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1 Suitability of Loss Functions

In this section, we present the suitability of the loss functions for Hinge, smooth Hinge, and Logistic
for classification and `1, and ε-insensitive for regression. We prove that these losses satisfy the
condition: there exists a positive constant A such that |∇ol (y, o)| ≤ A, ∀y, o. For each loss, we
show its two forms used in the paper w.r.t o and w.

Hinge loss

l (y, o) = max (0, 1− yo)
l (w,x, y) = max

(
0, 1− yw>Φ (x)

)
∇ol (y, o) = −Iyo≤1y

|∇ol (y, o)| = |Iyo≤1| ≤ 1 = A

Logistic loss

l (y, o) = log
(
1 + e−yo

)
l (w,x, y) = log

(
1 + e−yw

>Φ(x)
)

∇ol (y, o) =
−ye−yo

e−yo + 1

|∇ol (y, o)| =
∣∣∣∣ e−yo

e−yo + 1

∣∣∣∣ < 1 = A

Smooth Hinge loss [4]

l (y, o) =


0 if yo > 1

1− yo− τ
2 if yo < 1− τ

1
2τ (1− yo)2 otherwise

l (w,x, y) =


0 if yw>Φ (x) > 1

1− yw>Φ (x)− τ
2 if yw>Φ (x) < 1− τ

1
2τ

(
1− yw>Φ (x)

)2
otherwise

∇ol (y, o) = −I{yo<1−τ}y + τ−1I1−τ≤yo≤1 (yo− 1) y

|∇ol (y, o)| =
∣∣I{yo<1−τ}

∣∣+
∣∣τ−1I1−τ≤yo≤1 (yo− 1)

∣∣
≤
∣∣I{yo<1−τ}

∣∣+ τ−1τ |I1−τ≤yo≤1| ≤ 1 = A
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`1 loss

l (y, o) = |y − o|
l (w,x, y) =

∣∣y −w>Φ (x)
∣∣

∇ol (y, o) = sign (o− y)

|∇ol (y, o)| ≤ 1 = A

ε-insensitive loss

l (y, o) = max (0, |y − o| − ε)
l (w,x, y) = max

(
0,
∣∣y −w>Φ (x)

∣∣− ε)
∇ol (y, o) = I|y−o|≥εsign (o− y)

|∇ol (y, o)| ≤ 1 = A

We note that IA denotes the indicator function which renders 1 if A is true and 0 otherwise.

2 Proofs

Lemma 1. After the iteration t, we have the following representations

ŵt =

t∑
j=1

αj (1− βj) Φ (xj) (1)

w̃t =

t∑
j=1

αjβjz (xj) (2)

wt =

t∑
j=1

αjΦ (xj) (3)

where αj = −ηt∇ol
(
yj , f

h
j (xj)

)
, ∀j = 1, . . . , t and ηt = 1

λt .

Proof. Since if βj = 1, we perform the budget maintenance procedure and move the current vector
to the random-feature space, we have the representations in Eqs. (1,2,3). In addition at the iteration j,
Φ (xj) arrives with the initial coefficient αj = −ηj∇ol

(
yj , f

h
j (xj)

)
. After the iteration t > j, this

coefficient becomes

αj = − t− 1

t

t− 2

t− 1
...

j

j + 1

1

λj
∇ol

(
yi, f

h
j (xj)

)
= −ηt∇ol

(
yj , f

h
j (xj)

)

Theorem 2. With a probability at least 1− 28
(
σµAdX
λε

)
exp

(
− Dλ2ε2

4(M+2)A2

)
where dX specifies the

diameter of the compact set X , we have

i)
∣∣ft (x)− fht (x)

∣∣ ≤ ε for all t > 0 and x ∈ X .

ii) E
[∣∣ft (x)− fht (x)

∣∣] ≤ A−1λε
∑t
j=1 E

[
α2
j

]1/2
µ

1/2
j where µj = p (βj = 1).

Let us define a random map z : Rd → R2D where z (x) = 1
D1/2

[
cos
(
ωT
i x
)
, sin

(
ωT
i x
)]D
i=1

and

ω1, ..., ωD
i.i.d∼ N

(
0, σ−2I

)
for every x ∈ Rd. We would like to restate Claim 1 in [3].

LetM be a compact subset of Rd with diameter diam (M). Then, for the random mapping z (.), we
have

P

(
sup

x,x′∈M

∣∣∣K (x, x′)− z (x)
T
z
(
x
′
)∣∣∣ < ε

)
≥ 1− 28

(
σdiam (M)

ε

)
exp

(
−Dε2

4 (d+ 2)

)
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where K
(
x, x

′
)

= e−

∥∥∥∥x−x′ ∥∥∥∥2
2σ2 .

