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Abstract

Segmentation of 3D images is a fundamental problem in biomedical image analysis.
Deep learning (DL) approaches have achieved state-of-the-art segmentation perfor-
mance. To exploit the 3D contexts using neural networks, known DL segmentation
methods, including 3D convolution, 2D convolution on planes orthogonal to 2D
image slices, and LSTM in multiple directions, all suffer incompatibility with the
highly anisotropic dimensions in common 3D biomedical images. In this paper,
we propose a new DL framework for 3D image segmentation, based on a com-
bination of a fully convolutional network (FCN) and a recurrent neural network
(RNN), which are responsible for exploiting the intra-slice and inter-slice contexts,
respectively. To our best knowledge, this is the first DL framework for 3D image
segmentation that explicitly leverages 3D image anisotropism. Evaluating using a
dataset from the ISBI Neuronal Structure Segmentation Challenge and in-house
image stacks for 3D fungus segmentation, our approach achieves promising results
comparing to the known DL-based 3D segmentation approaches.

1 Introduction

In biomedical image analysis, a fundamental problem is the segmentation of 3D images, to identify
target 3D objects such as neuronal structures [1] and knee cartilage [15]. In biomedical imaging, 3D
images often consist of highly anisotropic dimensions [11], that is, the scale of each voxel in depth
(the z-axis) can be much larger (e.g., 5∼10 times) than that in the xy plane.

On various biomedical image segmentation tasks, deep learning (DL) methods have achieved tremen-
dous success in terms of accuracy (outperforming classic methods by a large margin [4]) and
generality (mostly application-independent [16]). For 3D segmentation, known DL schemes can be
broadly classified into four categories. (I) 2D fully convolutional networks (FCN), such as U-Net
[16] and DCAN [2], can be applied to each 2D image slice, and 3D segmentation is then generated
by concatenating the 2D results. (II) 3D convolutions can be employed to replace 2D convolutions
[10], or combined with 2D convolutions into a hybrid network [11]. (III) Tri-planar schemes (e.g.,
[15]) apply three 2D convolutional networks based on orthogonal planes (i.e., the xy, yz, and xz
planes) to perform voxel classification. (IV) 3D segmentation can also be conducted by recurrent
neural networks (RNN). A most representative RNN based scheme is Pyramid-LSTM [18], which
uses six generalized long short term memory networks to exploit the 3D context.
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Figure 1: An overview of our DL framework for 3D segmentation. There are two key components in
the architecture: kU-Net and BDC-LSTM. kU-Net is a type of FCN and is applied to 2D slices to
exploit intra-slice contexts. BDC-LSTM, a generalized LSTM network, is applied to a sequence of
2D feature maps, from 2D slice z − ρ to 2D slice z + ρ, extracted by kU-Nets, to extract hierarchical
features from the 3D contexts. Finally, a softmax function (the green arrows) is applied to the result
of each slice in order to build the segmentation probability map.

There are mainly three issues to the known DL-based 3D segmentation methods. First, simply linking
2D segmentations into 3D cannot leverage the spatial correlation along the z-direction. Second,
incorporating 3D convolutions may incur extremely high computation costs (e.g., high memory
consumption and long training time [10]). Third, both 3D convolution and other circumventive
solutions (to reduce intensive computation of 3D convolution), like tri-planar schemes or Pyramid-
LSTM, perform 2D convolutions with isotropic kernel on anisotropic 3D images. This could be
problematic, especially for images with substantially lower resolution in depth (the z-axis). For
instance, both the tri-planar schemes and Pyramid-LSTM perform 2D convolutions on the xz and
yz planes. For two orthogonal one-voxel wide lines in the xz plane, one along the z-direction and
the other along the x-direction, they may correspond to two structures at very different scales, and
consequently may correspond to different types of objects — or even may not both correspond
to objects of interest. But, 2D convolutions on the xz plane with isotropic kernel are not able to
differentiate these two lines. On the other hand, 3D objects of a same type, if rotated in 3D, may have
very different appearances in the xz or yz plane. This fact makes the features extracted by such 2D
isotropic convolutions in the xz or yz plane suffer poor generality (e.g., may cause overfitting).

