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1 Algorithm and main theorem

For convenience of presentation, we begin with repeating our model and main assumptions: Consider
the noise-free real Gaussian model

ψi =
∣∣aTi x∣∣ , i ∈ [m] := {1, 2, · · · , m} (1)

where x ∈ Rn is the wanted unknown, and {ai}mi=1 are drawn independently and identically from the
n-dimensional real Gaussian distribution, i.e., ai ∈ Rn ∼ N (0, In). For notational brevity, define

A := [a1 · · ·am]
T

, ψ := [ψ1 · · · ψm]
T

, and y := [y1 · · · ym]
T

, where yi := ψ2
i stands for the squared

magnitudes or intensity. Assume that the quadratic system (1) admits a unique solution, which indeed
holds true as long as m ≥ 2n− 1 generic measurements are taken [1]. Throughout the subsequent
analysis, fix x to be any solution of the given system in (1). Note that if x satisfies the system in (1),
so does −x; i.e., the solution set for real-valued models becomes {x, −x}. Our theoretical analysis
focuses on x, rather than −x. Introduce the notion of Euclidean distance of any estimate z to
the solution set: dist(z, x) := min ‖z ± x‖ for real signals; and dist(z, x) := minφ∈[0,2π)

∥∥z − xeiφ
∥∥

for complex ones [2]. For concreteness, our results focus on real-valued models, define also the
unrecoverable global phase factor for real-valued signals [2]

φ(z) :=

{
0, ‖z − x‖ ≤ ‖z + x‖
π, otherwise.

(2)

Henceforth, we always presume φ (z) = 0; otherwise, z is replaced by e−jφ(z)z, but for simplicity of
presentation, the constant phase adaptation term is dropped whenever it is clear from the context [3].

Algorithm 1 and Theorem 1 are repeated next.

1



Algorithm 1 Truncated generalized gradient flow (TGGF) solver

1: Input: Data {ψi}mi=1 and features {ai}mi=1; maximum iterations T ; by default, set constant step

size µ = 0.6/1 for real/complex-valued models, thresholds |I0| = d 1
6me,

1and γ = 0.7.

2: Evaluate ψi/‖ai‖, i = 1, . . . , m, and find I0 comprising indices associated with the |I0| largest
(ψi/‖ai‖)’s.

3: Initialize z0 to
√∑m

i=1 ψ
2
i /mz̃0, where z̃0 is the unit leading eigenvector of Y0 :=

1

|I0|

∑
i∈I0

aia
T
i

‖ai‖2
.

4: Loop: for t = 0 to T − 1

zt+1 = zt −
µ

m

∑
i∈It+1

(
aTi zt − ψi

aTi zt∣∣aTi zt∣∣
)
ai

where It+1 =
{

1 ≤ i ≤ m
∣∣∣∣∣aTi zt∣∣ ≥ 1

1+γψi

}
.

5: Output: zT

Theorem 1. [4] Let x ∈ Rn be an arbitrary signal, and consider (noise-free) measurements ψi =

|aTi x|, in which ai
i.i.d.∼ N (0, In), 1 ≤ i ≤ m. Then with probability at least 1−(m+5)e−n/2−e−c0m−

1/n2 for some universal constant c0 > 0, the initialization z0 returned by the orthogonality-promoting
method in Algorithm 1 satisfies

dist(z0, x) ≤ ρ ‖x‖ (3)

with ρ = 1/10 (or any sufficiently small positive constant), provided that m ≥ c1|I0| ≥ c2n for some
numerical constants c1, c2 > 0 and sufficiently large n. Further, choosing a constant step size µ ≤ µ0

along with a fixed truncation level γ ≥ 1/2, and starting from any guess z0 satisfying (5), successive
estimates of the TGGF algorithm (tabulated in Algorithm 1) obey

dist (zt,x) ≤ ρ (1− ν)
t ‖x‖ , ∀t = 1, 2, . . . (4)

for some 0 < ν < 1, which holds with probability exceeding 1− (m+ 5)e−n/2− 8e−c0m− 1/n2. Typical
parameter values are µ = 0.6, and γ = 0.7.

2 Proofs

To prove Theorem 1, this section establishes a few lemmas and the main ideas, while technical
details are deferred to the Appendix. Relative to WF and TWF, our objective function involves
nonsmoothness and nonconvexity, rendering the proof of exact recovery of TGGF nontrivial. In
addition, our initialization method starts from a rather different perspective than the spectral
alternatives, so the thoughts and tools involved in proving performance of our initialization deviate
from those of the spectral methods [5, 2, 3]. Part of the proof is adapted from [2, 3] and [6].

The proof of Theorem 1 consists of two parts: Section 2.1 justifies the performance of the proposed
orthogonality-promoting initialization, which essentially achieves any given constant relative error
as soon as the number of equations is on the order of the number of unknowns, namely, m � n.2

2The notations φ(n) = O(g(n)) or φ(n) & g(n) (respectively, φ(n) . g(n)) means there exists a numerical constant
c > 0 such that φ(n) ≤ cg(n), while φ(n) � g(n) means φ(n) and g(n) are orderwise equivalent.
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Section 2.2 demonstrates theoretical convergence of TGGF to the solution of the quadratic system
in (1) at a geometric rate provided that the initial estimate has a sufficiently small constant relative
error as in (3). The two stages of TGGF can be performed independently, meaning that other
better initialization methods, if available, could be adopted to initialize our truncated generalized
gradient iterations; likewise, our initialization method can also be applied to initialize other iterative
optimization algorithms.

2.1 Constant Relative Error by Orthogonality-promoting Initialization

This section concentrates on proving guaranteed performance of the proposed orthogonality-promoting
initialization method, as asserted in the following proposition.

Proposition 1. Fix x ∈ Rn arbitrarily, and consider the noiseless case ψi = |aTi x|, where ai
i.i.d.∼

N (0, In), 1 ≤ i ≤ m. Then with probability at least 1 − (m + 5)e−n/2 − e−c0m − 1/n2 for some
universal constant c0 > 0, the initialization z0 returned by the orthogonality-promoting method
satisfies

dist(z0, x) ≤ ρ ‖x‖ (5)

for ρ = 1/10 or any positive constant, with the proviso that m ≥ c1|I0| ≥ c2n for some numerical
constants c1, c2 > 0 and sufficiently large n.

Due to homogeneity in (5), it suffices to work with the case where ‖x‖ = 1. Assume for the
moment that ‖x‖ = 1 is known and z0 has been scaled such that ‖z0‖ = 1. Subsequently, the

error between the employed x’s norm estimate
√

1
m

∑m
i=1 yi and the unknown norm ‖x‖ = 1 will

be accounted for at the end of this Section. Instrumental in proving Proposition 1 is the following
result, whose proof is deferred to Appendix A.1.

Lemma 1. Consider the noiseless data ψi = |aTi x|, where ai
i.i.d.∼ N (0, In), 1 ≤ i ≤ m. For any

unit vector x ∈ Rn, there exists a vector u ∈ Rn with uT x = 0 and ‖u‖ = 1 such that

1

2

∥∥xxT − z0z
T
0

∥∥2

F
≤
∥∥S0u

∥∥2∥∥S0x
∥∥2 (6)

for z0 = z̃0, where the unit vector z̃0 is given by

z̃0 := arg max
‖z‖=1

zT Y0z (7)

with Y0 := 1

|I0|
ST0 S0, and S0 is formed by removing the rows of S :=

[
a1/ ‖a1‖ · · · am/ ‖am‖

]T ∈
Rm×n, if their indices do not belong to the set I0 specified in Algorithm 1.

