
A Proofs of Regret Bounds

A.1 Proof of Lemma 1

From convexity of the loss function `(·), we have

p>`(bx
T

)� bp>
T

`(x)  1

T

T

X

t=1

p>`(x
t

)� p>
t

`(x)  1

T

T

X

t=1

�

`(x
t

)

>
(p� p

t

) + p>
t

g(x
t

)(x� x
t

)

 

(12)
where we have used g(x

t

) 2 Rn⇥d to denote the n-by-d matrix whose rows are g
i

(x
t

)

>. Note that

E[b`
t

(x
t

)

>
(p� p

t

)|It�1

1

, xt

1

] = `(x
t

)

>
(p� p

t

), E[g
It(xt

)

>
(x� x

t

)|It�1

1

, xt

1

] = p>
t

g(x
t

)(x� x
t

)

since I
t

⇠ p
t

and p
t

is �(It�1

1

, xt

1

)-measurable. Further, from the standard mirror descent result
(e.g., [23, Section 2.3]), we have

T

X

t=1

E[g
It(xt

)

>
(x� x

t

)]  1

↵
x

B
 

x

(x?, x
1

) +

↵
x

2

T

X

t=1

E kg
It(xt

)k2
x,⇤ .

Taking expectation in (12) and applying these facts, desired result follows.

A.2 Proof of Lemma 2

From Algorithm 1, we have

↵
p

b`
t

(x
t

)

>
(p� p

t

) = (r 
p

(w
t+1

)�r 
p

(x
t

))

>
(p� p

t

)

= B
 

p

(p, p
t

) +B
 

p

(p
t

, w
t+1

)�B
 

p

(p, w
t+1

). (13)
For any p 2 P

⇢,n

, we have for all p 2 P
⇢,n

,

B
 

p

(p, w
t+1

) � B
 

p

(p, p
t+1

) +B
 

p

(p
t+1

, w
t+1

) ⌘ (r 
p

(p)�r 
p

(w
t+1

))

>
(p� p

t+1

) � 0.

The latter inequality is just the optimality condition for p
t+1

= argmin

p2P⇢,n
B
 

p

(p, w
t+1

). Apply-
ing the first equality in (13) and summing for t = 1, . . . , T , we obtain

↵
p

T

X

t=1

b`
t

(x
t

)

>
(p� p

t

)  B
 

p

(p, p
1

)�B
 

p

(p, p
T+1

) +

T

X

t=1

�

B
 

p

(p
t

, w
t+1

)�B
 

p

(p
t+1

, w
t+1

)

�

 B
 

p

(p, p
1

) +

T

X

t=1

B
 

p

(p
t

, w
t+1

)

= B
 

p

(p, p
1

) +

T

X

t=1

B
 

⇤
p

(r 
p

(w
t+1

),r 
p

(p
t

)).

Now, noting that r 
p

(w
t+1

) = r 
p

(p
t

) + ↵
p

b`
t

(x
t

), we obtain the result.

A.3 Proof of Theorem 1

The conjugate of  
p

is

 ⇤
p

(s) =
1

k
((k � 1)s)

k⇤
+

+1 · 1 {s  0, k < 1} .

From Taylor’s theorem, we have

B
 

⇤
p

(u, v) =
1

k

n

X

i=1

⇣

((k � 1)u
i

)

k⇤
+

� ((k � 1)v
i

)

k⇤
+

⌘

�
n

X

i=1

((k � 1)v
i

)

k⇤�1

+

(u
i

� v
i

)

=

n

X

i=1

✓

Z

ui

vi

((k � 1)t)
k⇤�1

+

dt� ((k � 1)v
i

)

k⇤�1

+

(u
i

� v
i

)

◆

 1

2

n

X

i=1

max

t2[vi,ui]

((k � 1)t)
k⇤�2

+

(u
i

� v
i

)

2

which gives the following useful lemma.