Proof. We denote

ω = (ω1, ..., ωD) ∼ pω (ω) =

D∏
i=1

N
(
ωi|0, σ−2I

)

K̃
(
x, x

′
)

= z (x)
T
z
(
x
′
)

= D−1
D∑
i=1

(
cos
(
ωT
i x
)
cos
(
ωT
i x
′
)

+ sin
(
ωT
i x
)
sin
(
ωT
i x
′
))

We further denote
g (ω) = sup

x,x′∈M

∣∣∣K (x, x′)− K̃ (x, x′)∣∣∣
Gε =

{
ω : g (ω) < A−1λε

}
It is certain that Pω (Gε) ≥ 1−θ where θ = 28

(
σAdiam(M)

λε

)
exp

(
−Dλ2ε2

4(d+2)A2

)
and for every ω ∈ Gε

and x, x
′ ∈M we have ∣∣∣K (x, x′)− K̃ (x, x′)∣∣∣ < A−1λε

We now turn back to Theorem 2. It appears that∣∣ft (x)− fht (x)
∣∣ ≤ t∑

j=1

βj |αj |
∣∣∣K (xj , x)− K̃ (xj , x)

∣∣∣
Therefore, for every ω ∈ Gε we have∣∣ft (x)− fht (x)

∣∣ ≤ A−1λε

t∑
j=1

βj |αj |

Let us denote s = (x1, y1) , ..., (xt, yt). Taking expectation of the above inequality w.r.t s, we gain
for all ω ∈ Gε

Es
[∣∣ft (x)− fht (x)

∣∣] ≤ A−1λε

t∑
j=1

Es
[
β2
j

]1/2 Es [α2
j

]1/2
≤ A−1λε

t∑
j=1

µjEs
[
α2
j

]1/2
It means that

Pω

Es
[∣∣ft (x)− fht (x)

∣∣] ≤ A−1λε

t∑
j=1

µjEs
[
α2
j

]1/2 ≥ Pω (Gε) ≥ 1− θ

Lemma 3. The following statement holds for all t

‖wt‖ ≤
A

λ

Proof. Using Lemma 1, we have

wt =

t∑
j=1

αjΦ (xj)
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where αj = −ηt∇ol
(
yj , f

h
j (xj)

)
.

It implies that

‖wt‖ ≤
t∑

j=1

|αj | ‖Φ (xj)‖ ≤
t∑

j=1

|αj | ≤
t∑

j=1

A

λt
=
A

λ

Lemma 4. The following statement holds for all t

‖gt‖ ≤ G = 2A

where we define gt = λwt +∇wl (wt,xt, yt) = λwt +∇ol (yt, ft (xt)) Φ (xt).

Proof. We derive as

‖gt‖ ≤ λ ‖wt‖+ ‖∇ol (yt, ft (xt)) Φ (xt)‖ ≤ λ
A

λ
+A = 2A

Lemma 5. The following statement holds for all t

E
[
‖wt −w?‖2

]
≤W 2

where W =
2A(1+

√
5)

λ .

Proof. Recall that gt = λwt + ∇wl (wt,xt, yt) = λwt + ∇ol (yt, ft (xt)) Φ (xt). It is obvious
that gt satisfies

E(xt,yt) [gt|wt] = J
′
(wt)

We have the following if we denote δgt = gt − ght

‖wt+1 −w?‖2 =
∥∥wt − ηtght −w?

∥∥ = ‖wt − ηtgt −w? + ηtδgt‖2

= ‖wt −w?‖2 − 2ηtg
>
t (wt −w?) + η2

t ‖gt‖
2 − 2η2

t g
>
t δgt + η2

t ‖δgt‖
2

+ 2ηt (wt −w?)
>
δgt

It appears that

δgt =
[
∇ol (yt, ft (xt))−∇ol

(
yt, f

h
t (xt)

)]
Φ (xt)

‖δgt‖ =
∣∣∇ol (yt, ft (xt))−∇ol

(
yt, f

h
t (xt)

)∣∣ ≤ 2A

Hence, we obtain

‖wt+1 −w?‖2 ≤ ‖wt −w?‖2 − 2ηtg
>
t (wt −w?) + η2

tG
2 + 4η2

tGA+ 4η2
tA

2

+ 2ηt ‖wt −w?‖ ‖δgt‖

Taking conditional expectation w.r.t wt on both sides of the above inequality, we gain

E
[
‖wt+1 −w?‖2

]
≤ E

[
‖wt −w?‖2

]
− 2ηt∇wJ (wt)