In common practice, a 3D biomedical image is often represented as a sequence of 2D slices (called
a z-stack). Recurrent neural networks, especially LSTM [8], are an effective model to process
sequential data [14, 17]. Inspired by these facts, we propose a new framework combining two DL
components: a fully convolutional network (FCN) to extract intra-slice contexts, and a recurrent
neural network (RNN) to extract inter-slice contexts. Our framework is based on the following ideas.

Our FCN component employs a new deep architecture for 2D feature extraction. It aims to efficiently
compress the intra-slice information into hierarchical features. Comparing to known FCN for 2D
biomedical imaging (e.g., U-Net [16]), our new FCN is considerably more effective in dealing with
objects of very different scales by simulating human behaviors in perceiving multi-scale information.

We introduce a generalized RNN to exploit 3D contexts, which essentially applies a series of 2D
convolutions on the xy plane in a recurrent fashion to interpret 3D contexts while propagating
contextual information in the z-direction. Our key idea is to hierarchically assemble intra-slice
contexts into 3D contexts by leveraging the inter-slice correlations. The insight is that our RNN can
distill 3D contexts in the same spirit as the 2D convolutional neural network (CNN) extracting a
hierarchy of contexts from a 2D image. Comparing to known RNN models for 3D segmentation,
such as Pyramid-LSTM [18], our RNN model is free of the problematic isotropic convolutions on
anisotropic images, and can exploit 3D contexts more efficiently by combining with FCN.

The essential difference between our new DL framework and the known DL-based 3D segmentation
approaches is that we explicitly leverage the anisotropism of 3D images and efficiently construct a
hierarchy of discriminative features from 3D contexts by performing systematic 2D operations. Our
framework can serve as a new paradigm of migrating 2D DL architectures (e.g., CNN) to effectively
exploit 3D contexts and solve 3D image segmentation problems.

2 Methodology

A schematic view of our DL framework is given in Fig. 1. This framework is a combination of two
key components: an FCN (called kU-Net) and an RNN (called BDC-LSTM), to exploit intra-slice
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Figure 2: Illustrating four different ways to organize k submodule U-Nets in kU-Net (here k = 2).
U-Net-2 works in a coarser scale (downsampled once from the original image), while U-Net-1 works
in a finer scale (directly cropped from the original image). kU-Net propagates high level information
extracted by U-Net-2 to U-Net-1. (A) U-Net-1 fuses the output of U-Net-2 in the downsampling
stream. (B) U-Net-1 fuses the output of U-Net-2 in the upsampling stream. (C) U-Net-1 fuses the
intermediate result of U-Net-2 in the most abstract layer. (D) U-Net-1 takes every piece of information
from U-Net-2 in the commensurate layers. Architecture (A) is finally adopted for kU-Net.

and inter-slice contexts, respectively. Section 2.1 presents the kU-Net, and Section 2.2 introduces the
derivation of the BDC-LSTM. We then show how to combine these two components in the framework
to conduct 3D segmentation. Finally, we discuss the training strategy.

2.1 The FCN Component: kU-Net

The FCN component aims to construct a feature map for each 2D slice, from which object-relevant
information (e.g., texture, shapes) will be extracted and object-irrelevant information (e.g., uneven
illumination, imaging contrast) will be discarded. By doing so, the next RNN component can
concentrate on the inter-slice context.

A key challenge to the FCN component is the multi-scale issue. Namely, objects in biomedical images,
specifically in 2D slices, can have very different scales and shapes. But, the common FCN [13]
and other known variants for segmenting biomedical images (e.g., U-Net [16]) work on a fixed-size
perception field (e.g., a 500× 500 region in the whole 2D slice). When objects are of larger scale
than the pre-defined perception field size, it can be troublesome for such FCN methods to capture the
high level context (e.g., the overall shapes). In the literature, a multi-stream FCN was proposed in
ProNet [19] to address this multi-scale issue in natural scene images. In ProNet, the same image is
resized to different scales and fed in parallel to a shared FCN with the same parameters. However,
the mechanism of shared parameters may make it not suitable for biomedical images, because objects
of different scales may have very different appearances and require different FCNs to process.