We now turn to prove Proposition 1. The first step consists in upper-bounding the term on the
right-hand-side of (6). Specifically, its numerator term will be upper bounded, and the denominator
term lower bounded, which are summarized in Lemma 2 and Lemma 3, whose proofs can be found in
Appendix A.2 and Appendix A.3, respectively.

Lemma 2. In the setup of Lemma 1, if |I0| ≥ c′1n, then the next∥∥S0u
∥∥2 ≤ 1.01|I0|/n (8)

holds with probability at least 1− 2e−cKn, where c′2 and cK are some universal constants.
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Lemma 3. In the setup of Lemma 1, the following holds with probability at least 1− (m+ 1)e−n/2 −
e−c0m − 1/n2, ∥∥S0x

∥∥2 ≥ 0.99|I0|
2.3n

[
1 + log

(
m
/
|I0|
)]

(9)

provided that |I0| ≥ c′1n, m ≥ c′2|I0|, and m ≥ c′3n for some absolute constants c′1, c
′
2, c
′
3 > 0, and

sufficiently large n.

Therefore, putting the upper and lower bounds in (8) and (9) together, one arrives at∥∥S0u
∥∥2∥∥S0x
∥∥2 ≤

2.4

1 + log
(
m/|I0|

) 4= κ (10)

which holds with probability at least 1−(m+3)e−n/2−e−c0m−1/n2, with the proviso that m ≥ c′1|I0|,
and m ≥ c′2n, |I0| ≥ c′3n for some absolute constants c′1, c

′
2, c
′
3 > 0, and sufficiently large n.

Apparently, the bound κ in (10) is meaningful only when the ratio log(m/|I0|) > 1.4, i.e.,

m/|I0| > 4, because the left hand side expressible in terms of sin2 θ enjoys a trivial upper bound 1.

Henceforth, we will work with the case where m/|I0| > 4. Empirically, bm/|I0|c = 6 or equivalently

|I0| = d 1
6me in Algorithm 1 works well when m/n is relatively small. Note further that the bound κ

can be made arbitrarily small by letting m/|I0| be large enough. Without any loss of generality, let
us take κ := 0.001. An additional step leads to the wanted bound on the distance between z̃0 and x;
similar arguments can be found in [2, Section 7.8]. Recall that

|xT z̃0|2 = cos2 θ = 1− sin2 θ ≥ 1− κ, (11)

so one has

dist2(z̃0, x) ≤ ‖z̃0‖2 + ‖x‖2 − 2|xT z̃0|

≤
(
2− 2

√
1− κ

)
‖x‖2

≈ κ ‖x‖2 . (12)

Coming back to the case in which ‖x‖ is unknown stated prior to Lemma 1, the unit eigenvector

z̃0 is scaled by the estimate of ‖x‖ to yield the initial guess z0 =
√

1
m

∑m
i=1 yiz̃0. Using the results

in Lemma 7.8 in [2], the following holds with high probability

‖z0 − z̃0‖ = |‖z0‖ − 1| ≤ (1/20) ‖x‖ . (13)

Summarizing the two inequalities, we conclude that

dist(z0, x) ≤ ‖z0 − z̃0‖+ dist(z̃0, x) ≤ (1/10) ‖x‖ . (14)

The initialization thus obeys dist(z0, x)/‖x‖ ≤ 1/10 for any x ∈ Rn with high probability provided

that m ≥ c1|I0| ≥ c2n holds for some universal constants c1, c2 > 0 and sufficiently large n.

2.2 Exact Recovery from Noiseless Data

We now prove that with accurate enough initial estimates, TGGF converges at a geometric rate
to x with high probability (i.e., the second part of Theorem 1). To be specific, with initialization
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obeying (5) in Proposition 1, TGGF reconstructs the solution x exactly in linear time. In this
direction, it suffices to demonstrate that the TGGF’s update rule (i.e., Step 4 in Algorithm 1)
is locally contractive within a sufficiently small neighborhood of x, as asserted in the following
proposition.

Proposition 2 (Local error contraction). Consider the noise-free measurements ψi =
∣∣aTi x∣∣ with

i.i.d. Gaussian design vectors ai ∼ N (0, In), 1 ≤ i ≤ m, and fix any γ ≥ 1/2. Then there exist
universal constants c0, c1 > 0 and 0 < ν < 1 such that with probability at least 1 − 7e−c0m, the
following holds

dist2
(
z +

µ

m
∇`tr(z), x

)
≤ (1− ν)dist2 (z, x) (15)

for all x, z ∈ Rn obeying the condition (5) for sufficiently small ρ > 0 with the proviso that m ≥ c1n
and that the constant step size µ satisfying 0 < µ ≤ µ0 for some µ0 > 0.

Proposition 2 demonstrates that the distance of TGGF’s successive iterates to x is monotonically
decreasing once the algorithm enters a small-size neighborhood around x. This neighborhood is
commonly referred to as the basin of attraction; see further discussions in [2, 7, 3]. In other words,
as soon as one lands within the basin of attraction, TGGF’s iterates remain in this region and will
be attracted to x exponentially fast. To substantiate Proposition 2, recall the concept of the local
regularity condition, which was first developed in [2] and plays a fundamental role in establishing linear
convergence to global optimum of nonconvex optimization approaches such as WF/TWF [2, 7, 3].
Now consider the update rule of TGGF

zt+1 = zt −
µ

m
∇`tr(zt), ∀t ≥ 0, (16)

where the truncated gradient ∇`tr(zt) (See Remark 1 in [8] for more discussion) evaluated at some
point zt ∈ Rn is given by

1

m
∇`tr(zt)

4
=

1

m

∑
i∈I

(
aTi zt − ψi

aTi zt
|aTi zt|

)
ai.

The truncated gradient ∇`tr(z) is said to satisfy the local regularity condition, or LRC(µ, λ, ε) for
some constant λ > 0, provided that〈

1

m
∇`tr(z), h

〉
≥ µ

2

∥∥∥∥ 1

m
∇`tr(z)

∥∥∥∥2

+
λ

2
‖h‖2 (17)

holds for all z ∈ Rn such that ‖h‖ = ‖z − x‖ ≤ ε ‖x‖ for some constant 0 < ε < 1, where the ball
‖z − x‖ ≤ ε ‖x‖ is the so-called basin of attraction. Simple linear algebra along with the regularity
condition in (17) leads to

dist2
(
z − µ

m
∇`tr(z),x

)
=
∥∥∥z − µ

m
∇`tr(z)− x

∥∥∥2

= ‖h‖2 − 2µ

〈
h,

1

m
∇`tr(z)

〉
+
∥∥∥ µ
m
∇`tr(z)

∥∥∥2

(18)

≤ ‖h‖2 − 2µ

(
µ

2

∥∥∥∥ 1

m
∇`tr(z)

∥∥∥∥2

+
λ

2
‖h‖2

)
+
∥∥∥ µ
m
∇`tr(z)

∥∥∥2

= (1− λµ) ‖h‖2 = (1− λµ) dist2(z,x) (19)

for all z obeying ‖h‖ ≤ ε ‖x‖. Clearly, if the LRC(µ, λ, ε) is proved for TGGF, our goal (15) follows
upon letting ν := λµ.
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2.2.1 Proof of the local regularity condition in (17)

