.

Proof. Throughout, we assume the event E holds.

It is easy to see that S only contains examples provided by SEARCH, and hence the labels are
consistent with h∗.

Now we prove that the invariants hold by induction on i, starting with i = 0. For the base case,
invariant 3 holds since k0 = 0 ≤ k∗, and invariant 5 holds since D0 = D and h∗ is the optimal
hypothesis in ∪kHk.

Now consider the inductive step. We first prove that invariant 1 holds.

(1) By definition of Ei, for all k� ≥ ki−1, we have for all h ∈ Hk� ,

err(h,Di−1) ≤ err(h, Ti) +
�
err(h, Ti)σk�(2i, δi,k�) + σk�(2i, δi,k�) .

Thus,

min
h∈Hk�

err(h,Di−1) ≤ min
h∈Hk�

err(h, Ti) +
�

err(h, Ti)σk�(2i, δi,k�) + σk�(2i, δi,k�) .

Taking minimum over k� ≥ ki−1 on both sides, notice that h∗ is the optimal hypothesis with
respect to Di−1 and recall the definition of γi−1, we get

err(h∗, Di−1) ≤ γi−1 .

(2) By definition of γi−1, we have

γi−1 = min
k�≥ki−1,h∈Hk�

�
err(h, Ti) +

�
err(h, Ti)σk�(2i, δi,k�) + σk�(2i, δi,k�)

�

Taking k� = k∗, h = h∗, we get

γi−1 ≤ err(h∗, Ti) +
�
err(h∗, Ti)σk∗(2i, δi,k∗) + σk∗(2i, δi,k∗)

In conjunction with the fact that by definition of Ei,

err(h∗, Ti) ≤ err(h∗, Di−1) +
�

err(h∗, Di−1)σk∗(2i, δi,k∗) + σk∗(2i, δi,k∗)

We get

γi−1 ≤ err(h∗, Di−1) + 2
�

err(h∗, Di−1)σk∗(2i, δi,k∗) + 3σk∗(2i, δi,k∗) .

Thus, invariant 1 is established for iteration i.

Now consider the verification stage in iteration i. We first prove that the loop in the verification stage
will terminate and establish some properties upon termination. Observe that k and S are initially ki−1

and Si−1, respectively. Throughout the loop, the examples added to S are obtained from SEARCH,
and hence are consistent with h∗. In addition, we have the following claim regarding k∗.

Claim 2. If invariants 1–5 holds for iteration i− 1, then for iteration i, the following holds:

(a) minh∈Hk∗ (S) err(h, Ti) ≤ γi−1 +
�

γi−1σk∗(2i, δi,k∗) + σk∗(2i, δi,k∗)

(b)

h∗ ∈ V k∗
i =

�
h ∈ Hk∗(S) :

err(h, Ti) ≤ min
h�∈Hk∗ (S)

err(h�, Ti) + 2
�
err(h�, Ti)σk∗(2i, δi,k∗) + 3σk∗(2i, δi,k∗)

�
.

19

Proof. Recall that h∗ is the optimal hypothesis under distribution Di−1. We have already shown
above that err(h∗, Di−1) ≤ γi−1. By the definition of Ei,

min
h∈Hk∗ (S)

err(h, Ti) ≤ err(h∗, Ti)

≤ err(h∗, Di−1) +
�
err(h∗, Di−1)σ(2i, δi,k∗) + σ(2i, δi,k∗)

≤ γi−1 +
�
γi−1σk∗(2i, δi,k∗) + σk∗(2i, δi,k∗)

where the last inequality is from that err(h∗, Di−1) ≤ γi−1. This proves item (a).

On the other hand, for all h� in Hk∗(S),

err(h∗, Ti) ≤ err(h∗, Di−1) +
�

err(h∗, Di−1)σk∗(2i, δi,k∗) + σ(2i, δi,k∗)

≤ err(h�, Di−1) +
�

err(h�, Di−1)σk∗(2i, δi,k∗) + σ(2i, δi,k∗)

≤ err(h�, Ti) + 2
�

err(h�, Ti)σk∗(2i, δi,k∗) + 3σ(2i, δi,k∗) .

where the first inequality is from the definition of Ei, the second inequality is from Invariant 5 of
iteration i− 1, the third inequality is from the definition of Ei.

Thus, err(h∗, Ti) ≤ minh�∈Hk∗ (S) err(h
�, Ti)+2

�
err(h�, Ti)σk∗(2i, δi,k∗)+3σk∗(2i, δi,k∗), prov-

ing item (b).