We propose a new FCN architecture to simulate how human experts perceive multi-scale information,
in which multiple submodule FCNs are employed to work on different image scales systematically.
Here, we use U-Net [16] as the submodule FCN and call the new architecture kU-Net. U-Net [16] is
chosen because it is a well-known FCN achieving huge success in biomedical image segmentation.
U-Net [16] consists of four downsampling steps followed by four upsampling steps. Skip-layer
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connections exist between each downsampled feature map and the commensurate upsampled feature
map. We refer to [16] for the detailed structure of U-Net.

We observed that, when human experts label the ground truth, they tend to first zoom out the image
to figure out where are the target objects and then zoom in to label the accurate boundaries of
those targets. There are two critical mechanisms in kU-Net to simulate such human behaviors. (1)
kU-Net employs a sequence of submodule FCNs to extract information at different scales sequentially
(from the coarsest scale to the finest scale). (2) The information extracted by the submodule FCN
responsible for a coarser scale will be propagated to the subsequent submodule FCN to assist the
feature extraction in a finer scale.

First, we create different scales of an original input 2D image by a series of connections of k − 1
max-pooling layers. Let It be the image of scale t (t = 1, . . . , k), i.e., the result after t − 1 max-
pooling layers (I1 is the original image). Each pixel in It corresponds to 2t−1 pixels in the original
image. Then, we use U-Net-t (t = 1, . . . , k), i.e., the t-th submodule, to process It. We keep the
input window size the same across all U-Nets by using crop layers. Intuitively, U-Net-1 to U-Net-k
all have the same input size, while U-Net-1 views the smallest region with the highest resolution and
U-Net-k views the largest region with the lowest resolution. In other words, for any 1 ≤ t1 < t2 ≤ k,
U-Net-t2 is responsible for a larger image scale than U-Net-t1.

Second, we need to propagate the higher level information extracted by U-Net-t (2 ≤ t ≤ k) to
the next submodule, i.e., U-Net-(t − 1), so that clues from a coarser scale can assist the work in
a finer scale. A natural strategy is to copy the result from U-Net-t to the commensurate layer in
U-Net-(t− 1). As shown in Fig. 2, there are four typical ways to achieve this: (A) U-Net-(t− 1) only
uses the final result from U-Net-t and uses it at the start; (B) U-Net-(t− 1) only uses the final result
from U-Net-t and uses it at the end; (C) U-Net-(t− 1) only uses the most abstract information from
U-Net-t; (D) U-Net-(t− 1) uses every piece of information from U-Net-t. Based on our trial studies,
type (A) and type (D) achieved the best performance. Since type (A) has fewer parameters than (D),
we chose type (A) as our final architecture to organize the sequence of submodule FCNs.

From a different perspective, each submodule U-Net can be viewed as a “super layer". Therefore,
the kU-Net is a “deep” deep learning model. Because the parameter k exponentially increases the
input window size of the network, a small k is sufficient to handle many biomedical images (we use
k = 2 in our experiments). Appended with a 1×1 convolution (to convert the number of channels in
the feature map) and a softmax layer, the kU-Net can be used for 2D segmentation problems. We
will show (see Table 1) that kU-Net (i.e., a sequence of collaborative U-Nets) can achieve better
performance than a single U-Net in terms of segmentation accuracy.

2.2 The RNN Component: BDC-LSTM

In this section, we first review the classic LSTM network [8], and the generalized convolutional
LSTM [14, 17, 18] (denoted by CLSTM). Next, we describe how our RNN component, called
BDC-LSTM, is extended from CLSTM. Finally, we propose a deep architecture for BDC-LSTM,
and discuss its advantages over other variants.

LSTM and CLSTM: RNN (e.g., LSTM) is a neural network that maintains a self-connected internal
status acting as a “memory". The ability to “remember” what has been seen allows RNN to attain
exceptional performance in processing sequential data.