>
(wt −w?) + η2

tG
2 + 4η2

tGA

+ 4η2
tA

2 + 2ηtE [‖wt −w?‖ ‖δgt‖]

≤ E
[
‖wt −w?‖2

]
+ 16A2η2

t + 2ηtE [‖wt −w?‖ ‖δgt‖]−
1

t
‖wt −w?‖

Here we note that we have used

∇wJ (wt)
>

(wt −w?) ≥ J (wt)− J (w?) +
λ

2
‖wt −w?‖2 ≥ λ

2
‖wt −w?‖2
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Taking expectation on both sides again, we obtain

E
[
‖wt+1 −w?‖2

]
≤ t− 1

t
E
[
‖wt −w?‖2

]
+

16A2

λ2t2
+

4AE
[
‖wt −w?‖2

]1/2
λt

≤ t− 1

t
E
[
‖wt −w?‖2

]
+

16A2

λ2t
+

4AE
[
‖wt −w?‖2

]1/2
λt

Choose W =
2A(1+

√
5)

λ , we have if E
[
‖wt −w?‖2

]
≤W 2 then E

[
‖wt+1 −w?‖2

]
≤W 2.

Theorem 6. The following statement guarantees for all T

E [J (wT )− J (w?)] ≤ E

[
1

T

T∑
t=1

J (wt)− J (w?)

]
≤ 8A2 (log (T ) + 1)

λT
+

1

T
W

T∑
t=1

E
[
M2
t

]1/2
where wT = 1

T

∑T
t=1 wt, Mt = ∇ol (yt, ft (xt))−∇ol

(
yt, f

h
t (xt)

)
.

Proof. Recall that gt = λwt + ∇wl (wt,xt, yt) = λwt + ∇ol (yt, ft (xt)) Φ (xt). It is obvious
that gt satisfies

E(xt,yt) [gt|wt] = ∇wJ (wt)

We have the following if we denote δgt = gt − ght
‖wt+1 −w?‖2 =

∥∥wt − ηtght −w?
∥∥ = ‖wt − ηtgt −w? + ηtδgt‖2

= ‖wt −w?‖2 − 2ηtg
>
t (wt −w?) + η2

t ‖gt‖
2 − 2η2

t g
>
t δgt + η2

t ‖δgt‖
2

+ 2ηt (wt −w?)
>
δgt

It appears that

δgt =
[
∇ol (yt, ft (xt))−∇ol

(
yt, f

h
t (xt)

)]
Φ (xt)

‖δgt‖ =
∣∣∇ol (yt, ft (xt))−∇ol

(
yt, f

h
t (xt)

)∣∣ ≤ 2A

Hence, we obtain

‖wt+1 −w?‖2 ≤ ‖wt −w?‖2 − 2ηtg
>
t (wt −w?) + η2

tG
2 + 4η2

tGA+ 4η2
tA

2

+ 2ηt ‖wt −w?‖ ‖δgt‖

gTt (wt −w?) ≤ ‖wt −w?‖2 − ‖wt+1 −w?‖2

2ηt
+ 8A2ηt + ‖wt −w?‖ ‖δgt‖

Taking conditional expectation w.r.t wt on both sides, we gain

∇wJ (wt)
>

(wt −w?) ≤ E

[
‖wt −w?‖2

2ηt

]
− E

[
‖wt+1 −w?‖2

2ηt

]
+ 8A2ηt + E [‖wt −w?‖ ‖δgt‖]

J (wt)− J (w?) +
λ

2
‖wt −w?‖2 ≤ E

[
‖wt −w?‖2

2ηt

]
− E

[
‖wt+1 −w?‖2

2ηt

]
+ 8A2ηt + E [‖wt −w?‖ ‖δgt‖]

Taking expectation on both sides once again, we achieve

E [J (wt)− J (w?)] ≤ λ

2
(t− 1)E

[
‖wt −w?‖2

]
− λ

2
tE
[
‖wt+1 −w?‖2

]
+ 8A2ηt + E [‖wt −w?‖ ‖δgt‖]

E [J (wt)− J (w?)] ≤ λ

2
(t− 1)E

[
‖wt −w?‖2

]
− λ

2
tE
[
‖wt+1 −w?‖2

]
+ 8A2ηt + E

[
‖wt −w?‖2

]1/2
E
[
‖δgt‖2

]1/2
5



Taking sum the above inequality when t = 1, ..., T , we obtain

E

[
1

T

T∑
t=1

J (wt)− J (w?)

]
≤ 8A2

λ

T∑
t=1

1

t
+

1

T
W

T∑
t=1

E
[
M2
t

]1/2
≤ 8A2 (log T + 1)

λT
+

1

T
W

T∑
t=1

E
[
M2
t

]1/2
Here we note that

‖δgt‖ =
∥∥[∇ol (yt, ft (xt))−∇ol

(
yt, f

h
t (xt)

)]
Φ (xt)

∥∥ = |Mt|

The last conclusion comes from the convexity of the function J (.).