Claim 2 implies that k cannot increase beyond k∗. To see this, observe that Claim 2(a) implies the
condition in Step 8 is not satisfied for k = k∗. In addition, Claim 2(b) implies that h∗ ∈ V k∗

i �= ∅,
which in turn means that SEARCHHk∗ (V

k∗
i) = ⊥. Hence, the loop in the verification stage would

terminate if k ever reaches k∗. Because iteration i starts with k ≤ k∗ (as invariant 3 holds in iteration
i− 1), invariants 2 and 3 must also hold for iteration i.

Finally, we can establish invariants 4 and 5 for iteration i. Because the loop terminates with
SEARCHHk

(V ki
i) returning ⊥, there is no counterexample x ∈ X such that h∗ disagrees with every

h ∈ V ki
i . This implies that h∗(x) = V ki

i (x) for all x /∈ Dis(V ki
i) (i.e., invariant 4). Hence, for any

hypothesis h,

err(h,Di) = Pr[h(x) �= h∗(x), x /∈ Dis(V ki
i)] + Pr[h(x) �= y, x ∈ Dis(V ki

i)] .

Therefore,

err(h,Di)− err(h∗, Di)

= Pr[h(x) �= h∗(x), x /∈ Dis(V ki
i)] + Pr[h(x) �= y, x ∈ Dis(V ki

i)]

− Pr[h∗(x) �= y, x ∈ Dis(V ki
i)]

≥ Pr[h(x) �= y, x /∈ Dis(V ki
i)]− Pr[h∗(x) �= y, x /∈ Dis(V ki

i)]

+ Pr[h(x) �= y, x ∈ Dis(V ki
i)]− Pr[h∗(x) �= y, x ∈ Dis(V ki

i)]

= err(h,D)− err(h∗, D) ,

which proves invariant 5 for iteration i.

Proof of Theorem 6. Supose event E happens.

We first show a claim regarding the error of hypotheses in current version spaces.

Claim 3. On event E, for all i ≥ 1, for all h ∈ V ki
i ,

err(h,D) ≤ err(h∗, Di−1) + 6
�

err(h∗, Di−1)σk∗(2i, δi,k∗) + 21σk∗(2i, δi,k∗).

20

Proof. First, for every h in V ki
i ,

err(h, Ti) ≤ min
h�∈Hki

(S)
err(h�, Ti) + 2

�
err(h�, Ti)σki(2

i, δi,ki) + 3σki(2
i, δi,ki) ,

and since the condition in step 8 is not satisfied for k = ki, we know that

min
h�∈Hki

(S)
err(h�, Ti) ≤ γi−1 +

�
γi−1σki

(2i, δi,ki
) + σki

(2i, δi,ki
) .

Thus,

err(h, Ti) ≤ γi−1 + 3
�

γi−1σki(2
i, δi,ki) + 6σki(2

i, δi,ki) . (7)

By definition of event Ei, we also have

err(h,Di−1) ≤ err(h, Ti) +
�

err(h, Ti)σki(2
i, δi,ki) + σki(2

i, δi,ki) .

Hence,

err(h,Di−1) ≤ γi−1 + 4
�

γi−1σki(2
i, δi,ki) + 10σki(2

i, δi,ki) .

Furthermore, by item 1 of Lemma 7,

γi−1 ≤ err(h∗, Di−1) + 2
�

err(h∗, Di−1)σk∗(2i, δi,k∗) + 3σk∗(2i, δi,k∗) .

This implies that

err(h,Di−1) ≤ err(h∗, Di−1) + 6
�

err(h∗, Di−1)σki(2
i, δi,ki

) + 21σki
(2i, δi,ki

)

≤ err(h∗, Di−1) + 6
�

err(h∗, Di−1)σk∗(2i, δi,k∗) + 21σk∗(2i, δi,k∗) .

where the second inequality is from item 3 of Lemma 7.

We first prove the error rate guarantee. Suppose iteration i = I = log2 M(ν, k∗, �, δ) has been
reached. Observe that from Claim 3, for ĥ ∈ V kI

I ,

err(ĥ, DI−1)− err(h∗, DI−1) ≤ 6
�
err(h∗, DI−1)σk∗(2I , δI,k∗) + 21σk∗(2I , δI,k∗) ≤ �

where the second inequality is from that m = 2I = M(ν, k∗, �, δ). Thus, by item 5 of Lemma 7,

err(ĥ, D)− err(h∗, D) ≤ err(ĥ, DI−1)− err(h∗, DI−1) ≤ � .

Next, we prove the bound on the number of SEARCH queries. From Lemma 7, Algorithm 5 maintains
the invariant that k ≤ k∗. For each iteration i, each call to SEARCH either returns an example forcing
k to increment, or returns ⊥ which causes an exit from the verification stage loop. Therefore, the
total number of SEARCH calls is at most

k∗ + I ≤ k∗ +O

�
log

dk∗

�2
+ log log

k∗

δ

�
.

Finally, we prove the bound on the number of LABEL queries. This is done in a few steps.