Recently, a generalized LSTM, denoted by CLSTM, was developed [14, 17, 18]. CLSTM explicitly
assumes that the input is images and replaces the vector multiplication in LSTM gates by convolutional
operators. It is particularly efficient in exploiting image sequences. For instance, it can be used for
image sequence prediction either in an encoder-decoder framework [17] or by combining with optical
flows [14]. Specifically, CLSTM can be formulated as follows.


iz = σ(xz ∗Wxi + hz−1 ∗Whi + bi)
fz = σ(xz ∗Wxf + hz−1 ∗Whf + bf )
cz = cz−1 � fz + iz � tanh(xz ∗Wxc + hz−1 ∗Whc + bc)
oz = σ(xz ∗Wxo + hz−1 ∗Who + bo)
hz = oz � tanh(cz)

(1)
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Here, ∗ denotes convolution and � denotes element-wise product. σ() and tanh() are logistic
sigmoid and hyperbolic tangent functions; iz , fz , oz are the input gate, forget gate, and output gate,
bi, bf , bc, bo are bias terms, and xz , cz , hz are the input, the cell activation state, and the hidden
state, at slice z. W∗∗ are diagonal weight matrices governing the value transitions. For instance, Whf

controls how the forget gate takes values from the hidden state. The input to CLSTM is a feature
map of size fin×lin×win, and the output is a feature map of size fout×lout×wout, lout≤ lin and
wout≤win. lout and wout depend on the size of the convolution kernels and whether padding is used.

BDC-LSTM: We extend CLSTM to Bi-Directional Convolutional LSTM (BDC-LSTM). The key
extension is to stack two layers of CLSTM, which work in two opposite directions (see Fig. 3(A)).
The contextual information carried in the two layers, one in z−-direction and the other in z+-direction,
is concatenated as output. It can be interpreted as follows. To determine the hidden state at a slice
z, we take the 2D hierarchical features in slice z (i.e., xz) and the contextual information from both
the z+ and z− directions. One layer of CLSTM will integrate the information from the z−-direction
(resp., z+-direction) and xz to capture the minus-side (resp., plus-side) context (see Fig. 3(B)). Then,
the two one-side contexts (z+ and z−) will be fused.

In fact, Pyramid-LSTM [18] can be viewed as a different extension of CLSTM, which employs six
CLSTMs in six different directions (x+/−, y+/−, and z+/−) and sums up the outputs of the six
CLSTMs. However, useful information may be lost during the output summation. Intuitively, the sum
of six outputs can only inform a simplified context instead of the exact situations in different directions.
It should be noted that concatenating six outputs may greatly increase the memory consumption, and
is thus impractical in Pyramid-LSTM. Hence, besides avoiding problematic convolutions on the xz
and yz planes (as discussed in Section 1), BDC-LSTM is in principle more effective in exploiting
inter-slice contexts than Pyramid-LSTM.

Deep Architectures: Multiple BDC-LSTMs can be stacked into a deep structure by taking the output
feature map of one BDC-LSTM as the input to another BDC-LSTM. In this sense, each BDC-LSTM
can be viewed as a super “layer" in the deep structure. Besides simply taking one output as another
input, we can also insert other operations, like max-pooling or deconvolution, in between BDC-LSTM
layers. As a consequence, deep architectures for 2D CNN can be easily migrated or generalized to
build deep architectures for BDC-LSTM. This is shown in Fig. 3(C)-(D). The underlying relationship
between deep BDC-LSTM and 2D deep CNN is that deep CNN extracts a hierarchy of non-linear
features from a 2D image and a deeper layer aims to interpret higher level information of the image,
while deep BDC-LSTM extracts a hierarchy of hierarchical contextual features from the 3D context
and a deeper BDC-LSTM layer seeks to interpret higher level 3D contexts.

In [14, 17, 18], multiple CLSTMs were simply stacked one by one, maybe with different kernel sizes,
in which a CLSTM “layer” may be viewed as a degenerated BDC-LSTM “layer”. When considering
the problem in the context of CNN, as discussed above, one can see that no feature hierarchy was
even formed in these simple architectures. Usually, convolutional layers are followed by subsampling,
such as max-pooling, in order to form the hierarchy.

