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Derivation of posterior Distribution

The posterior distribution will be derived using a counting argument inspired by Pitman (2003,
eqn. (32)). Consider first the case where the interaction strengths (η`m)`m and block sizes (β`)` has
a fixed value and that number of edges L`m within each tile (`,m) is given and recall the NRM is
defined as:

P =
µ

T
=

∞∑
i=1

piδθi , pi =
wi
T
, T = µ(S) =

∞∑
i=1

wi. (1)

Since not all potential vertices (i.e. terms wiδθi in µ) will have edges attached to them it is useful
to introduce a variable which encapsulates this distinction. We therefore define the variable z̃i =
0, 1, . . . ,K with the definition:

z̃i =

{
zi if there exist (x, y) ∈ Xα st. θi ∈ {x, y},
0 otherwise.

Suppose in addition for each measure µ`, the end-points of the edges associated with this measure
selects k` = |{i : z̃i = `}| unique atoms and that the number of edge-endpoints selecting any
particular atom wi is ni. This naturally divides the edge-endpoints associated with a particular
measure ` into a partition, {B1, . . . , Bk`} (Pitman, 2003), and we denote by Π`,2L this random
partition for measure `. For a particular measure the joint distribution

P (Π`,2L = {B1, . . . , Bk`}, wi ∈ dwi, T` ∈ dT`) (2)
is obtained from three contributions (with α` ≡ β`α):

• The mass parameter Tα` is distributed as gα`,σ,τ
• For each ` = 1, . . . ,K, there must be a Poisson atom in dwi for each i such that z̃i = `

• For each `, we know there are Poisson atoms in (dwi)z̃i=`, however since the measure of
these intervals is infinitesimal, the remaining mass T` −

∑
z̃i=`

wi is still distributed as
gα`,σ,τ .

• Each edge-endpoint selects the atom independently with probability given by the NRM of
eqn. (1), wi/T`.

The probability eqn. (2) can then be obtained from these three contributions as (with k =
∑K
`=1 k`

being the total number of vertices in the network):{
k∏
i=1

αρσ,τ (dwi)

}
K∏
`

gα`,σ,τ (T` −
∑
i:z̃i=`

wi)


 ∏
i:z̃i=`

(
wi
T`

)ni (3)
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where ni is the total number of times a particular atom i of µ` is selected in the process. To
connect these definitions to actual network data, i.e. an array (Aij)

k
i,j=1, notice if the atom (wi, θi)

corresponds to a particular vertex i in the network then ni =
∑
j(Aij +Aji).

Returning to eqn. (3) for a particular `, the expression can be integrated by introducing the variables
s` =

∑
i:z̃i=`

wi corresponding to the sum of the selected atoms, introducing the parameters xi =

wi/szi , and integrating (Pitman, 2003; Lijoi et al., 2008; Favaro & Teh, 2013). With n` =
∑
i:z̃i=`

ni
eqn. (3) can be written as a product over K factors:

k∏
i:z̃i=`

(1−σ)ni

∫ T`

0

ds`
sn`−k`σ−1` gα,σ,τ (T`−s`)
Γ(n` − k`σ)Tn`` α−k`` eτs`

. (4)

Recall the number of edges within each tile L`m is Poisson with rate η`mT`Tm. In addition, when
considering a concrete observed data matrix the edges does not have a particular labelling which
is otherwise introduced in the proceeding counting argument. Thus, if we observe a number Aij
of edges between vertices i, j in a particular tile, we must consider all ways a network with this
number of edges can be obtained by our generative process. This is equivalent to the number of ways
of selecting the particular edge-counts of the total edge-counts within each tile. The multiplicity
becomes the multinomial coefficient:(

L`m
(Aij)z̃i=`,z̃j=m

)
=

L`m!∏
z̃i=`,z̃j=m

Aij !
. (5)

The probability of obtaining a particular observed network Aij can be obtained by combining eqs. (4),
(5) and the Poisson rates for the edge-counts within each tile to obtain:

P (A, (zi)i|(η`m)`m, (β`)`) =

{
K∏
`=1

∫ ∞
0

dT` {eqn. (4)}

}∏
`m

Poisson(L`|η`mT`Tm)
L`m!∏
z̃i=`,
z̃j=m

Aij !