10



Lemma 3 (Bubeck and Cesa-Bianchi [8], Lemma 5.9).

B
 

⇤
p

(u, v)  1

2

n

X

i=1

max

t2[vi,ui]

((k � 1)t)
k⇤�2

+

(u
i

� v
i

)

2.

For later use, we define the conjugate k⇤ =

k

k�1

and note that

k⇤ =

k

k � 1

=

8

>

>

<

>

>

:

< 1 if k 2 (�1, 0)

< 0 if k 2 (0, 1)

> 0 if k 2 (1, 2)

< 2 if k 2 (2,1)

Now, define u := r 
p

(p
t

) + ↵
p

b`
t

(x
t

) =

1

k�1

pk�1

t

+ ↵
p

b`
t

(x
t

) and v := r 
p

(p
t

) =

1

k�1

pk�1

t

,
where pk�1 indicates the vector with each of its entries raised to the power k � 1.

When k � 2, we have from Lemma 3 that

B
 

⇤
p

⇣

r 
p

(p
t

) + ↵
p

b`
t

(x
t

),r 
p

(p
t

)

⌘


p2�k

t,It

2

✓

↵
p

`
It(xt

)

p
t,It

◆

2


↵2

p

2

p�k

t,It
(14)

where we have used that `
i

(x) 2 [0, 1]. Substituting this in the bound (6) and taking expectations, we
obtain the result by noting that I

t

⇠ p
t

.

For k < 2, note that since p, p
t

are probability vectors and p
t

is �(It�1

1

, xt

1

)-measurable, we have

E[b`
t

(x
t

)

>
(p� p

t

)|It�1

1

, xt

1

] = `0(x
t

)

>
(p� p

t

) = (`(x
t

)� )

>
(p� p

t

) = `(x
t

)

>
(p� p

t

) (15)

from which the first equality of the theorem follows. Following the proof of Lemma 2 verbatim, we
have the usual regret bound

T

X

t=1

b`
t

(x
t

)

>
(p� p

t

) 
B
 

p

(p, p
1

)

↵
p

+

1

↵
p

T

X

t=1

B
 

⇤
p

⇣

r 
p

(p
t

) + ↵
p

b`
t

(x
t

),r 
p

(p
t

)

⌘

(16)

where we now have b`
t,i

(x
t

) =

`

0
i(xt)

pt,i
1 {I

t

= i} =

`i(xt)�1

pt,i
1 {I

t

= i}. Now, note that if k  2

with k 62 {0, 1}, we have that ((k � 1)s)
k⇤�2

+

is nondecreasing in s. Hence, we again obtain the
bound (14) from Lemma 3.

A.4 Proof of Corollary 1

When k 2 (�1, 0), the f -divergence constraint

1

nk(k � 1)

n

X

i=1

�

(np
i

)

k � k(np
i

� 1)� 1

 

 ⇢

n

implies that �knp
i

 (np
i

)

k � knp
i

 (1� k)(1� k⇢) and hence p
i

 Ck
n

. Using this to bound
the sum in (9), we get

T

X

t=1

E[b`
t

(x
t

)

>
(p� p

t

)]  n�k⇢

↵
p

+

↵
p

2

TnkC1�k

k

.

Minimizing with respect to ↵
p

> 0 gives the first result. When k 2 (0, 1), we use Holder inequality
with p =

1

1�k

> 1 and q =

1

k

> 1:

n

X

i=1

p1�k

t,i


 

n

X

i=1

(p1�k

t,i

)

1
1�k

!

1�k

 

n

X

i=1

1

!

k

= nk.

Applying this bound in (9) and minimizing with respect to ↵
p

, result follows.