By definition, justifying the local regularity condition in (17) entails controlling the norm of the
truncated gradient 1

m∇`tr(z), i.e., bounding the last term in (18). Recall that

1

m
∇`tr(z) =

1

m

∑
i∈I

(
aTi z − ψi

aTi z∣∣aTi z∣∣
)
ai
4
=

1

m
Av (20)

where I := {1 ≤ i ≤ m||aTi z| ≥ |aTi x|/(1 + γ)}, and v := [v1 · · · vm]T ∈ Rm with vi :=
aTi z

|aTi z|
(
|aTi z| − ψi

)
1{|aTi z|≥|aTi x|/(1+γ)}. Now, consider

|vi|2 =
∣∣∣(∣∣aTi z∣∣− ∣∣aTi x∣∣) 1{|aTi z|≥|aTi x|/(1+γ)}

∣∣∣2 ≤ ∣∣∣∣aTi z∣∣− ∣∣aTi x∣∣∣∣2 ≤ ∣∣aTi h∣∣2 = a2
i,1‖h‖2, (21)

where h = z − x. Observe that a2
i,1 obeys the Chi-square distribution with k = 1 degrees of freedom;

yet due to our working assumption ‖ai‖ ≤
√

2.3n, it has mean E[a2
i,1] ≤ k = 1. So fixing any

0 < δ′ < 1 and applying the one-sided Bernstein-type inequality, the following holds with probability
at least 1− e−mδ

′2/2 [9, Proposition 5.16]

‖v‖2 =

m∑
i=1

v2
i ≤

m∑
i=1

a2
i,1‖h‖2 ≤ (1 + δ′)m‖h‖2. (22)

On the other hand, standard matrix concentration results confirm that the largest singular value of
A = [a1 · · · am]

T
with i.i.d. Gaussian {ai} satisfies σ1 := ‖A‖ ≤ (1 + δ′′)

√
m for some δ′′ > 0 with

probability exceeding 1− 2e−c0m as soon as m ≥ c1n for sufficiently large c1 > 0, where c1 > 0 is a
universal constant depending on δ′′ [9, Remark 5.25]. Putting together (20), (21), and (22) yields∥∥∥∥ 1

m
∇`tr(z)

∥∥∥∥ ≤ 1

m
‖A‖ · ‖v‖ ≤ (1 + δ′)(1 + δ′′)‖h‖ ≤ (1 + δ)2 ‖h‖ , δ := max{δ′, δ′′} (23)

which holds with high probability. This condition essentially asserts that the truncated gradient of
the objective function `(z) or the search direction is well behaved (the function value does not vary
too much).

Notice that to prove the LRC, it suffices to show that the truncated gradient 1
m∇`tr(z) ensures

sufficient descent, i.e., it obeys a uniform lower bound along the search direction h taking the form〈
1

m
∇`tr(z), h

〉
& ‖h‖2 (24)

which occupies the remaining of this section. Formally, this can be stated as follows.

Proposition 3. Consider the noiseless measurements ψi = |aTi x| and fix any sufficiently small
constant ε > 0. There exist universal constants c0, c1 > 0 such that if m > c1n, then the following
holds with probability exceeding 1− 4e−c0m〈

h,
1

m
∇`tr(z)

〉
≥ 2 (1− ζ1 − ζ2 − 2ε) ‖h‖2 (25)

for all x, z ∈ Rn such that ‖h‖ / ‖x‖ ≤ ρ for 0 < ρ ≤ 1/10 and any fixed γ ≥ 1/2.
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Figure 1: The geometric understanding of the proposed truncation rule on the i-th gradient component
involving aTi x = ψi, where the red dot denotes the solution x and the black one is the origin.
Hyperplanes aTi z = ψi and aTi z = 0 (of z ∈ Rn) passing through points z = x and z = 0,
respectively, are shown.

Lemma 4. Fix any γ > 0. For each i ∈ [m], define the following events

Ei :=

{
|aTi z|
|aTi x|

≥ 1

1 + γ

}
, (26)

Di :=

{∣∣aTi h∣∣∣∣aTi x∣∣ ≥ 2 + γ

1 + γ

}
, (27)

and Ki :=

{
aTi z

|aTi z|
6= aTi x

|aTi x|

}
(28)

where h = z − x. Under the condition ‖h‖ / ‖x‖ ≤ ρ, the following inclusion holds

Ei ∩ Ki ⊆ Di. (29)

Proof. From Fig. 1, it is clear that if z ∈ ξ2
i , then the sign of aTi z will be different than that

of aTi x. The region ξ2
i , however, can be specified by the conditions that

aTi z

|aTi z| 6=
aTi x

|aTi x| and

|aTi h|
|aTi x| ≥ 1 + 1

1+γ = 2+γ
1+γ . Under our initialization condition ‖h‖ / ‖x‖ ≤ ρ, it is self-evident that Di

describes two spherical caps that contain ξ2
i . Hence, it holds that Ei ∩ Ki = ξ2

i ⊆ Di.

Rewrite the truncated gradient as

1

2m
∇`tr(z) =

1

m

m∑
i=1

(
aTi z −

∣∣aTi x∣∣ aTi z|aTi z|

)
ai1Ei

=
1

m

m∑
i=1

aia
T
i h1Ei −

1

m

m∑
i=1

(
aTi z

|aTi z|
− aTi x

|aTi x|

) ∣∣aTi x∣∣ai1Ei . (30)
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Using the definitions and properties in Lemma 4, one further arrives at〈
1

2m
∇`tr(z), h

〉
≥ 1

m

m∑
i=1

(
aTi h

)2
1Ei −

2

m

m∑
i=1

∣∣aTi x∣∣ ∣∣aTi h∣∣1Ei∩Ki
≥ 1

m

m∑
i=1

(
aTi h

)2
1Ei −

2

m

m∑
i=1

∣∣aTi x∣∣ ∣∣aTi h∣∣1Di
≥ 1

m

m∑
i=1

(
aTi h

)2
1Ei −

1 + γ

2 + γ
· 2

m

m∑
i=1

(
aTi h

)2
1Di (31)

where the last inequality arises from the property
∣∣aTi x∣∣ ≤ 1+γ

2+γ

∣∣aTi h∣∣ by the definition of Di.
Proving the regularity condition boils down to lower bounding the right-hand side of (31),

specifically, to lower bounding the first term and to upper bounding the second one. Apparently,
the first term approximately gives ‖h‖2 by the SLLN as long as our truncation procedure does not
eliminate too many generalized gradient components (i.e., summands in the first term). Regarding
the second, one would expect its contribution to be small under our initialization condition in (5)
and as the relative error ‖h‖ / ‖x‖ decreases. Specifically, under our initialization, Di is provably a
rare event, thus eliminating the possibility of the second term exerting a noticeable influence on the
first term. Rigorous analyses concerning the two terms are elaborated in Lemma 5 and Lemma 6,
whose proofs can be found in Appendix A.4 and Appendix A.5, respectively.

Lemma 5. Fix γ ≥ 1/2 and ρ ≤ 1/10, and let Ei be defined in (26). For independent random
variables W ∼ N (0, 1) and Z ∼ N (0, 1), set

ζ1 := 1−min

{
E

[
1{| 1−ρρ +W

Z |≥
√

1.01
ρ(1+γ)

}] , E

[
Z21{| 1−ρρ +W

Z |≥
√

1.01
ρ(1+γ)

}]} . (32)

Then for any ε > 0 and any vector h obeying ‖h‖ / ‖x‖ ≤ ρ, the following holds with probability

exceeding 1− 2e−c5ε
2m

1

m

m∑
i=1

(
aTi h

)2
1Ei ≥ (1− ζ1 − ε) ‖h‖2 , (33)

provided that m > (c6 · ε−2 log ε−1)n for some universal constants c5, c6 > 0.

To have a sense of how large the quantities involved in (5) are, when γ = 0.7 and ρ = 1/10, it holds

E

[
1{| 1−ρρ +W

Z |≥
√

1.01
ρ(1+γ)

}] ≈ 0.92, and E

[
Z21{| 1−ρρ +W

Z |≥
√

1.01
ρ(1+γ)

}] ≈ 0.99, hence leading to ζ1 ≈ 0.08.