1. We first show that the version space V ki
i is always contained in a ball of small radius (with respect

to the disagreement pseudometric Prx∼DX [h(x) �= h�(x)]). Specifically, for 1 ≤ i ≤ I , for any
h, h� ∈ V ki

i , from Claim 3, in conjunction with triangle inequality, and that err(h∗, Di−1) ≤
err(h,D) = ν,

Pr
x∼DX

[h(x) �= h�(x)]

≤ 2 err(h∗, Di−1) + 12
�

err(h∗, Di−1)σk∗(2i, δi,k∗) + 42σk∗(2i, δi,k∗)

≤ 2ν + 12
�

νσk∗(2i, δi,k∗) + 42σk∗(2i, δi,k∗)

Thus, V ki
i is contained in BHki

(S)(h, 2ν + 12
�
νσk∗(2i, δi,k∗) + 42σk∗(2i, δi,k∗)) for some h

in Hki
(S).

21

2. Next we bound the label complexity per iteration. Note that by the choice of m = 2I =
M(ν, k∗, �, δ), 6

�
νσk∗(2I−1, δI−1,k∗) + 21σk∗(2I−1, δI−1,k∗) ≥ �, therefore for all 1 ≤ i ≤ I ,

6
�
νσk∗(2i, δi,k∗) + 21σk∗(2i, δi,k∗) ≥ �/2. Thus, the size of the disagreement region can be

bounded as

Pr
x∼DX

[x ∈ Dis(V ki
i)] ≤ θk(2ν + �) ·

�
2ν + 12

�
νσk∗(2i, δi,k∗) + 42σk∗(2i, δi,k∗)

�

≤ θk(2ν + �) ·
�
8ν + 48σk∗(2i, δi,k∗)

�
. (8)

By definition of Ei, the number of queries to LABEL at iteration i is at most

2i+1 Pr
x∼DX

[x ∈ Dis(V ki
i)] +O

��
2i+1 Pr

x∼DX
[x ∈ Dis(V ki

i)] log(1/δi,k∗) + log(1/δi,k∗)

�
.

Combining this with (8) gives

LABEL queries in iteration i = O
�
2i · θki(2ν + �) · (ν + σk∗(2i, δi,k∗))

�
. (9)

3. From the setting of m = 2I = Õ(dk∗(ν + �)/�2), we get that

I = O

�
log

dk∗

�
+ log log

k∗

δ

�
.

Now, using (9), we get that the total number of LABEL queries by Algorithm 5 is bounded by

2 +

I�

i=1

O
�
2i · θki

(2ν + �) · (ν + σk∗(2i, δi,k∗))
�

= 2 +

I�

i=1

O

�
2i · max

k≤k∗
θk(2ν + �) · (ν + σk∗(2i, δi,k∗))

�

= O

max

k≤k∗
θk(2ν + �) ·

I�

i=1

2i(ν + σk∗(2i, δi,k∗))

= O

max

k≤k∗
θk(2ν + �) ·

ν2I +

I�

i=1

2i
d ln(2i) + ln((i

2+i)(k∗)2

δ)

2i

= O

�
max
k≤k∗

θk(2ν + �) ·
�
ν2I + dk∗I2 + I log

k∗

δ

��

= O

max

k≤k∗
θk(2ν + �) ·

�
ν2 + �ν

�2

�
dk∗ log

1

�
+ log

k∗

δ

�
+ dk∗

�
log

dk∗

�
+ log log

k∗

δ

�2

+

�
log

dk∗

�
+ log log

k∗

δ

�
log

k∗

δ

�

= Õ

max

k≤k∗
θk(2ν + �) ·

�
dk∗(log

1

�
)2 + log

k∗

δ

�
·
�
1 +

ν2

�2

�
 .

E Performance Guarantees of AA-LARCH

E.1 Detailed Description of Subroutines

Subroutine SAMPLE-AND-LABEL performs standard disagreement-based selective sampling. Specif-
ically, it draws an unlabeled example x from the DX . If x is in the agreement region of version space

22

V , its label is inferred as V (x); otherwise, we query the LABEL oracle to get its label. The counter c
is incremented when LABEL is called.

Algorithm 6 SAMPLE-AND-LABEL

input: Version space V ⊂ H , oracle LABEL, labeled dataset L, counter c.
output: New labeled dataset L�, new counter c�.

1: x ← independent draw from DX (the corresponding label is hidden).
2: if x ∈ Dis(V) then
3: L� ← L ∪

�
(x, LABEL(x))

�

4: c� ← c+ 1
5: else
6: L� ← L ∪

�
(x, V (x))

�

7: c� ← c
8: end if

Subroutine ERROR-CHECK checks if the version space has high error, based on item 2 of Lemma 9
– that is, if k = k∗, then ERROR-CHECK should never fail. Furthermore, if version space Vi fails
ERROR-CHECK, then Vi should have small radius – see Lemma 8 for details.