11



A.5 Proof of Theorem 2

Proceeding as in Section A.3 for k  2, we obtain the regret bound (16). First, note that B
 

p

(p, p
1

) =

P

n

i=1

p
i

log np
i

 ⇢

n

. We now bound B
 

⇤
p

⇣

r 
p

(p
t

) + ↵
p

b`
t

(x
t

),r 
p

(p
t

)

⌘

. Using exp(�x)� 1+

x  x

2

2

for x � 0, we have

B
 

⇤
p

⇣

log p
t

+ + ↵
p

b`
t

(x
t

), log p
t

+

⌘

=

X

i 6=It

exp(log p
t,i

) + exp(log p
t,It + ↵

p

b`
t,It(xt

))�
n

X

i=1

exp(log p
t,i

)� exp(log p
t,It)↵p

b`
t,It(xt

)

= p
t,It

n

exp(↵
p

b`
t,It(xt

))� 1� ↵
p

b`
t,It(xt

)

o

 1

2

p
t,It
b`
t,It(xt

)

2

=

(`
It(xt

)� 1)

2

2p
t,It

where we used x = �↵
p

b`
t,It(xt

) � 0. Plugging the above observations into (6) and taking
expectations, we obtain

T

X

t=1

E[b`
t

(x
t

)

>
(p� p

t

)]  ⇢

n↵
p

+

↵
p

2

T

X

t=1

E
"

n

X

i=1

(`
i

(x
t

)� 1)

2

#

.

Bounding (`
i

(x
t

)� 1)

2  1, the first claim follows. Optimizing the bound with respect to ↵
p

> 0,
we obtain the second result.

A.6 Proof of Theorem 3

As in Section A.3, the first equality and the interim regret bound follows from (15), (16). Now,
note that B

 

p

(p, p
1

) = �
P

n

i=1

(log(np
i

) � np
i

+ 1)  ⇢ to bound the first term. Next, we use
x� log(1 + x)  x

2

2

for x � 0 to get

B
 

⇤
p

⇣

r 
p

(p
t

) + ↵
p

b`
t

(x
t

),r 
p

(p
t

)

⌘

= B
 

⇤
p

✓

� 1

p
t

+ ↵
p

b`
t

(x
t

),� 1

p
t

◆

= � log

�

1� ↵
p

`0
It
(x

t

)

�

� ↵
p

`0
It
(x

t

) 
↵2

p

`0
It
(x

t

)

2

2

where we have used x = �↵
p

`0
It
(x

t

) � 0 and `0
It
(x

t

) 2 [�1, 0]. Plugging these into the bound (6)
and taking expectations, we have

T

X

t=1

E[b`
t

(x
t

)

>
(p� p

t

)]  ⇢

↵
p

+

↵
p

2

T

X

t=1

n

X

i=1

p
t,i

(`
i

(x
t

)� 1)

2.

Bounding (`
i

(x
t

)� 1)

2  1, the first claim follows. Minimizing with respect to ↵
p

gives the final
claim.

A.7 Proof of Theorem 4

For k 2 [2,1), we proceed identically as in Section A.3 to obtain

T

X

t=1

E[`(x
t

)

>
(p�p

t

)] =

T

X

t=1

E[b`
t

(x
t

)

>
(p�p

t

)] 
B
 

p

(p
t

, p
1

)

↵
p

+

↵
p

2

T

X

t=1

E

2

4

 

n

X

i=1

p
t,i

!

3

X

i:pt,i>0

p1�k

t,i

3

5

where the extra summation term appeared since p
t

’s are no longer normalized. We note that
B
 

p

(p
t

, p
1

)  n�k⇢ since (8) still holds.

From the definition of C
k

= max {t : f
k

(t)  t} _ ⇢

n

, we have
n

X

i=1

np
i


X

i:npiCk

np
i

+

X

i:npi>Ck

f(np
i

)  nC
k

+ ⇢  2nC
k

12



for all p 2 P
⇢,n,�

. Hence, it follows that
T

X

t=1

E[b`
t

(x
t

)

>
(p� p

t

)]  n�k⇢

↵
p

+ 8↵
p

TC3

k

�1�knk.