Having derived a lower bound for the first term in the right-hand side of (31), it remains to deal
with the second one.

Lemma 6. Fix γ > 0 and ρ ≤ 1/10, and let Di be defined in (27). For any constant ε > 0, there
exists some universal constants c5, c6 > 0 such that

1

m

m∑
i=1

(
aTi h

)2
1Di ≤ (ζ ′2 + ε) ‖h‖2 (34)

holds with probability at least 1− 2e−c5ε
2m provided that m/n >

(
c6 · ε−2 log ε−1

)
for some universal

constants c5, c6 > 0, where ζ ′2 = 1.3785
√
ρτ/(0.99τ2 − ρ2) with τ := (2 + γ)/(1 + γ).

8



With our TGGF default parameters ρ = 1/10 and γ = 0.7, we have ζ ′2 ≈ 0.3483. Taking results
in (31), (33), and (34) together, choosing m/n exceeding some sufficiently large constant such that
c0 ≤ c5ε

2, and denoting ζ2 := ζ ′2(1 + γ)/(2 + γ), then with probability exceeding 1 − 4e−c0m, the
following 〈

h,
1

2m
∇`tr(z)

〉
≥ (1− ζ1 − ζ2 − 2ε) ‖h‖2 (35)

holds for all x and z such that ‖h‖ / ‖x‖ ≤ ρ for 0 < ρ ≤ 1/10 and any fixed γ ≥ 1/2. This combining
with (17) and (19) proves Proposition 2 for appropriately chosen µ > 0 and λ > 0.

To conclude this section, an estimate for the working step size is provided next. To be specific,
plugging the results in (23) and (25) into (18) suggests that

dist2
(
z − µ

m
∇`tr(z),x

)
= ‖h‖2 − 2µ

〈
h,

1

m
∇`tr(z)

〉
+
∥∥∥ µ
m
∇`tr(z)

∥∥∥2

(36)

≤
{

1− µ
[
4 (1− ξ1 − ξ2 − 2ε)− µ(1 + δ)4

]}
‖h‖2

4
= (1− ν) ‖h‖2 . (37)

Taking ε and δ to be sufficiently small, one obtains the feasible range of the step size for TGGF

µ ≤ 4 (0.99− ξ1 − ξ2)

1.02

4
= µ0, (38)

thus concluding the proof of Theorem 1.

A Proof details

By homogeneity, it suffices to work with the case where ‖x‖ = 1.

A.1 Proof of Lemma 1

It is easy to check that

1

2

∥∥xxT − z̃0z
T
0

∥∥2

F
=

1

2
‖x‖4 +

1

2
‖z̃0‖4 −

∣∣xT z̃0

∣∣2
= 1−

∣∣xT z̃0

∣∣2
= 1− cos2 θ (39)

where 0 ≤ θ ≤ π is the angle between the spaces spanned by x and z̃0. Then one can write

x = cos θ z̃0 + sin θ z̃⊥0 , (40)

where z̃⊥0 ∈ Rn is a unit vector that is orthogonal to z̃0 and has a nonnegative inner product with x.
Likewise, one can express

x⊥ := − sin θ z̃0 + cos θ z̃⊥0 , (41)

in which x⊥ ∈ Rn is a unit vector orthogonal to x.
Since z̃0 is the solution to the maximum eigenvalue problem

z̃0 := arg max
‖z‖=1

zT Y0z (42)

9



for Y0 := 1

|I0|
ST0 S0, it is the leading eigenvector of Y0, i.e., Y0z̃0 = λ1z̃0, where λ1 > 0 is the largest

eigenvalue of Y0. Premultiplying (40) and (41) by S0 yields

S0x = cos θS0z̃0 + sin θS0z̃
⊥
0 , (43a)

S0x
⊥ = − sin θS0z̃0 + cos θS0z̃

⊥
0 . (43b)

Pythagoras’ relationship now gives∥∥S0x
∥∥2

= cos2 θ
∥∥S0z̃0

∥∥2
+ sin2 θ

∥∥S0z̃
⊥
0

∥∥2
, (44a)∥∥S0x

⊥∥∥2
= sin2 θ

∥∥S0z̃0

∥∥2
+ cos2 θ

∥∥S0z̃
⊥
0

∥∥2
, (44b)

where the cross-terms vanish because z̃T0 S
T
0 S0z̃

⊥
0 = |I0|z̃T0 Y0z̃

⊥
0 = λ1|I0|z̃T0 z̃⊥0 = 0 following from

the definition of z̃⊥0 .
We next construct the following expression

sin2 θ
∥∥S0x

∥∥2 −
∥∥S0x

⊥∥∥2

= sin2 θ cos2 θ
∥∥S0z̃0

∥∥2
+ sin4 θ

∥∥S0z̃
⊥
0

∥∥2 − sin2 θ
∥∥S0z̃0

∥∥2 − cos2 θ
∥∥S0z̃

⊥
0

∥∥2

= sin2 θ
(

cos2 θ
∥∥S0z̃0

∥∥2 −
∥∥S0z̃0

∥∥2
+ sin2 θ

∥∥S0z̃
⊥
0

∥∥2
)
− cos2 θ

∥∥S0z̃
⊥
0

∥∥2

= sin4 θ
(∥∥S0z̃

⊥
0

∥∥2 −
∥∥S0z̃0

∥∥2)− cos2 θ
∥∥S0z̃

⊥
0

∥∥2

≤ 0

where ST0 S0 � 0, so ‖S0z̃
⊥
0 ‖2 −‖S0z̃0‖2 ≤ 0 holds for any unit vector z̃⊥0 ∈ Rn arising from the fact

that z̃0 maximizes the term in (7), hence yielding

sin2 θ = 1− cos2 θ ≤
∥∥S0x

⊥
∥∥2∥∥S0x
∥∥2 . (45)

Upon letting u = x⊥, the last inequality taken together with (39) concludes the proof of (6).

A.2 Proof of Lemma 2

Recall that rows in S0 ∈ R|I0|×n, hereafter denoted by sTi ∈ R1×n, ∀i ∈ [|I0|], are drawn uniformly
on the unit sphere. The uniformly spherical distribution is rotationally invariant, so it suffices to
prove the results in the case where x = e1 with e1 being the first canonical vector in Rn. Indeed,
any unit vector x can be expressed as x = Ue1 for some orthogonal transformation U ∈ Rn×n. To
see this, consider the following [10]

|〈si,x〉|2 = |〈si,Ue1〉|2 =
∣∣〈UT si, e1

〉∣∣2 d
= |〈si, e1〉|2 , (46)

where
d
= means terms involved on both sides of the equality have the same distribution. Thus, the

problem of finding any unit-normed x is equivalent to that of finding e1. Henceforth, we assume
without any loss of generality that x = e1.