We propose a deep architecture combining max-pooling, dropout and deconvolution layers with the
BDC-LSTM layers. The detailed structure is as follows (the numbers in parentheses indicate the size
changes of the feature map in each 2D slice). Input (64×126×126), dropout layer with p=0.5, two
BDC-LSTMs with 64 hidden units and 5×5 kernels (64×118×118), 2×2 max-pooling (64×59×59),
dropout layer with p=0.5, two BDC-LSTMs with 64 hidden units and 5×5 kernels (64×51×51), 2×2
deconvolution (64×102×102), dropout layer with p=0.5, 3×3 convolution layer without recurrent
connections (64×100×100), 1×1 convolution layer without recurrent connections (2×100×100).
(Note: All convolutions in BDC-LSTM use the same kernel size as indicated in the layers.) Thus,
to predict the probability map of a 100×100 region, we need the 126×126 region centered at the
same position as the input. In the evaluation stage, the whole feature map can be processed using the
overlapping-tile strategy [16], because deep BDC-LSTM is fully convolutional along the z-direction.
Suppose the feature map of a whole slice is of size 64×W×H . The input tensor will be padded with
zeros on the borders to resize into 64×(W+26)×(H+26). Then, a sequence of 64×126 ×126
patches will be processed each time. The results are stitched to form the 3D segmentation.
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Figure 3: (A) The structure of BDC-LSTM, where two layers of CLSTM modules are connected in a
bi-directional manner. (B) A graphical illustration of information propagation through BDC-LSTM
along the z-direction. (C) The circuit diagram of BDC-LSTM. The green arrows represent the
recurrent connections in opposite directions. When rotating this diagram by 90 degrees, it has a
similar structure of a layer in CNN, except the recurrent connections. (D) The deep structure of
BDC-LSTM used in our method. BDC-LSTM can be stacked in a way analogous to a layer in CNN.
The red arrows are 5 × 5 convolutions. The yellow and purple arrows indicate max-pooling and
deconvolution, respectively. The rightmost blue arrow indicates a 1 × 1 convolution. Dropout is
applied (not shown) after the input layer, the max-pooling layer and the deconvolution layer.

2.3 Combining kU-Net and BDC-LSTM

The motivation of solving 3D segmentation by combining FCN (kU-Net) and RNN (BDC-LSTM) is
to distribute the burden of exploiting 3D contexts. kU-Net extracts and compresses the hierarchy of
intra-slice contexts into feature maps, and BDC-LSTM distills the 3D context from a sequence of
abstracted 2D contexts. These two components work coordinately, as follows.

Suppose the 3D image consists of Nz 2D slices of size Nx ×Ny each. First, kU-Net extracts feature
maps of size 64×Nx ×Ny, denoted by fz2D, from each slice z. The overlapping-tile strategy [16]
will be adopted when the 2D images are too big to be processed by kU-Net in one shot. Second,
BDC-LSTM works on fz2D to build the hierarchy of non-linear features from 3D contexts and
generate another 64×Nx ×Ny feature map, denoted by fz3D, z = 1, . . . Nz . For each slice z, fh2D
(h = z−ρ, . . . , z, . . . , z+ρ) will serve as the context (ρ = 1 in our implementation). Finally, a
softmax function is applied to fz3D to generate the 3D segmentation probability map.

2.4 Training Strategy

Our whole network, including kU-Net and BDC-LSTM, can be trained either end-to-end or in a decou-
pled manner. Sometimes, biomedical images are too big to be processed as a whole. Overlapping-tile
is a common approach [16], but can also reduce the range of the context utilized by the networks.
The decoupled training, namely, training kU-Net and BDC-LSTM separately, is especially useful
in situations where the effective context of each voxel is very large. Given the same amount of
computing resources (e.g., GPU memory), when allocating all resources to train one component
only, both kU-Net and BDC-LSTM can take much larger tiles as input. In practice, even though the
end-to-end training has its advantage of simplicity and consistency, the decoupled training strategy is
preferred for challenging problems.