Minimizing with respect to ↵
p

, we obtain the first result.

When k 2 (1, 2], we proceed identically and use the fact that k⇤ � 2 and ` 2 [�1, 0] in Lemma 3.
Plugging this into the bound (6) and taking expectations, we obtain the second claim by following
identical steps as in the case k � 2.

B Updates for p

In this section, we will explicitly write down the computations required for mirror descent updates in
p 2 P

⇢,n

. The updates for p is

p
t+1

:= argmin

p2P⇢,n

B
 

p

(p, w
t+1

) (17)

where w
t+1

= r 
p

(p
t

) + ↵b`
t

(x
t

). In the following, we omit subscripts for ease of notation. Note
that for k  1, since kr 

p

(p)k ! 1 as p
i

! 0 for any 1  i  n, we can ignore the nonnegativity
constraint in (17).

B.1 Power divergence for k 2 (�1, 1) \ {0}

Writing down the Lagrangian for the optimization problem (17) with  
p

(p) = 1

k(k�1)

P

n

i=1

pk
i

, we
have

L(p, ⌘,�) = 1

k(k � 1)

n

X

i=1

(pk
i

� wk

i

)� 1

k � 1

n

X

i=1

wk�1

i

(p
i

� w
i

)

� ⌘(p> � 1)� n�k�

 

⇢� 1

k(k � 1)

n

X

i=1

((np
i

)

k � 1)

!

where ⌘ 2 Rn and � � 0. In any case, the first order conditions for p yield

(1 + �)pk�1

= wk�1

+ (k � 1)⌘ .

Plugging this in the constraint f -divergence constraint
P

n

i=1

pk
i

 n�k

(k(k � 1)⇢+ n) and using
strict complementarity, we have

�(⌘) =

 

✓

nk

k(k � 1)⇢+ n

◆

1
k⇤
�

�wk�1

+ (k � 1)⌘
�

�

k⇤
� 1

!

+

.

Plugging this in the Lagrangian

L(⌘) = min

��0

max

p2P⇢,n

L(p, ⌘,�) = B
 

p

(p(⌘), w)� ⌘(p(⌘)> � 1)

where p(⌘) = (1 + �(⌘))1�k⇤
(wk�1

+ (k � 1)⌘ )

k⇤�1. Now, it remains to minimize L(⌘). Noting
that L(⌘) is a concave function, the derivative d

d⌘

L(⌘) is an nondecreasing function. Hence, we can
run a bisection search to find ⌘ such that d

d⌘

⌘ = 0. To this end, compute

d

d⌘
L(⌘) =(1 + �(⌘))1�k⇤

✓

�0(⌘)

k � 1

� 1

◆

n

X

i=1

(w
i

+ (k � 1)⌘)k⇤�1

� (1 + �(⌘))2�k⇤
�0(⌘)

k � 1

n

X

i=1

wk�1

i

(wk�1

i

+ (k � 1)⌘)k⇤�2

� ⌘�0(⌘)(1 + �(⌘))2�k⇤

n

X

i=1

(wk�1

i

+ (k � 1)⌘)k⇤�2

13



where

�0(⌘) =

8

<

:

(k � 1)

⇣

n

k

k(k�1)⇢+n

⌘

1
k⇤ �
�wk�1

+ (k � 1)⌘
�

�

1�k⇤

k⇤

P

n

i=1

(wk�1

i

+ (k � 1)⌘)k⇤�1 if �(⌘) � 0

0 otherwise.

Since evaluating d

d⌘

L(⌘) takes O(n) time, the bisection on ⌘ will find a ✏-accurate solution in
O(n log

1

✏

) time. Using this optimal ⌘ to to compute p(⌘) takes another O(n) time.