Considering a unit vector x⊥ such that xT x⊥ = eT1 x
⊥ = 0, there exists a unit vector d ∈ Rn−1

such that x⊥ =
[
0 dT

]T
. So it holds that∥∥S0x

⊥∥∥2
=
∥∥∥S0

[
0 dT

]T ∥∥∥2

=
∥∥Fd∥∥2

, (47)

10



where F ∈ R|I0|×(n−1) is obtained through deleting the first column in S0, denoted by S0,1, i.e.,

S0 =
[
S0,1 F

]
. Letting F :=

[
f1 · · · f|I0|

]T
, one can readily write si =

[
si,1 f

T
i

]T
, ∀i ∈

[|I0|] := {1, . . . , |I0|}. Uniformly spherically distributed si ∈ Rn has statistics E[si] = 0, and
E[sis

T
i ] = 1

nIn [11]. Leveraging the linearity of expectation operator, one arrives at

E [si] = E

[
si,1
fi

]
=

[
E[si,1]
E[fi]

]
= 0, ∀i (48)

to yield
E[fi] = 0, ∀i. (49)

A similar argument holds for the second-order moment

E
[
sis
T
i

]
=

[
E[s2

i,1] E[si,1f
T
i ]

E[si,1fi] E[fif
T
i ]

]
=

1

n
In, ∀i (50)

leading to

E
[
fif
T
i

]
=

1

n
In−1, ∀i. (51)

Recall that a random vector z ∈ Rn is said to be isotropic if it has zero-mean and identity
covariance matrix [9, Definition 5.19]. Then recognize, from (49) and (51), that a proper scaling of
fi renders

√
nfi isotropic. Further, it is known that a spherical random vector is subgaussian, and

its subgaussian norm is bounded by an absolute constant [9]. Indeed, this comes from the following
geometric argument: using rotational invariance of the uniform spherical distribution Sn−1 in Rn,
it holds that, given any ε ≥ 0, the spherical cap {si ∈ Sn−1 : si,1 > ε} consists of at most e−ε

2n/2

proportion of the total area on the sphere. A similar argument carries over to fi, and thus, fi is
subgaussian as well.

Standard concentration inequalities on the sum of random positive semi-definite matrices composed
of independent isotropic subgaussian rows [9, Remark 5.40] confirm that∥∥∥∥∥ 1

|I0|
(√
nF
)T (√

nF
)
− In−1

∥∥∥∥∥ ≤ σ ‖In−1‖ (52)

holds with probability at least 1−2e−cKn as long as |I0|/n is sufficiently large, where σ is a numerical
constant that can take arbitrarily small values and cK > 0 is a universal constant. Without loss
of generality, let us work with σ := 0.01 in (52), so for any unit vector d ∈ Rn−1, the following
inequality holds with probability at least 1− 2e−cKn,∣∣∣∣∣ n|I0|

dT F T Fd− dT d

∣∣∣∣∣ ≤ 0.01dT d, (53)

or equivalently,
‖Fd‖2 =

∣∣dT F T Fd∣∣ ≤ 1.01|I0|
/
n. (54)

Combining the last with (47), one readily concludes that∥∥S0x
⊥∥∥2 ≤ 1.01|I0|

/
n (55)

holds with probability at least 1− 2e−cKn, provided that |I0|
/
n exceeds some constant. Note that

cK depends on the maximum subgaussian norm of the rows of
√
nF , and we assume without loss of

generality cK ≥ 1/2. Hence, ‖S0u‖2 in (6) is upper bounded simply by letting u = x⊥ in (55).

11



A.3 Proof of Lemma 3

We next pursue a meaningful lower bound for ‖S0x‖2 in (9). When x = e1, one has ‖S0x‖2 =

‖S0e1‖2 =
∑|I0|
i=1 s

2
i,1. It is further worth mentioning that all squared entries of any spherical

random vector si obey the Beta distribution with parameters α = 1
2 , and β = n−1

2 , i.e., s2
i,j ∼

Beta
(

1
2 ,

n−1
2

)
, ∀i, j, [11, Lemma 2]. Although they have closed-form probability density functions

(pdfs) that may facilitate deriving a wanted lower bound, we shall take another easier route detailed
as follows. A simple yet useful inequality is established first.

Lemma 7. Given m fractions obeying 1 > p1
q1
≥ p2

q2
≥ · · · ≥ pm

qm
> 0, in which pi, qi > 0, ∀i ∈ [m],

the following holds for all 1 ≤ k ≤ m

k∑
i=1

pi
qi
≥

k∑
i=1

p[i]

q[1]
(56)

where p[i] denotes the i-th largest one among {pi}mi=1, and hence, q[1] is the maximum in {qi}mi=1.

Proof. For any k ∈ [m], according to the definition of q[i], it holds that p[1] ≥ p[2] ≥ · · · ≥ p[k], so
p[1]
q[1]
≥ p[2]

q[1]
≥ · · · ≥ p[k]

q[1]
. Considering q[1] ≥ qi, ∀i ∈ [m], and letting ji ∈ [m] be the index such that

pji = p[i], then
pji
qji

=
p[i]
qji
≥ p[i]

q[1]
holds for any i ∈ [k]. Therefore,

∑k
i=1

pji
qji

=
∑k
i=1

p[i]
qji
≥
∑k
i=1

p[i]
q[1]

.

Note that
{
p[i]
qji

}k
i=1

comprise a subset of terms in
{
pi
qi

}m
i=1

. On the other hand, according to our

assumption,
∑k
i=1

pi
qi

is the largest among all sums of k summands; hence,
∑k
i=1

pi
qi
≥
∑k
i=1

p[i]
qji

yields∑k
i=1

pi
qi
≥
∑k
i=1

p[i]
q[1]

concluding the proof.

Without loss of generality and for simplicity of exposition, let us assume that indices of ai’s have
been re-ordered such that

a2
1,1

‖a1‖2
≥

a2
2,1

‖a2‖2
≥ · · · ≥

a2
m,1

‖am‖2
, (57)

where ai,1 denotes the first element of ai. Therefore, writing ‖S0e1‖2 =
∑|I0|
i=1 a

2
i,1/‖ai‖2, the next

task amounts to finding the sum of the |I0| largest out of all m entities in (57). Applying the result
(56) in Lemma 7 gives

|I0|∑
i=1

a2
i,1

‖ai‖2
≥
|I0|∑
i=1

a2
[i],1

maxi∈[m] ‖ai‖
2 , (58)

in which a2
[i],1 stands for the i-th largest entity in

{
a2
i,1

}m
i=1

.

Observe that for i.i.d. random vectors ai ∼ N
(
0, In

)
, the property P(‖ai‖2 ≥ 2.3n) ≤ e−n/2

holds for large enough n (e.g., n ≥ 20), which can be understood upon substituting ξ := n/2 into the
following standard result [12, Lemma 1]

P
(
‖ai‖2 − n ≥ 2

√
ξ + 2ξ

)
≤ e−ξ. (59)

In addition, one readily concludes that P
(
maxi∈[m] ‖ai‖ ≤

√
2.3n

)
≥ 1−me−n/2. We will henceforth

build our subsequent proofs on this event without stating this explicitly each time encountering it.
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Therefore, (58) can be lower bounded by

∥∥Sx∥∥2
=

|I0|∑
i=1

a2
i,1

‖ai‖2
≥
|I0|∑
i=1

a2
[i],1

maxi∈[m] ‖ai‖
2 ≥

1

2.3n

|I0|∑
i=1

∣∣a[i],1

∣∣2, (60)

which holds with probability at least 1 −me−n/2. The task left for bounding ‖Sx‖2 is to derive

a meaningful lower bound for
∑|I0|
i=1 a

2
[i],1. Roughly speaking, because the ratio |I0|/m is small,

e.g., |I0|/m ≤ 1/5, a trivial result consists of bounding (1/|I0|)
∑|I0|
i=1 a

2
[i],1 by its sample average

(1/m)
∑m
i=1 a

2
[i],1. The latter can be bounded using its ensemble mean, i.e., E[a2

i,1] = 1, ∀i ∈ [I0], to

yield (1/m)
∑m
i=1 a

2
[i],1 ≥ (1− ε)E[a2

i,1] = 1− ε, which holds with high probability for some numerical

constant ε > 0 [10, Lemma 3.1]. Therefore, one has a candidate lower bound
∑|I0|
i=1 a

2
[i],1 ≥ (1− ε)|I0|.

Nonetheless, this lower bound is in general too loose, and it contributes to a relatively large upper
bound on the wanted term in (6).