Theorem 7. Assume that l (y, o) is a γ-strongly smooth loss function. With a probability at least
1− θ, the following statements hold

i) E [J (wT )− J (w?)] ≤ E
[

1
T

∑T
t=1 J (wt)− J (w?)

]
≤ 8A2(log T+1)

λT +

1
TWγε

∑T
t=1

(∑t
i=1 µi
t

)1/2

ii) E [J (wT )− J (w?)] ≤ E
[

1
T

∑T
t=1 J (wt)− J (w?)

]
≤ 8A2(log T+1)

λT +Wγε

where θ = 28
(
σµAdX
λε

)
exp

(
− Dλ2ε2

4(M+2)A2

)
.

Proof. From the smoothness of the loss function, we have∣∣∇ol (yt, ft (xt))−∇ol
(
yt, f

h
t (xt)

)∣∣ ≤ γ ∣∣ft (xt)− fht (xt)
∣∣

Referring to Lemma 2, with a probability at least 1− 28
(
σµAdX
λε

)
exp

(
− Dλ2ε2

4(M+2)A2

)
= 1− θ we

have

|Mt| ≤ γA−1λε

t∑
j=1

|αj |βi ≤ γA−1λε

t∑
j=1

A

λt
βj =

γε

t

t∑
j=1

βj

M2
t ≤

γ2ε2

t2

 t∑
j=1

βj

2

≤ γ2ε2

t

t∑
j=1

β2
j =

γ2ε2

t

t∑
j=1

βj (since βi = 0 or 1)

E
[
M2
t

]
≤ γ2ε2

t

 t∑
j=1

µj


and |Mt| ≤ γε. Therefore, with a probability at least 1− θ we achieve

E [J (wT )− J (w?)] ≤ E

[
1

T

T∑
t=1

J (wt)− J (w?)

]

≤ 8A2 (log T + 1)

λT
+

1

T
Wγε

T∑
t=1

(∑t
j=1 µj

)1/2

t1/2

≤ 8A2 (log T + 1)

λT
+

1

T
Wγε

T∑
t=1

(∑t
j=1 µj

t

)1/2
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and

E [J (wT )− J (w?)] ≤ E

[
1

T

T∑
t=1

J (wt)− J (w?)

]

≤ 8A2 (log T + 1)

λT
+

1

T
W

T∑
t=1

γε

≤ 8A2 (log T + 1)

λT
+Wγε

3 Computational Complexities of DualSGD and FOGD

We compare the computational complexities of our proposed DualSGD and Fourier Online Gradient
Descent (FOGD) [2]. Recall that M and D denote the dimensions of input space and feature space,
and B the budget size. There are four operators: (i) random feature mapping; (ii) kernel function;
(iii) sorting coefficients of support vectors and (iv) prediction. The random feature mapping first
projects the input data vector to random feature space with O (MD) computational complexity, and
then compute sin, cos on the random feature dimension with O

(
2D ∗ 2lognn log2 n

)
where n is

the number of bits accuracy [1]. The kernel function, sorting coefficients and prediction operate in
O (MB), O (B logB) and O (D) complexity, respectively. The FOGD performs random feature
mapping and prediction whilst the DualSGD performs all four operators.

Let D1 and D2 denote the number of random features of FOGD and DualSGD. The computational
complexities of FOGD and DualSGD reads

OFOGD = O
(
MD1 + 2D1 ∗ 2lognn log2 n+D1

)
= U

(
MD1 + 2D1 ∗ 2lognn log2 n+D1

)
ODualSGD = O

(
MD2 + 2D2 ∗ 2lognn log2 n+D2 +MB +B logB

)
= V

(
MD2 + 2D2 ∗ 2lognn log2 n+D2 +MB +B logB

)
where U, V are the number of iterations.

Taking the subtraction of OFOGD and ODualSGD, we obtain:

Ô = OFOGD −ODualSGD

= M (UD1 − V D2 −B) + (UD1 − V D2)
(
2 ∗ 2lognn log2 n+ 1

)
−B logB

According Fig. 1 in the introduction section, D1 � D2 and D1 � B, thus D1 − D2 � B. In
addition, we assume that U = V and normally use double-precision floating-point with n = 64 (bits)
for storing and computing real number, thus 2 ∗ 2lognn log2 n+ 1 > logB. Finally, we can see that
O � 0, thus the computational complexity of DualSGD, in practice, is significantly lower than that
of FOGD.
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