kU-Net is initialized using the strategy in [7] and trained using Adam [9], with first moment coefficient
(β1)=0.9, second moment coefficient (β2)=0.999, ε=1e−10, and a constant learning rate 5e−5. The
training method for BDC-LSTM is Rms-prop [6], with smoothing constant (α)=0.9 and ε=1e−5.
The initial learning rate is set as 1e−3 and halves every 2000 iterations, until 1e−5. In each iteration,
one training example is randomly selected. The training data is augmented with rotation, flipping,
and mirroring. To avoid gradient explosion, the gradient is clipped to [−5, 5] in each iteration. The
parameters in BDC-LSTM are initialized with random values uniformly selected from [−0.02, 0.02].

We use a weighted cross-entropy loss in both the kU-Net and BDC-LSTM training. In biomedical
image segmentation, there may often be certain important regions in which errors should be reduced
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Table 1: Experimental results on the ISBI neuron dataset and in-house 3D fungus datasets.

Neuron Fungus

Method Vrand Vinfo Pixel Error

Pyramid-LSTM [18] 0.9677 0.9829 N/A
U-Net [16] 0.9728 0.9866 0.0263
Tri-Planar [15] 0.8462 0.9180 0.0375
3D Conv [10] 0.8178 0.9125 0.0630

Ours (FCN only) 0.9749 0.9869 0.0242
Ours (FCN+simple RNN) 0.9742 0.9869 0.0241
Ours (FCN+deep RNN) 0.9753 0.9870 0.0215

as much as possible. For instance, when two objects touch tightly to each other, it is important to
make correct segmentation along the separating boundary between the two objects, while errors near
the non-touching boundaries are of less importance. Hence, we adopt the idea in [16] to assign a
unique weight for each voxel in the loss calculation.

3 Experiments

Our framework was implemented in Torch7 [5] and the RNN package [12]. We conducted experiments
on a workstation with 12GB NVIDIA TESLA K40m GPU, using CuDNN library (v5) for GPU
acceleration. Our approach was evaluated in two 3D segmentation applications and compared with
several state-of-the-art DL methods.

3D Neuron Structures: The first evaluation dataset was from the ISBI challenge on the segmentation
of neuronal structures in 3D electron microscopic (EM) images [1]. The objective is to segment the
neuron boundaries. Briefly, there are two image stacks of 512× 512× 30 voxels, where each voxel
measures 4× 4× 50µm. Noise and section alignment errors exist in both stacks. One stack (with
ground truth) was used for training, and the other was for evaluation. We adopted the same metrics
as in [1], i.e., foreground-restricted rand score (Vrand) and information theoretic score (Vinfo) after
border thinning. As shown in [1], Vrand and Vinfo are good approximation to the difficulty for human
to correct the segmentation errors, and are robust to border variations due to the thickness.

3D Fungus Structures: Our method was also evaluated on in-house datasets for the segmentation of
tubular fungus structures in 3D images from Serial Block-Face Scanning Electron Microscope. The
ratio of the voxel scales is x : y : z = 1 : 1 : 3.45. There are five stacks, in all of which each slice is
a grayscale image of 853× 877 pixels. We manually labeled the first 16 slices in one stack as the
training data and used the other four stacks, each containing 81 sections, for evaluation. The metric
to quantify the segmentation accuracy is pixel error, defined as the Euclidean distance between the
ground truth label (0 or 1) and segmentation probability (a value in the range of [0, 1]). Note that we
do not use the same metric as the neuron dataset, because the “border thinning" is not applicable to
the fungus datasets. The pixel error was actually adopted at the time of the ISBI neuron segmentation
challenge, which is also a well-recognized metric to quantify pixel-level accuracy. It is also worth
mentioning that it is impractical to label four stacks for evaluation due to intensive labor. Hence,
we prepared the ground truth every 5 sections in each evaluation stack (i.e., 5, 10, 15, . . ., 75, 80).
Totally, 16 sections were selected to estimate the performance on a whole stack. Namely, all 81
sections in each stack were segmented, but 16 of them were used to compute the evaluation score in
the corresponding stack. The reported performance is the average of the scores for all four stacks.