B.2 KL divergence (k = 1)

Lagrangian for the optimization problem (17) with  
p

(p) =
P

n

i=1

p
i

log p
i

is

L(p, ⌘,�) =
n

X

i=1

p
i

log

p
i

w
i

� ⌘(p> � 1)� �

n

 

⇢�
n

X

i=1

np
i

log(np
i

)

!

.

The first order conditions for p yield p
i

= w
1

1+�

i

n� �
1+�

exp

⇣

⌘

1+�

⌘

and from p> = 1, it follows

that p
i

= w
1

1+�

i

/
P

n

i=1

w
1

1+�

i

. Plugging this back into the Lagrangian, we have

L(�) = min

⌘

max

p2P⇢,n

L(p,�, ⌘) = �
⇣

log n� ⇢

n

⌘

� ↵b`
It(xt

)� (1 + �) log

n

X

i=1

w
1

1+�

i

.

Taking derivatives, we get

d

d�
L(�) = log n� ⇢

n
� log

n

X

i=1

w
1

1+�

i

�
P

n

i=1

w
� �

1+�

i

P

n

i=1

w
1

1+�

i

which can be computed in O(n) flops. Since L(�) is concave, � � 0 such that d

d�

L(�) = 0 can be
found to ✏-accuracy in O(n log

1

✏

). Then, the update p(⌘) takes O(n) to compute.

B.3 EL divergence (k = 0)

Lagrangian for the optimization problem (17) with  
p

(p) = �
P

n

i=1

log p
i

is

L(p, ⌘,�) = �
n

X

i=1

log

p
i

w
i

� ⌘(p> � 1)� �
 

⇢+

n

X

i=1

log(np
i

)

!

.

The first order conditions for p yield p
i

= (1 + �)( 1

wi
� ⌘)�1. Plugging this into the divergence

constraint and using strict complementarity, we have

�(⌘) =

 

exp

 

1

n

n

X

i=1

log

✓

1

nw
i

� ⌘

n

◆

� ⇢

n

!

� 1

!

+

.

Then, it suffices to solve

L(⌘) = min

��0

max

p2P⇢,n

L(p,�, ⌘) =
n

X

i=1

p
i

(⌘) log
p
i

(⌘)

w
i

� ⌘(p(⌘)> � 1).

From concavity, we can run bisection search on the monotone function d

d⌘

L(⌘) to find its zero. To
this end, compute

d

d⌘
L(⌘) =

n

X

i=1

⇢

p0
i

(⌘)

✓

log

p
i

(⌘)

w
i

� ⌘ � 1

◆

+ p
i

(⌘)

�

+ 1

where

p0
i

(⌘) = (1 + �(⌘))

✓

1

w
i

� ⌘
◆�2

+ �0(⌘)

✓

1

w
i

� ⌘
◆�1

�0(⌘) =

(

� 1

n

exp

⇣

1

n

P

n

i=1

log

⇣

1

nwi
� ⌘

n

⌘

� ⇢

n

⌘

P

n

i=1

⇣

1

wi
� ⌘
⌘�1

if �(⌘) > 0

0 otherwise.
Hence, the update p(⌘) can be computed in O(n) flops.

14



B.4 Power divergences (k > 1)

After some calculations, we have that

g0(�) =
@

@�
B
 

p

(p(�), w) + �
@

@�

n

X

i=1

f
k

(np
i

(�))

=

⇢

nk+1�

(k � 1)

2

� n

k � 1

+ �(�� 1)

n2k+1

(k � 1)

2

�

�

1 + nk�
�

k⇤�1

X

i2I(�)

(wk�1

i

+ n�)k⇤�1

+

⇢

n�

(k � 1)

2

+ �(�� 1)

nk+2

(k � 1)

2

�

�

1 + nk�
�

k⇤
X

i2I(�)

(wk�1

i

+ n�)k⇤�2

+

nk

k(k � 1)

�

1 + nk�
�

k⇤
X

i2I(�)

wk�1

i

(wk�1

i

+ n�)k⇤

+

⇢

�(�� 1)

n2k+1

(k � 1)