To obtain an alternative bound, let us examine first the typical size of the maximum in
{
a2
i,1

}m
i=1

.
Observe obviously that the modulus |ai,1| follows the half-normal distribution having the pdf

p(r) =
√

2/π · e−r2/2, r > 0, and it is easy to verify that

E[|ai,1|] =
√

2/π. (61)

Then integrating the pdf from 0 to +∞ yields the corresponding accumulative distribution func-
tion (cdf) expressible in terms of the error function P (|ai,1| > ξ) = 1 − erf (ξ/2), i.e., erf (ξ) :=

2/
√
π·
∫ ξ

0
e−r

2

dr. Appealing to a lower bound on the complimentary error function erfc (ξ) := 1−erf (ξ)

from [13, Theorem 2], one establishes that P (|ai,1| > ξ) = 1− erf (ξ/2) ≥ (3/5)e−ξ
2/2. Additionally,

direct application of probability theory and Taylor expansion confirms that

P
(

max
i∈[m]

|ai,1| ≥ ξ
)

= 1− [P (|ai,1| ≤ ξ)]m

≥ 1−
(

1− 0.6e−ξ
2/2
)m

≥ 1− e−0.6me−ξ
2/2

. (62)

Choosing now ξ :=
√

2 log n leads to

P
(

max
i∈[m]

|ai,1| ≥
√

2 log n
)
≥ 1− e−0.6m/n ≥ 1− o(1) (63)

which holds with the proviso that m/n is large enough, and the symbol o(1) represents a small constant
probability. Thus, provided that m/n exceeds some large constant, the event maxi∈[m] a

2
i,1 ≥ 2 log n

occurs with high probability. Hence, one may expect a tighter lower bound than (1− ε0)|I0|, which

is on the same order of m under the assumption that |I0|/m is about a constant.
Although a2

i,1 obeys the Chi-square distribution with k = 1 degrees of freedom, its cdf is rather
complicated and does not admit a nice closed-form expression. A small trick is hence taken in the
sequel. Postulate without loss of generality that both m and |I0| are even. Grouping two consecutive
a2

[i],1’s together, introduce a new variable ϑ[i] := a2
[2k−1],1 + a2

[2k],1, ∀k ∈ [m/2], hence yielding a
sequence of ordered numbers, i.e., ϑ[1] ≥ ϑ[2] ≥ · · · ≥ ϑ[m/2] > 0. Then, one can equivalently write
the wanted sum as

|I0|∑
i=1

a2
[i],1 =

|I0|/2∑
i=1

ϑ[i]. (64)
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On the other hand, for i.i.d. standard normal random variables {ai,1}mi=1, let us consider grouping
randomly two of them and denote the corresponding sum of their squares by χk := a2

ki,1
+ a2

kj ,1
,

where ki 6= kj ∈ [m], and k ∈ [m/2]. It is self-evident that the χk’s are identically distributed obeying
the Chi-square distribution with k = 2 degrees of freedom, having the pdf

p (r) =
1

2
e−

r
2 , r ≥ 0, (65)

and the following complementary cdf (ccdf)

P(χk ≥ ξ) :=

∫ ∞
ξ

1

2
e−

r
2 dr = e−

ξ
2 , ∀ξ ≥ 0. (66)

Ordering all χk’s, summing the |I0|/2 largest ones, and comparing the resultant sum with the one
in (64) confirm that

|I0|/2∑
i=1

χ[i] ≤
|I0|/2∑
i=1

ϑ[i] =

|I0|∑
i=1

a2
[i],1, ∀|I0| ∈ [m]. (67)

Upon setting P(χk ≥ ξ) = |I0|/m, one obtains an estimate of χ|I0|/2
, the (|I0|/2)-th largest value

in {χk}m/2k=1 as follows

χ̂|I0|/2
:= 2 log

(
m
/
|I0|
)
. (68)

Furthermore, applying the Hoeffding-type inequality [9, Proposition 5.10] and leveraging the convexity
of the ccdf in (66), one readily establishes that

P
(
χ̂|I0|/2

− χ|I0|/2 > ξ
)
≤ e−

1
4mξ

2e−ξ(|I0|/m)2 , ∀ξ > 0. (69)

Taking without loss of generality ξ := 0.05χ̂|I0|/2
= 0.1 log

(
m
/
|I0|
)

gives

P
(
χ|I0|/2

< 0.95χ̂|I0|/2

)
≤ e−c0m (70)

for some universal constants c0, cχ > 0, and sufficiently large n such that |I0|/m & cχ > 0. The
remaining part in this section assumes that this event occurs.

Choosing ξ := 4 log n and substituting this into the ccdf in (66) leads to

P (χ ≤ 4 log n) = 1− 1/n2. (71)

Notice that each summand in
∑|I0|/2
i=1 χ[i] ≥

∑m/2
i=1 χi1Ẽi is Chi-square distributed, and hence could

be unbounded, so we choose to work with the truncation
∑m/2
i=1 χi1Ẽi , where the 1Ẽi ’s are independent

copies of 1Ẽ , and 1Ẽ denotes the indicator function for the ensuing events

Ẽ :=
{
χ ≥ χ̂|I0|/2

}
∩ {χ ≤ 4 log n} . (72)

Apparently, it holds that
∑|I0|/2
i=1 χ[i] ≥

∑m/2
i=1 χi1Ẽi . One further establishes that

E
[
χi1Ẽi

]
:=

∫ 4 logn

χ̂|I0|/2

1

2
re−r/2dr

=
(
χ̂|I0|/2

+ 2
)

e
−χ̂|I0|/2

/2 − (4 log n+ 2) e−2 logn

=
2|I0|
m

[
1 + log

(
m
/
|I0

)]
− (4 log n+ 2)

n2
. (73)
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The task of bounding
∑|I0|
i=1 a

2
[i],1 in (67) now boils down to bounding

∑m/2
i=1 χi1Ẽi from its

expectation in (73). A convenient way to accomplish this is using the Bernstein inequality [9,
Proposition 5.16], that deals with bounded random variables. That also justifies the reason of
introducing the upper-bound truncation on χ in (72). Specifically, let us define

ϑi := χi1Ẽi − E
[
χi1Ẽi

]
, ∀i ∈ [m/2]. (74)

Thus, {ϑi}m/2i=1 are i.i.d. centered and bounded random variables following from the mean-subtraction
and the upper-bound truncation. Further, according to the ccdf (66) and the definition of sub-

exponential random variables [9, Definition 5.13], the terms {ϑi}m/2i=1 are sub-exponential. Then, the
following ∣∣∣∣∣∣

m/2∑
i=1

ϑi

∣∣∣∣∣∣ ≥ τ (75)

holds with probability at least 1− 2e−cs min(τ/Ks,τ2/K2
s), in which cs > 0 is a universal constant, and

Ks := maxi∈[m/2] ‖ϑi‖ψ1
represents the maximum subexponential norm of the ϑi’s. Indeed, Ks can

be found as follows [9, Definition 5.13]

Ks := sup
p≥1

p−1 (E [|ϑi|p])1/p

≤
(

4 log n− 2 log
(
m
/
|I0|
)) [
|I0|
/
m− 1/n2

]
≤ 2|I0|

m
log
(
n2|I0|

/
m
)

≤ 4|I0|
m

log n. (76)

Choosing τ := 8|I0|/(csm) · log2 n in (75) yields

m/2∑
i=1

χi1Ẽi ≥ |I0|
[
1 + log

(
m
/
|I0|
)]
− 8|I0|/(csm) · log2 n−m (2 log n+ 1)/n2

≥ (1− εs)|I0|
[
1 + log

(
m
/
|I0|
)]

(77)

for some small constant εs > 0, which holds with probability at least 1−me−n/2−e−c0m−3/n2 as long
as m/n exceeds some numerical constant and n is sufficiently large. Therefore, combining (60), (67),
and (77), one concludes that the following holds with high probability

∥∥S0x
∥∥2

=

|I0|∑
i=1

a2
i,1

‖ai‖2
≥ (1− εs)

|I0|
2.3n

[
1 + log

(
m
/
|I0|
)]
. (78)

Taking εs := 0.01 without loss of generality concludes the proof of Lemma 3.