 .

Defining n`m =
∑
z̃i=`,z̃m=j Aij and simplifying

P (A, (zi)i|(η`m), (β`)`) =
1∏

ij Aij !

∏
`

[∫ ∞
0

∫ T`

0

dT`ds`

][∏
`m

ηn`m`m e−
∑
`m η`mT`Tm

]{∏
`

E`

}
where we have defined

E` =
αk`sn`−k`σ−1`

Γ(n` − k`σ)eτs`
gα`,τ,σ(T`−s`)

∏
z̃i=`

(1− σ)ni .

Similar to Lijoi et al. (2008) we will use the simple change-of-variable from T to t = T − s and a
change in the order of integration to obtain:∫

R+

∫ s

0

dTds h(T, s) =

∫∫
R2

+

dsdt h(t+ s, s). (6)

Then introducing the Gamma-priors for η`m, Dirichlet prior for (β`)` and integrating over η`m we
obtain the final expression:

P (A, (zi)i, σ, τ, (α`, s`, t`)`) =
Γ(β0)

∏K
`=1 α

β0
K −1
` E`

Γ(β0

K )Kαβ0
∏
ij Aij !

∏
`m

G(λa+n`m, λb+T`Tm)

G(λa, λb)
(7)

where G(a, b) = Γ(a)b−a is the normalization factor of the Gamma distribution and T` = t` + s`.
Finally notice the η = 1 case, corresponding to collapsed version of Caron & Fox (2014), can be
obtained by taking the limit λa = λb →∞ in which case G(λa+n,λb+T )

G(λa,λb)
→ e−T . When discussing

the K = 1 case we will assume this limit has been taken.
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Inference details

Sampling the expression eqn. (7) requires three types of sampling updates: For Aij we must apply
a sampling procedure to impute missing values, the sequence of block-assignments (zi)i must be
updated, the parameters associated with the random measure σ, τ must be updated and finally the
remaining variables (α`, s`, t`) associated with each expression E` must be updated. We will first
consider the later problem:

Update of variables associated with each E`: All terms except the densities gα,σ,τ are amenable
to standard sampling techniques. In (Caron & Fox, 2014) this expression was sampled by employing
a proposal distribution proportional to the density, thus allowing their value to cancel. In our work
we opted for the approach of Lomelí et al. (2014) in which u in Zolotarev’s integral representation
(see main text for details) is considered an auxiliary parameter. Thus, introducing u` ∈]0, π[ for each
σ-stable random variable gives the full set of variables Φ` = (α`, s`, t`, u`) for each E` term. For
convenience, the domain of the variables are in turn transformed to R using the standard change-of-
variables x 7→ ex for α, t and s and the logistic mappings x 7→ (1 + e−x)−1, x 7→ π(1 + e−x)−1

for σ and u. We found a simple random-walk Metropolis-Hastings sampling with a N (0, σ = 0.1)
kernel (50 steps per iteration) was robust and efficient compared to the other updates.

Update of zi: These variables can be updated directly from the likelihood eqn. (7), however we
opted to re-impute the weights (wi)z̃i=` by inverting the integration step from eqn. (3) to eqn. (4) to
obtain

(wi/s`)i:z̃i=` ∼ Dirichlet
(
(ni − σ)i:z̃i=`

)
. (8)

Doing this for each ` = 1, . . . ,K allows all variables zi to be updated in a regular Gibbs sweep.

Update of Aij: Most networks are binary whereas the model assumes count-data. Furthermore to
test the model it is useful to predict the presence of unobserved edges. Both of these difficulties are
resolved by imputation. Suppose we are given a matrix W such that Wij = 1 iff. the edge-count Aij
is unobserved. Furthermore assume Aij is binary and must be imputed. Edges can then in principle
be imputed directly by performing MCMC updates of Aij and accepting/rejecting according to the
likelihood eqn. (7), however the coupling between different counts through the gamma functions in
E` would make such a sampling procedure prohibitively expensive. This difficulty is not present in
Caron & Fox (2014) where the sociability-vector (wi)i are retained and updates using Hamiltonian
Monte-Carlo, however we can re-sample (wi)i and (η`m)`m from their marginal distributions and
use the re-sampled values of (wi)i to impute the corresponding values of (Aij). Thus for each plate
(`,m) we sample (wi)z̃i=` from (8) and η`m from

η`m ∼ Gamma
(
n`m+λa, (t`+s`)(tm+sm)+λb

)
(9)

the distribution of each unobserved Aij is then simply Poisson(η`wiwj), zi = `, zj = m.