Recall the four categories of known deep learning based 3D segmentation methods described in
Section 1. We selected one typical method from each category for comparison. (1) U-Net [16],
which achieved the state-of-the-art segmentation accuracy on 2D biomedical images, is selected as
the representative scheme of linking 2D segmentations into 3D results. (Note: We are aware of the
method [3] which is another variant of 2D FCN and achieved excellent performance on the neuron
dataset. But, different from U-Net, the generality of [3] in different applications is not yet clear. Our
test of [3] on the in-house datasets showed an at least 5% lower F1-score than U-Net. Thus, we
decided to take U-Net as the representative method in this category.) (2) 3D-Conv [10] is a method
using CNN with 3D convolutions. (3) Tri-planar [15] is a classic solution to avoid high computing
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Figure 4: (A) A cropped region in a 2D fungus image. (B) The result using only the FCN component.
(C) The result of combining FCN and RNN. (D) The true fungi to be segmented in (A).

costs of 3D convolutions, which replaces 3D convolution with three 2D convolutions on orthogonal
planes. (4) Pyramid-LSTM [18] is the best known generalized LSTM networks for 3D segmentation.

Results: The results on the 3D neuron dataset and the fungus datasets are shown in Table 1. It is
evident that our proposed kU-Net, when used alone, achieves considerable improvement over U-Net
[16]. Our approach outperforms the known DL methods utilizing 3D contexts. Moreover, one can
see that our proposed deep architecture achieves better performance than simply stacking multiple
BDC-LSTMs together. As discussed in Section 2.2, adding subsampling layers like in 2D CNN
makes the RNN component able to perceive higher level 3D contexts. It worth mentioning that our
two evaluation datasets are quite representative. The fungus data has small anisotropism (z resolution
is close to xy resolution). The 3D neuron dataset has large anisotropism (z resolution is much less
than xy resolution). The effectiveness of our framework on handling and leveraging anisotropism
can be demonstrated.

We should mention that we re-implemented Pyramid-LSTM [18] in Torch7 and tested it on the fungus
datasets. But, the memory requirement of Pyramid-LSTM, when implemented in Torch7, was too
large for our GPU. For the original network structure, the largest possible cubical region to process
each time within our GPU memory capacity was 40 × 40 × 8. Using the same hyper-parameters
in [18], we cannot obtain acceptable results due to the limited processing cube. (The result of
Pyramid-LSTM on the 3D neuron dataset was fetched from the ISBI challenge leader board1 on
May 10, 2016.) Here, one may see that our method is much more efficient in GPU memory, when
implemented under the same deep learning framework and tested on the same machine.

Some results are shown in Fig. 4 to qualitatively compare the results using the FCN component
alone and the results of combining RNN and FCN. In general, both methods make nearly no false
negative errors. But, the RNN component can help to (1) suppress false positive errors by maintaining
inter-slice consistency, and (2) make more confident prediction in ambiguous cases by leveraging
the 3D context. In a nutshell, FCN collects as much discriminative information as possible within
each slice and RNN makes further refinement according to inter-slice correlation, so that an accurate
segmentation can be made at each voxel.

4 Conclusions and Future Work

In this paper, we introduce a new deep learning framework for 3D image segmentation, based on
a combination of an FCN (i.e., kU-Net) to exploit 2D contexts and an RNN (i.e., BDC-LSTM) to
integrate contextual information along the z-direction. Evaluated in two different 3D biomedical
image segmentation applications, our proposed approach can achieve the state-of-the-art performance
and outperform known DL schemes utilizing 3D contexts. Our framework provides a new paradigm
to migrate the superior performance of 2D deep architectures to exploit 3D contexts. Following
this new paradigm, we will explore BDC-LSTMs in different deep architectures to achieve fur-
ther improvement and conduct more extensive evaluations on different datasets, such as BraTS
(http://www.braintumorsegmentation.org/) and MRBrainS (http://mrbrains13.isi.uu.nl).
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