A.4 Proof of Lemma 5

Let us first prove the argument for a fixed pair h and x, so h and z are independent of {ai}mi=1,
and then apply a covering argument. To start, introduce a Lipschitz-continuous counterpart for the
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discontinuous indicator function [3, A.2]

χE(θ) :=


1, |θ| ≥

√
1.01

1+γ ,

100(1 + γ)2θ2 − 100, 1
1+γ ≤ |θ| <

√
1.01

1+γ ,

0, |θ| < 1
1+γ

(79)

with Lipschitz constant O(1). Recall that Ei :=
{∣∣∣aTi z

aTi x

∣∣∣ ≥ 1
1+γ

}
, so it holds that 0 ≤ χE

(∣∣∣aTi z

aTi x

∣∣∣) ≤
1Ei for any x ∈ Rn and h ∈ Rn, thus yielding

1

m

m∑
i=1

(
aTi h

)2
1Ei ≥

1

m

m∑
i=1

(
aTi h

)2
χE

(∣∣∣∣aTi zaTi x

∣∣∣∣) =
1

m

m∑
i=1

(
aTi h

)2
χE

(∣∣∣∣1 +
aTi h

aTi x

∣∣∣∣) . (80)

By homogeneity and rotational invariance property of normal distributions, it suffices to prove
the case where x = e1 and ‖h‖/‖x‖ = ‖h‖ ≤ ρ. According to (80), lower bounding the first term

in (31) can be achieved by lower bounding
∑m
i=1(aTi h)2χE

(∣∣∣1 +
aTi h

aTi x

∣∣∣) instead. To that end, let

us find the mean of
(
aTi h

)2
χE

(∣∣∣1 +
aTi h

aTi x

∣∣∣). Note that
(
aTi h

)2
and χE

(∣∣∣1 +
aTi h

aTi x

∣∣∣) are dependent.

Introduce an orthonormal matrix Uh that contains hT /‖h‖ as its first row, i.e.,

Uh :=

[
hT /‖h‖
Ũh

]
(81)

for some orthogonal matrix Ũh ∈ R(n−1)×n such that Uh is orthonormal. Moreover, define h̃ := Uhh,
and ãi := Uhai; and let ãi,1 and ãi,\1 denote the first entry and the remaining entries in vector ãi;

likewise for vector h̃. Then, for any h such that ‖h‖ ≤ ρ, the next holds

E

[(
aTi h

)2
χE

(∣∣∣∣1 +
aTi h

aTi x

∣∣∣∣)] = E

[(
ãi,1h̃1

)2

χE

(∣∣∣∣1 +
aTi h

aTi x

∣∣∣∣)]+ E

[(
ãTi,\1h̃\1

)2

χE

(∣∣∣∣1 +
aTi h

aTi x

∣∣∣∣)]
= h̃2

1E

[
ã2
i,1χE

(∣∣∣∣1 +
aTi h

ai,1

∣∣∣∣)]+ E

[(
ãTi,\1h̃\1

)2
]

E

[
χE

(∣∣∣∣1 +
aTi h

ai,1

∣∣∣∣)]
= h̃2

1E

[
ã2
i,1χE

(∣∣∣∣1 +
aTi h

ai,1

∣∣∣∣)]+
∥∥h̃\1∥∥2

E

[
χE

(∣∣∣∣1 +
aTi h

ai,1

∣∣∣∣)]
≥
(
h̃2

1 +
∥∥h̃\1∥∥2

)
min

{
E

[
a2
i,1χE

(∣∣∣∣∣1 + h1 +
aTi,\1h\1

ai,1

∣∣∣∣∣
)]

,

E

[
χE

(∣∣∣∣∣1 + h1 +
aTi,\1h\1

ai,1

∣∣∣∣∣
)]}

≥ ‖h‖2 min

{
E

[
a2
i,1χE

(∣∣∣∣1− ρ+
ai,2
ai,1

ρ

∣∣∣∣)] , E

[
χE

(
1− ρ+

ai,2
ai,1

ρ

)]}
= (1− ζ1)‖h‖2 (82)

where the second equality follows from the independence between ãTi,\1h̃\1 and aTi h, the second

inequality holds for ρ ≤ 1/10 and γ > 1/2, and the last equality comes from the definition of ζ1

in (74). Notice that % := (aTi h)2χE

(∣∣∣1 +
aTi h

aTi x

∣∣∣) ≤ (aTi h)2 d
= ‖h‖2a2

i,1 is a subexponential variable,

and thus its subexponential norm ‖%‖ψ1
:= supp≥1 [E(|%|p)]1/p is finite.
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Direct application of the Berstein-type inequality [9, Proposition 5.16] confirms that for any ε > 0,
the following

1

m

m∑
i=1

(
aTi h

)2
χE

(∣∣∣∣1 +
aTi h

aTi x

∣∣∣∣) ≥ E

[(
aTi h

)2
χE

(∣∣∣∣1 +
aTi h

aTi x

∣∣∣∣)]− ε‖h‖2
≥ (1− ζ1 − ε) ‖h‖2 (83)

holds with probability at least 1−e−c5mε
2

for some numerical constant c5 > 0 provided that ε ≤ ‖%‖ψ1

by assumption.
To obtain uniform control over all vectors z and x such that ‖z − x‖ ≤ ρ, the net covering

argument is applied [9, Definition 5.1]. Let Sε be an ε-net of the unit sphere, Lε be an ε-net of [0, ρ],
and define

Nε := {(z, h, t) : (z0, h0, t0) ∈ Sε × Sε × Lε} . (84)

Since the cardinality |Sε| ≤ (1 + 2/ε)
n

[9, Lemma 5.2], then

|Nε| ≤ (1 + 2/ε)
2n
ρ/ε ≤ (1 + 2/ε)

2n+1
(85)

due to the fact that ρ/ε < 2/ε < 1 + 2/ε for 0 ≤ ρ < 1.
Consider now any (z, h, t) obeying ‖h‖ = t ≤ ρ. There exists a pair (z0, h0, t0) ∈ Nε such that

‖z − z0‖, ‖h− h0‖, and |t− t0| are each at most ε. Taking the union bound yields

1

m

m∑
i=1

(
aTi h0

)2
χE

(∣∣∣∣1 +
aTi h0

aTi x

∣∣∣∣) ≥ 1

m

m∑
i=1

(
aTi h0

)2
χE

(∣∣∣∣1− t0 +
ai,2
ai,1

t0

∣∣∣∣)
≥ (1− ζ1 − ε) ‖h0‖2, ∀ (z0, h0, t0) ∈ Nε (86)

with probability at least 1− (1 + 2/ε)
2n+1

e−c5ε
2m ≥ 1− e−c0m, which follows by choosing m such

that m ≥
(
c6 · ε−2 log ε−1

)
n for some constant c6 > 0.

Recall that χE (τ) is Lipschitz continuous, thus∣∣∣∣ 1

m

m∑
i=1

{(
aTi h

)2
χE

(∣∣∣∣1 +
aTi h

aTi x

∣∣∣∣)− (aTi h0

)2
χE

(∣∣∣∣1 +
aT h0

aTi x

∣∣∣∣)} ∣∣∣∣
.