Algorithm 7 ERROR-CHECK

input: Version space V ⊂ Hk, labeled dataset L of size l, confidence δ.
output: Boolean variable b indicating if V has high error.

1: Let δk := δ/((k + 1)(k + 2)) for all k ≥ 0.
2: γ ← mink�≥k,h∈Hk�

�
err(h, L) + 2

�
err(h, L)σk�(l, δk�) + 3σk�(l, δk�)

�

3: if minh∈V err(h, L) > γ + 2
�

γσk(l, δk) + 3σk(l, δk) then
4: b ← true
5: else
6: b ← false
7: end if

Subroutine PRUNE-VERSION-SPACE performs update on our version space based on standard gener-
alization error bounds. The version space never eliminates the optimal hypothesis in Hk(S) when
working with Hk. Claim 4 shows that, if at step i, k = k∗, then h∗ ∈ Vi from then on.

Algorithm 8 PRUNE-VERSION-SPACE

input: Version space V ⊂ Hk, labeled dataset L of size l, confidence δ.
output: Pruned version space V �.

1: Update version space:

V � ←
�
h ∈ V : err(h, L) ≤ min

h�∈V
err(h�, L) + 2

�
err(h�, L)σk(l, δk) + 3σk(l, δk)

�
,

where δk := δ
(k+1)(k+2) .

Subroutine UPGRADE-VERSION-SPACE is called when (1) a systematic mistake of the version space
Vi has been found by SEARCH; or (2) ERROR-CHECK detects that the error of Vi is high. In either
case, k can be increased to the minimum level such that the updated Hk(S) is nonempty. This still
maintains the invariant that k ≤ k∗.

23

Algorithm 9 UPGRADE-VERSION-SPACE

input: Current level of hypothesis class k, seed set S, seed to be added s.
output: New level of hypothesis class k, new seed set S, updated version space V .

1: S ← S ∪ s
2: k ← min

�
k� > k : Hk�(S) �= ∅

�

3: V ← Hk(S)

E.2 Proof of Theorem 4

This section uses the following definition of σ:

σk(m, δ) = φ(dk,m, δ/3) =
1

m
(d log em2 + log

6

δ
).

We restate Theorem 4 here for convenience.
Theorem 7. There exist constants c1, c2 > 0 such that the following holds. Assume err(h∗) = ν.
Let θk�(·) denote the disagreement coefficient of Vi at the first step i after which k ≥ k�. Fix any
�, δ ∈ (0, 1). Let n� = c1 maxk≤k∗ θk(2ν + 2�)(dk∗ log 1

� + log 1
δ)(1 + ν2/�2) and define C� =

2(n� + k∗τ). Run Algorithm 2 with a nested sequence of hypotheses {Hk}∞k=0, oracles LABEL and
SEARCH, confidence parameter δ, cost ratio τ ≥ 1, and upper bound N = c2(dk∗ log 1

� + log 1
δ)/�

2.
If the cost spent is at least C�, then with probability 1− δ, the current hypothesis h̃ has error at most
ν + �.

Remark. The purpose of having a bound on unlabeled examples, N , is rather technical— to
deter the algorithm from getting into an infinite loop due to its blind self-confidence. Suppose that
AA-LARCH starts with H0 that has a single element h. Then, without such an N -based condition, it
will incorrectly infer the labels of all the unlabeled examples drawn and end up with an infinite loop
between lines 4 and 14. The condition on N is very mild—any N satisfying N = poly(dk∗ , 1/�)
and N = Ω(dk∗/�2) is sufficient.

Proof of Theorem 7. For integer j ≥ 0, define step j as the execution period in AA-LARCH when
the value of i is j.

Let li = |Li|. Denote by LD
i the dataset containing unlabeled examples in Li labeled entirely by

LABEL, i.e., LD
i =

�
(x, LABEL(x)) : (x, y) ∈ Li

�
. Note that LD

i is an iid sample from D.

We call dataset Li has favorable bias, if the following holds for any hypothesis h:
err(h, LD

i)− err(h∗, LD
i) ≤ err(h, Li)− err(h∗, Li). (10)

Let Ei be the event that the following conditions hold:

1. For every k ≥ 0, every h ∈ Hk satisfies

err(h,D) ≤ err(h, LD
i) +

�
err(h, LD

i)σk(li, δi,k) + σk(li, δi,k) ,

err(h, LD
i) ≤ err(h,D) +

�
err(h,D)σk(li, δi,k) + σk(li, δi,k) .

For every h, h� ∈ Hk,
(err(h, LD

i)− err(h�, LD
i))− (err(h,D)− err(h�, D))

≤
�
dLD

i
(h, h�) · σk(li, δi,k) + σk(li, δi,k) .

where dLD
i
(h, h�) = 1

li

�
(x,y)∈LD

i
[h(x) �= h�(x)], fraction of LD

i where h and h� disagree.