2

� n2k�

(k � 1)

2

�

�

1 + nk�
�

k⇤�1

X

i2I(�)

wk�1

i

(wk�1

i

+ n�)k⇤�1

+

⇢

�(�� 1)

nk+2

(k � 1)

2

� nk+1�

(k � 1)

2

�

�

1 + nk�
�

k⇤
X

i2I(�)

wk�1

i

(wk�1

i

+ n�)k⇤�2

� �k � k�

k(k � 1)

|I(�)|� ⇢+ n�

k
+

n(�k � k�)

k(k � 1)

where

I(�) =

(

1  i  n : wk�1

i

�
✓

�

n

◆

k�1

(1 + nk�)� �n
)

.

Hence, we can run bisection search on � � 0 to find the zero of the monotone function @

@�

L(�) as
before.

When k = 2, under the change of variables � = n2�, we have

@

@�
g(�) =

1

(1 + �)2

X

i2I(�)

✓

w
i

� 1

n

◆

2

� ⇢

n2

+

(1� �)2

2n2

(n� |I(�)|)

=

1

(1 + �)2

X

i2I(�)

w2

i

� 2

n(1 + �)2

X

i2I(�)

w
i

+

✓

1

n2

(1 + �)2
� (1� �)2

2n2

◆

|I(�)|+ (1� �)2

2n
� ⇢

n2

(18)

Making the additional change of variables ↵ = �/(1 + �) and I(↵) =
�

i : (1� ↵)w
i

+ ↵/n � �

n

 

,
we have

@

@↵
g(↵) =

1

2

X

i2I(↵)

w2

i

� 1

n

X

i2I(↵)

w
i

+

1

2n2

(1� ↵)2
�

(1� ↵)2 � (1� �)2
�

|I(↵)|

+

1

2n2

(1� ↵)2 (n(1� �)
2 � 2⇢),

(19)

which is non-increasing in ↵ 2 [0, 1].

C Procedures for Efficient Updates when k = 2

We detail the operations involving the balanced binary search tree (BST) required for Algorithm 1.
The weights w are stored up to multiplicative and additive factors mult and addi. Each node in the

15



BST stores the following variables:

i = index in {1, . . . , n} of node
left = pointer to the left child. ; if empty (NULL)

right = pointer to the right child. ; if empty (NULL)
w = weight, stored up to multiplicative and additive factors (mult and addi)
N

l

= number of weights in the left subtree (smaller weights)
N

r

= number of weights in the right subtree (bigger weights)
S
l

= sum of weights in the left subtree (smaller weights)
S
r

= sum of weights in the right subtree (bigger weights)

S2

l

= sum of squared weights in the left subtree (smaller weights)

S2

r

= sum of squared weights in the right subtree (bigger weights)

By computing 1 + N
l

+ N
r

at the root node, the number of elements in the BST is available in
constant time.

We first give the pseudo-code for the sampling procedure used in Line 1.3 of Algorithm 1. Sample(tree)
samples a node from the given tree with probabilities proportional to the weights of the nodes. At any
given node, the procedure decides whether to stay at the current node or recurse down the tree by
tossing a coin proportional to the current weight w (stay) and the sum of weights s

l

(go left) and s
r

(go right). The algorithm returns the node if the coin flip results in a “stay” decision or it reaches a
leaf node. By virtue of this recursive strategy, the sampling procedure requires O(log n).

Algorithm 2 Sample I
t

1: coin Uniform(0,1)
2: node root
3: while node is not a leaf do
4: if coin < 1

1+node.Nl+node.Nr
then

5: return node
6: else if coin < (1 + node.N

l

)/(1 + node.N
l

+ node.N
r

) then
7: node node.left
8: else
9: node node.right

10: end if
11: end while
12: return node

Next, we briefly outline the procedure for updating the sampled node with index I
t

from p
t

to w
t+1

.
Using the standard BST operations Remove and Insert, this step requires time O(log n). For exam-
ple, a red-black tree uses subtree rotations to update and maintain the values N

l

, N
r

, S
l

, S
r

, S2

l

, S2

r

along with the weights in logarithmic time [11]. See Duchi et al. [14] for explicitly updates when
storing subtree weights and counts, as in our case.