1

m

m∑
i=1

∣∣∣(aTi h)2 − (aTi h0

)2∣∣∣
=

1

m

m∑
i=1

∣∣aTi (hhT − h0h
T
0

)
ai
∣∣

. c7

m∑
i=1

∣∣hhT − h0h
T
0

∣∣
≤ 2.5c7 ‖h− h0‖ ‖h‖
≤ 2.5c7ρε (87)

for some numerical constant c7 and provided that ε < 1/2 and m ≥
(
c6 · ε−2 log ε−1

)
n, where the

first inequality arises from the Lipschitz property of χE(τ), the second uses the results in Lemma 1
in [3], and the third from Lemma 2 in [3].
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Putting all results together confirms that with probability exceeding 1− 2e−c0m, the following
holds

1

m

m∑
i=1

(
aTi h

)2
χE

(∣∣∣∣1 +
aTi h

aTi x

∣∣∣∣) ≥ [1− ζ1 − (1 + 2.5c7ρ) ε] ‖h‖2 (88)

for all vectors ‖h‖ / ‖x‖ ≤ ρ, concluding the proof.

A.5 Proof of Lemma 6

Similar to the proof in Section A.4, it is convenient to work with the following auxiliary function
instead of the discontinuous indicator function

χD(θ) :=


1, |θ| ≥ 2+γ

1+γ

−100
(

1+γ
2+γ

)2

θ2 + 100,
√

0.99 · 2+γ
1+γ ≤ |θ| <

2+γ
1+γ

0, |θ| <
√

0.99 · 2+γ
1+γ

(89)

which is Lipschitz continuous in θ with Lipschitz constant O(1). For Di =
{∣∣∣aTi h

aTi x

∣∣∣ ≥ 2+γ
1+γ

}
, it holds

that 0 ≤ 1Di ≤ χD
(∣∣∣aTi h

aTi x

∣∣∣) for any x ∈ Rn and h ∈ Rn. Assume without loss of generality x = e1.

Then for γ > 0 and ρ ≤ 1/10, it holds that

1

m

m∑
i=1

1{ |aTi h|
|aTi x| ≥

2+γ
1+γ

} ≤ 1

m

m∑
i=1

χD

(∣∣∣∣aTi haTi x

∣∣∣∣) =
1

m

m∑
i=1

χD

(∣∣∣∣aTi hai,1

∣∣∣∣)

=
1

m

m∑
i=1

χD

(∣∣∣∣∣h1 +
aTi,\1h\1

ai,1

∣∣∣∣∣
)

=
1

m

m∑
i=1

χD

(∣∣∣∣h1 +
ai,2
ai,1

∥∥h\1∥∥∣∣∣∣)
(i)

≤ 1

m

m∑
i=1

1{∣∣∣h1+
ai,2
ai,1
‖h\1‖

∣∣∣≥√0.99· 2+γ1+γ

} (90)

where the last inequality arises from the definition of χD. Noting that ai,2/ai,1 obeys the standard
Cauchy distribution, i.e., ai,2/ai,1 ∼ Cauchy(0, 1) [14], and particularly, transformation properties of
Cauchy distributions assert that h1 +

ai,2
ai,1
‖h\1‖ ∼ Cauchy(h1, ‖h\1‖) [15]. Recall that the cdf of a

Cauchy distributed random variable w ∼ Cauchy (µ0, α) is given by [14]

F (w;µ0, α) =
1

π
arctan

(
w − µ0

α

)
+

1

2
. (91)

It is easy to check that when ‖h\1‖ = 0, the indicator function 1Di = 0 due to |h1| ≤ ρ <√
0.99(2 + γ)/(1 + γ). Consider only ‖h\1‖ 6= 0 next. Define for notational brevity w := ai,2/ai,1,
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α := ‖h\1‖, as well as µ0 := h1/α and w0 :=
√

0.99 2+γ
α(1+γ) to yield

E
[
1{|µ0+w|≥w0}

]
= 1−

[
F (w0;µ0, 1)− F (−w0;µ0, 1)

]
= 1− 1

π

[
arctan(w0 − µ0)− arctan(−w0 − µ0)

]
(i)
=

1

π
arctan

(
2w0

w2
0 − µ2

0 − 1

)
(ii)

≤ 1

π
· 2w0

w2
0 − µ2

0 − 1

(iii)

≤ 1

π
· 2
√

0.99ρ(2 + γ)/(1 + γ)

0.99(2 + γ)2/(1 + γ)2 − ρ2

≤ 0.0646 (92)

for all γ > 0 and ρ ≤ 1/10. In deriving (i), the property arctan(u)+arctan(v) = arctan
(
u+v
1−uv

)
(mod π)

for any uv 6= 1. Concerning (ii), the inequality arctan(x) ≤ x for x ≥ 0 is employed. Plugging given
parameter values and using ‖h\1‖ ≤ ‖h‖ ≤ ρ confirms (iii). Apparently, 1{|µ0+w|≥w0} is bounded;
and it is known that all bounded random variables are subexponential. Thus, upon applying the
Bernstein-type inequality [9, Corollary 5.17], the next holds with probability at least 1− e−c5mε

2

for
some numerical constant c5 > 0 and any sufficiently small ε > 0

1

m

m∑
i=1

1{ |aTi h|
|aTi x| ≥

2+γ
1+γ

} ≤ 1

m

m∑
i=1

1{∣∣∣h1+
ai,2
ai,1
‖h\1‖

∣∣∣≥√0.99 2+γ
1+γ

} ≤ (1 + ε)E

[
1{∣∣∣h1+

ai,2
ai,1
‖h\1‖

∣∣∣≥√0.99 2+γ
1+γ

}]

≤ 1 + ε

π
· 2
√

0.99ρ(2 + γ)/(1 + γ)

0.99(2 + γ)2/(1 + γ)2 − ρ2
. (93)

On the other hand, one can easily establish that the following holds true for all h

E
[(
aTi h

)4]
= E

[
a4
i,1

]
‖h‖4 = 3 ‖h‖4 (94)

which has also been established in Lemma 1 [3] and Lemma 6.1 [16]. Further recalling our working

assumption ‖ai‖ ≤ 2.3n, then random variables
(
aTi h

)4
are bounded, and thus they are subexpo-

nential [9]. Appealing again to the Bernstein-type inequality for subexponential random variables
and provided that m/n > c6 · ε−2 log ε−1 for some numerical constant c6 > 0, then

1

m

m∑
i=1

(
aTi h

)4 ≤ 3(1 + ε) ‖h‖4 (95)

which holds with probability exceeding 1 − e−c5mε
2

for some universal constant c5 > 0 and any
sufficiently small ε > 0.

Collecting together results in (93) and (95) and leveraging the Cauchy-Schwartz inequality, one
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establishes that for any ρ ≤ 1/10 and γ > 0, the following

1

m

m∑
i=1

(
aTi h

)2
1Di ≤

√√√√ 1

m

m∑
i=1

(
aTi h

)4√√√√ 1

m

m∑
i=1

1{ |aTi h|
|aTi x| ≥

2+γ
1+γ

}

≤
√

3(1 + ε) ‖h‖4
√

1 + ε

π
· 2
√

0.99ρ(2 + γ)/(1 + γ)

0.99(2 + γ)2/(1 + γ)2 − ρ2

∆
= (ζ ′2 + ε′) ‖h‖2 (96)

where ζ ′2 := 1.3785
√
ρτ/(0.99τ2 − ρ2) with τ := (2 + γ)/(1 + γ), which holds with probability at

least 1− 2e−c0m. The latter arises if choosing c0 ≤ c5ε2 in 1− 2e−c5mε
2

, which can be accomplished
by taking m/n sufficiently large.
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