2. For every 1 ≤ i� < i, the number of LABEL queries from step i� to step i is at most

i�

j=i�

Pr
x∼DX

[x ∈ Dis(Vj−1)] +O

����
i�

j=i�

Pr
x∼DX

[x ∈ Dis(Vj−1)] log(1/δi) + log(1/δi)

 ,

where Vj denotes its final value in Algorithm 2.

24

Using Theorem 5 and Lemma 5, along with the union bound, Pr(Ei) ≥ 1− δi. Define E := ∩∞
i=1Ei,

by union bound, Pr(E) ≥ 1− δ. We henceforth condition on E holding.

Define

M(ν, k∗, �, δ, N) := min

�
m ∈ N : 8

�
νσk∗(m, δm+k∗N,k∗) + 35σk∗(m, δm+k∗N,k∗) ≤ �

�

≤ O

�
(dk∗ log(1/�) + log(Nk∗/δ))(ν + �)

�2

�

We say that an iteration of the loop is verified if Step 20 is triggered; all other iterations are unverified.
Let Γ be the set of i’s where xi gets added to the final set L, and Δ be the set of i’s where xi gets
discarded. It is easy to see that if i is in Γ (resp. Δ), then the i is in a verified (resp. unverified)
iteration.

Define i∗ := min
�
i ∈ Γ : li ≥ M(ν, k∗, �, δ, N)

�
. Denote by ki the final value of k after i unlabeled

examples are processed.

We need to prove two claims:

1. For i ≥ i∗, err(h̃i) ≤ ν + �, where h̃i is the hypothesis h̃ stored at the end of step i.

2. The total cost spent by Algorithm 2 up to step i∗ is at most C�.

To prove the first claim, fix any i ≥ i∗. The stored hypothesis h̃i is updated only when i ∈ Γ, so it
suffices to consider only i ∈ Γ. From Lemma 10, i ≤ li + k∗N . We also have li ≥ M(ν, k∗, �, δ, N).
Since h̃i ∈ Vi, Lemma 8 gives

err(h̃i) ≤ ν + 8
�

νσk∗(li, δi,k∗) + 35σk∗(li, δi,k∗)

≤ ν + 8
�
νσk∗(li, δli+k∗N,k∗) + 35σk∗(li, δli+k∗N,k∗)

≤ ν + �,

as desired.

For the second claim, we first show that for i in Γ, the version space is contained in a ball of
small radius (with respect to the disagreement pseudometric), thus bounding the size of its dis-
agreement region. Lemma 8 shows that for i ∈ Γ, every hypothesis h ∈ Vi has error at most
ν + 8

�
νσk∗(li, δi,k∗) + 35σk∗(li, δi,k∗).

Thus, by the triangle inequality and Lemma 10,

Vi ⊆ BHki
(h, 2ν + 16

�
νσk∗(li, δi,k∗) + 70σk∗(li, δi,k∗))

⊆ BHki
(h, 2ν + 16

�
νσk∗(li, δli+k∗N,k∗) + 70σk∗(li, δli+k∗N,k∗)).

for some h in Hki
(S). This shows that for i ∈ Γ, i ≤ i∗,

Prx∼DX [x ∈ Dis(Vi)]

≤ θki(2ν + 2�) ·
�
2ν + 16

�
νσk∗(li, δli+k∗N,k∗) + 70σk∗(li, δli+k∗N,k∗)

�

≤ maxk≤k∗ θk(2ν + 2�) ·
�
2ν + 16

�
νσk∗(li, δli+k∗N,k∗) + 70σk∗(li, δli+k∗N,k∗)

�
, (11)

where the first inequality is from the definition of θki
(·) and 8

�
νσk∗(li, δli+k∗N,k∗) +

35σk∗(li, δli+k∗N,k∗) ≥ � for i ≤ i∗, the second inequality is from ki ≤ k∗.

For i ≥ 1, let Zi be the indicator of whether LABEL is queried with xi in Step 12, i.e.,

Zi = 1{xi ∈ Dis(Vi−1)} .

25

For 0 ≤ k ≤ ki∗ , define
i0k := min {i ≤ i∗ : ki ≥ k} , the first step when the hypothesis class reaches ≥ k,

ik := max {i ≤ i∗ : ki ≤ k} , the last step when the hypothesis class is still ≤ k by the end of that step,

i�k := max
�
i0k ≤ i ≤ ik : ki ≤ k, i ∈ Γ

�
, the last verified step for hypothesis class ≤ k (if exists).

We call class k skipped if there is no step i such that ki = k. If level k is skipped, then ik = ik−1 =
i0k − 1, and i�k is undefined.