Algorithm 3 Update w
1: Input: p

t,It , w
t,It , I

t

2: Remove(p
t,It , It), Insert(w

t,It , It)
3: return root

We next give a procedure that computes an ✏-accurate solution to @

@↵

g(↵) = 0 as in expression (19).
We first bisect on the nodes to find the node with its weight at the optimal threshold. Then, we bisect
on ↵ to compute the exact value. Since the algorithm proceeds in two bisection steps, it only takes
O(log n+ log

1

✏

) time.

16



Algorithm 4 Compute ↵⇤

1: node = root, node
r

, node
l

= ;
2: c

num

, c
sum

, c
sum

2
= 0, `

num

, `
sum

, `
sum

2
= 0

3: while true do
4: w  node.w, ↵ (� � nw)/(1� nw)
5: g(↵) 1

2

(c
sum

2
+ w2

+ node.S2

r

)� 1

n

(c
sum

+ w + node.S
r

)

6: +

1

2n

2
(1�↵)2 ((1�↵)

2� (1� �)2)(c
num

+1+ node.N
r

)+

1

2n

2
(1�↵)2 (n(1� �)

2� 2⇢)

7: if g(↵) < 0 then // too small, increase ↵
8: node

r

 node
9: if node.right = ; then break

10: end if
11: node node.right
12: else // too big, decrease ↵
13: node

l

 node
14: c

num

 c
num

+ 1 + node.N
r

, c
sum

 c
sum

+ node.w + node.S
r

15: c
sum

2  c
sum

2
+ node.w2

+ node.S2

r

16: `
num

 c
num

, `
sum

 c
sum

, `
sum

2  c
sum

2

17: if node.left = ; then break
18: end if
19: node node.left
20: end if
21: end while
22: if node

l

6= ; then
23: c

num

= `
num

, c
sum

= `
sum

, c
sum

2
= `

sum

2

24: end if
25: u 1, l 0, ↵ .5
26: while u� l > ✏ do
27: if g(↵, `) < 0 then
28: u ↵
29: else
30: l ↵
31: end if
32: end while
33: Update mult (1� ↵)mult, addi (1� ↵) ⇤ addi + ↵/n
34: return ↵

In Line 4.27, we used g(↵, `) to denote g(↵) as computed with `
num

, `
sum

, `
sum

2 as the relevant
sums.

Provided �⇤ = 1/(1� ↵⇤
), Algorithm 5 gives a procedure for updating the tree to p(�⇤) in O(log n)

time. By virtue of the updates (11), we have p
i

(�) � �

n

for i 6= I
t

since w
i

� �

n

. Hence, the only
potential truncation is for index I

t

, which takes O(log n) time by removing and reinserting the node
into the tree.

Algorithm 5 Update p
1: Input: �⇤, w

t,It , I
t

2: if w
t,It <

�

n

then
3: // If modified weight was too low, truncate.
4: Remove(w

t,It , It), Insert( �
n

, I
t

)
5: end if

17


	Introduction
	A bandit mirror descent algorithm for the minimax problem
	Regret bounds
	Power divergences when k {0, 1}
	Regret bounds using the KL divergences (k=1 and k = 0)
	Power divergences (k > 1)

	Efficient updates when k = 2
	Experiments
	Proofs of Regret Bounds
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Theorem 1
	Proof of Corollary 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4

	Updates for p
	Power divergence for k (-, 1) {0}
	KL divergence (k=1)
	EL divergence (k=0)
	Power divergences (k > 1)

	Procedures for Efficient Updates when k = 2