Let

Wk :=

i�k�

i=i0k+1

Zi

be the number of verified queried examples when working with hypothesis class Hk. Note that Wk/τ
is the number of verified iterations when working with Hk. If level k is skipped, then Wk := 0.

Let

Yk :=

ik+1�

i=i�k+1

Zi

be the number of unverified queried examples when working with hypothesis class Hk. Note that
Yk ≤ τ , and there is at most one unverified iteration when working with Hk. If level k is skipped,then
Yk := 0.

Therefore, the total cost when working with Hk is at most
Wk

τ
· 2τ + Yk + τ ≤ 2τ + 2Wk

Furthermore, Claim 4 implies that there is no unverified iteration when working with Hk∗ . Hence the
total cost when working with Hk∗ has a tighter upper bound, that is, 2Wk∗ .

As a shorthand, let m = M(ν, k∗, �, δ, N). We now bound the total cost incurred up to time i∗ as
k∗−1�

k=0

(2τ + 2Wk) + 2Wk∗ = 2τk∗ + 2

ki∗�

k=0

Wk

= 2τk∗ + 2

ki∗�

k=0

i�k�

i=i0k+1

Zi

= 2τk∗ +O

2

�

i∈Γ:i≤i∗

Pr
x∼DX

[x ∈ Dis(Vi−1)]

+O

�
k∗ ln

1

δi∗

�

≤ 2

τk∗ +O

m−1�

l=1

max
k≤k∗

θk(2ν + 2�)(ν + σk∗(l, δl+k∗N,k∗))

≤ 2

τk∗ +O

max

k≤k∗
θk(2ν + 2�)

m−1�

l=1

(ν + σk∗(l, δl+k∗N,k∗)))

≤ 2

τk∗ + Õ

max

k≤k∗
θk(2ν + 2�)dk∗

�
1 +

ν2

�2

�

≤ 2 (τk∗ + n�) = C�,

where the first equality is by algebra, the second equality is from the definition of Wk, and the third
equality is from the definition of E. The first inequalty is from Lemma 8, using Equation (11) to
bound Prx∼DX [x ∈ Dis(Vi−1)] and noting that {li : i ∈ Γ, i ≤ i∗} = [m].

26

Now we provide the proof of our two key lemmas(Lemmas 8 and 10).

Consider the last call of PRUNE-VERSION-SPACE in step i. Define γi as the value of γ in line 2 of
ERROR-CHECK:

γi = min
k�≥ki,h∈Hk�

�
err(h, Li) + 2

�
err(h, Li)σk�(l, δi,k�) + 3σk�(l, δi,k�)

�
(12)

Meanwhile, from line 1 of PRUNE-VERSION-SPACE, we have for all h ∈ Vi,

err(h, Li) ≤ min
h�∈Vi

err(h�, Li) + 2
�

err(h�, Li)σki(li, δi,ki) + 3σki(li, δi,ki)

where Vi denotes its final value.
Lemma 8. Assume that the following conditions hold:

1. The dataset Li has favorable bias, i.e. it satisfies Equation (10).

2. The version space Vi is such that ERROR-CHECK(Vi, Li, δi) returns false, i.e. it has a low
empirical error on Li:

min
h�∈Vi

err(h�, Li) ≤ γi + 2
�
γiσki

(li, δi,ki
) + 3σki

(li, δi,ki
). (13)

Then, every h ∈ Vi is such that

err(h) ≤ ν + 8
�

νσk∗(li, δi,k∗) + 35σk∗(li, δi,k∗). (14)

where Vi and Li denote their final values, respectively. Specifically, Equation (14) holds for any
h ∈ Vi such that i ∈ Γ or i+ 1 ∈ Γ.

Proof. Lemma 10 shows that ki ≤ k∗, which we will use below.

Start with Equation (13):

min
h�∈Vi

err(h�, Li) ≤ γi + 2
�
γiσki

(li, δi,ki
) + 3σki

(li, δi,ki
).

Since ki ≤ k∗, σki(li, δi,ki) ≤ σk∗(li, δi,k∗).

From the definition of γi (Equation (12)), taking k = k∗ ≥ ki, h = h∗ ∈ Hk∗ ,

γi ≤ err(h∗, Li) + 2
�

err(h∗, Li)σk∗(li, δi,k∗) + 3σk∗(li, δi,k∗).

Plugging the latter into the former and using σ as a shorthand for σk∗(li, δi,k∗), we have

min
h�∈Vi

err(h�, Li) ≤ err(h∗, Li) + 2
�
err(h∗, Li)σ + 3σ + 2

�
(err(h∗, Li) + 2

�
err(h∗, Li)σ + 3σ)σ + 3σ

≤ err(h∗, Li) + 2
�
err(h∗, Li)σ + 6σ + 2(

�
err(h∗, Li)σ +

√
3σ)

≤ err(h∗, Li) + 4
�
err(h∗, Li)σ + 10σ .

Fix any h ∈ Vi. By construction,

err(h, Li) ≤ min
h�∈Vi

err(h�, Li) + 2
�

err(h�, Li)σki
(li, δi,ki

) + 3σki
(li, δi,ki

).

Plugging the former into the latter (recalling that σki(li, δi,ki) ≤ σ) gives

err(h, Li)− err(h∗, Li) ≤4
�
err(h∗, Li)σ + 10σ + 2(

�
err(h∗, Li)σ +

√
10σ) + 3σ

≤6
�

err(h∗, Li)σ + 20σ.

Combined with Equation (10), we have,

err(h, LD
i)− err(h∗, LD

i) ≤ 6
�
err(h∗, Li)σ + 20σ.

27

Since err(h∗, Li) ≤ err(h∗, LD
i),

err(h, LD
i)− err(h∗, LD

i) ≤ 6
�
err(h∗, LD

i)σ + 20σ.

From the definition of Ei,
err(h∗, LD

i) ≤ ν +
√
νσ + σ.

err(h) ≤ err(h, LD
i) +

�
err(h, LD

i)σ + σ.

Plugging in and simplifying algebratically gives

err(h) ≤ ν + 8
√
νσ + 35σ.

Now, if i ∈ Γ, the dataset Li has favorable bias from lemma 11; if i /∈ Γ and i + 1 ∈ Γ, the final
value of Li equals some Lj for some j ∈ Γ, therefore also has favorable bias.

Meanwhile, if i ∈ Γ, Algorithm 2 fails ERROR-CHECK(Vi, Li, δi) for k = ki. If i /∈ Γ and i+1 ∈ Γ,
then i+ 1 is the start of some verified iteration, i.e. i+ 1 = i0k for some k. Hence the final value of
Vi also fails ERROR-CHECK(Vi, Li, δi) for k = ki. In both cases, Equation (13) holds.

Therefore, if i ∈ Γ or i+ 1 ∈ Γ, then Equation (14) holds for every h in Vi.

Lemma 9. For step i, suppose Li has favorable bias, i.e. Equation (10) holds. Then for any k and
any h ∈ Hk,

err(h∗, Li)− err(h, Li) ≤ 2
�
err(h, Li)σk̄(li, δi,k̄) + 3σk̄(li, δi,k̄),

where k̄ = max(k∗, k). Specifically:

1. for any h ∈ Hk∗ ,

err(h∗, Li)− err(h, Li) ≤ 2
�
err(h, Li)σk∗(li, δi,k∗) + 3σk∗(li, δi,k∗), (15)

2. The empirical error of h∗ on Li can be bounded as follows:

err(h∗, Li) ≤ γi + 2
�
γiσk∗(li, δi,k∗) + 3σk∗(li, δi,k∗) (16)

Proof. Fix any k and h ∈ Hk. Since k̄ ≥ k, σk(li, δi,k) ≤ σk̄(li, δi,k̄). Similarly, σk∗(li, δi,k∗) ≤
σk̄(li, δi,k̄). Using the shorthand σ := σk̄(li, δi,k̄) and noting that h, h∗ ∈ Hk̄,

err(h∗, Li)− err(h, Li) ≤ err(h∗, LD
i)− err(h, LD

i)

≤
�
dLD

i
(h∗, h) · σ + σ

≤
�
(err(h∗, Li) + err(h, Li)) · σ + σ.

≤
�
err(h∗, Li)σ +

�
err(h, Li)σ + σ.

where the first inequality is from Equation (10), the second inequality is from the definition of Ei and
the optimality of h∗, and the third inequality is from the triangle inequality. Letting A = err(h∗, Li),
B = err(h, Li), and C = B +

√
Bσ + σ, we can rewrite the above inequality as A ≤ C +

√
Aσ.

Solving the resulting quadratic equation in terms of A, we have A ≤ C + σ +
√
Cσ, or

A ≤ B +
√
Bσ + 2σ +

�
σ(B +

√
Bσ + σ)

≤ B +
√
Bσ + 2σ +

√
σ(
√
B +

√
σ)

≤ B + 2
√
Bσ + 3σ,

or
err(h∗, Li) ≤ err(h, Li) + 2

�
err(h, Li)σ + 3σ.

Specifically:

28

1. Taking k = k∗, we get that Equation (15) holds for any h ∈ Hk∗ , establishing item 1.

2. Define

(k̂i, ĥi) := arg min
k�≥k∗,h∈Hk�

�
err(h, Li) + 2

�
err(h, Li)σk�(li, δi,k�) + 3σk�(li, δi,k�)

�
.

In this notation, γi = err(ĥi, Li) + 2
�

err(ĥi, Li)σk̂i
(li, δi,k̂i

) + 3σk̂i
(li, δi,k̂i

). We have

γi + 2
�
γiσk∗(li, δi,k∗) + 3σk∗(li, δi,k∗) ≥ err(ĥi, Li) + 2

�
err(ĥi, Li)σk̄(li, δi,k̄) + 3σk̄(li, δi,k̄)

≥ err(h∗, Li),

where k̄ = max(k∗, k̂i) and the last inequality comes from applying Lemma 9 for h� =
ĥi ∈ Hk̂i

and k̄. This establishes Equation (16), proving item 2.

Lemma 10. At any step of AA-LARCH, k ≤ k∗. Consequently, for every i, i ≤ li + k∗N .

Proof. We prove the lemma in two steps.

1. Notice that there are two places where k is incremented in AA-LARCH, line 6 and line 17. If
k < k∗, neither line would increment it beyond k∗ as h∗ ∈ Hk∗ and h∗ is consistent with S. If
k = k∗, Claim 4 below shows that k will stay at k∗. This proves the first part of the claim.

2. An iteration becomes unverified only if k gets incremented, and Algorithm 2 maintains the
invariant that ki ≤ k∗. Thus, the number of unverified iterations is at most k∗. In addition, each
newly sampled set is of size at most N . So the number of unverified examples is at most k∗N .

Hence, i—the total number of examples processed up to step i—equals the sum of the number of
verified examples li, plus the number of unverified examples, which is at most k∗N . This proves
the second part of the claim.

We show a technical claim used in the proof of Lemma 10 which guarantees that, on event E, when
k has reached k∗, it will remain k∗ from then on. Recall that ki is defined as the final value of k at
the end of step i; i0k = min {i : ki ≥ k} is the step at the end of which the working hypothesis space
reaches level ≥ k.

Claim 4. If i0k∗ is finite, then the following hold for all i ≥ i0k∗ :

(C1) Li has favorable bias.

(C2) Step i terminates with ki = k∗.

(C3) h∗ ∈ Vi.

Above, Li and Vi denote their final values in AA-LARCH.

Proof. By induction on i.

Base Case. Let i = i0k∗ . Consider the execution of AA-LARCH at the start of step i0k∗ (line 11).
Since by definition of ik, the final value of k at step i0k∗ − 1 is < k∗, at step i0k∗ , line 5 or line 16 is
triggered. Hence the dataset Li0

k∗ equals some verified labeled dataset L stored by AA-LARCH, i.e.
Lj for some j ∈ Γ. Thus, applying Lemma 11, Claim C1 holds.

We focus on the moment in step i = i0k∗ when k increases to k∗ in UPGRADE-VERSION-SPACE(line 6
or 17). Now consider the temporary Vi0

k∗ computed in the next line (PRUNE-VERSION-SPACE). Item
2 of Lemma 9 implies that the version space Vi0

k∗ is such that ERROR-CHECK(Vi0
k∗ , Li0

k∗ , δi0k∗)

returns false. Therefore the final value of k in step i0k∗ is exactly k∗. Claim C2 follows.

Claim C2 implies the temporary Vi0
k∗ is final. Item 1 of Lemma 9 implies that h∗ ∈ Vi0

k∗ , establishing
Claim C3.

29

Inductive Case. Now consider i ≥ i0k∗ + 1. The inductive hypothesis says that Claims C1–3 hold
for step i− 1.

Claim C1 follows from Claim C3 in step i− 1. Indeed, the newly added xi either comes from the
agreement region of Vi−1, in which case label yi agrees with h∗(xi), or is from the disagreement
region of Vi−1, in which case the inferred label yi is queried from LABEL. Following the same
reasoning as the proof of Lemma 11, Claim C1 is true.

Claims C2 and C3 follows the same reasoning as the proof for the base case.

Lemma 11. If i is in Γ, then Li has favorable bias. That is, for any hypothesis h,

err(h, LD
i)− err(h∗, LD

i) ≤ err(h, Li)− err(h∗, Li).

Proof. We can split LD
i into two subsets, the subset where LD

i agrees with Li and the subset
QD

i = {(x, y) ∈ LD
i : h∗(x) �= y} where LD

i disagrees with Li. On the former subset, LD
i is

identical to Li, thus we just need to show that

err(h,QD
i)− err(h∗, QD

i) ≤ err(h,Qi)− err(h∗, Qi),

where Qi = {(x, y) : (x,−y) ∈ QD
i }. Since err(h∗, QD

i) = 1 and err(h∗, Qi) = 0, this reduces to
showing that err(h,QD

i) ≤ 1 + err(h,Qi), which is easily seen to hold for any h as err(h,QD
i) ≤ 1

and err(h,Qi) ≥ 0.

30