Validation of the sampler

To investigate the validity of the sampling procedure, we considered the K = 1, λa = λb →∞ case
and used the sampling procedure of (Caron & Fox, 2014) with (α = 2, σ = 0.5, τ = 1) to generate
250 000 random networks. As described in the previous section the probability of any given network
is fully determined by the edge-endpoint counts (n1, . . . , nk) and the probability of a particular
sequence of counts is permutation invariant. If ordered decreasingly this gives 41 unique vectors
of edge-endpoint counts (n1, . . . , nk) for L = 0, 1, 2, 3, 4 (see vertical axis on figure 1a) and the
generated networks were binned according to their edge-endpoint count signature (networks with
more than 4 edges were discarded). In this manner we obtained an estimate of the true frequency of a
particular network signature. This estimate of the frequency was compared against the probability of
a given network as computed by eqn. (17). Notice that due to permutation invariance the probability
of each network signature must be corrected by multiplying eqn. (17) with a factor obtained by a
combinatorial argument (see for instance Pitman (2006, eqn. (2.2)))

n!∑mi
i=1(i!)mimi!

, where mi =

k∑
i=1

1(ni = 1).

3



∅
{2}

{1, 1}
{4}

{3, 1}
{2, 2}

{2, 1, 1}
{1, 1, 1, 1}

{6}
{5, 1}
{4, 2}

{4, 1, 1}
{3, 3}

{3, 2, 1}
{3, 1, 1, 1}

{2, 2, 2}
{2, 2, 1, 1}

{2, 1, 1, 1, 1}
{1, 1, 1, 1, 1, 1}

{8}
{7, 1}
{6, 2}

{6, 1, 1}
{5, 3}

{5, 2, 1}
{5, 1, 1, 1}

{4, 4}
{4, 3, 1}
{4, 2, 2}

{4, 2, 1, 1}
{4, 1, 1, 1, 1}

{3, 3, 2}
{3, 3, 1, 1}
{3, 2, 2, 1}

{3, 2, 1, 1, 1}
{3, 1, 1, 1, 1, 1}

{2, 2, 2, 2}
{2, 2, 2, 1, 1}

{2, 2, 1, 1, 1, 1}
{2, 1, 1, 1, 1, 1, 1}

{1, 1, 1, 1, 1, 1, 1, 1}

0 0.05 0.1

(a) Network frequency check

 

 

True density: gα,σ,τ (·)

Sum of sticks:
∑

i=1
wi

P
(W

)

W

0 2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

(b) Validation of fσ

Figure 1: (Left:) The estimated frequency of all unique networks binned according to their unique
edge-endpoint counts (n1, . . . , nk). (ordered decreasingly) for L = 0, . . . , 4 edges (41 in total, red
circles), as well as the frequency obtained by computing the probability (see text for details). (Right:)
The density of the stick length

∑
i wi for the randomly generated networks as well as the true density

eqn. (11) obtained by numerical integration of eqn. (10)

We thus obtain two estimates of the probability of a particular network signature shown in figure 1a,
both in close agreement.

In figure 1b is shown the estimated density of the total mass T obtained by numerically integrating
Zolotarev’s integral representation of fσ

fσ(x) =
σx

−1
1−σ

π(1− σ)

∫ π

0

du A(σ, u)e−A(σ,u)/xσ/(1−σ) ,

A(σ, u) =

[
sin((1− σ)u)1−σ sin(σu)σ

sin(u)

] 1
1−σ

, (10)

gα,σ,τ (t) = θ−
1
σ fσ(tθ−

1
σ )φλ(tθ−

1
σ ). (11)

The estimated density of the total mass T obtained by summing the generated sticks (wi). Both the
estimates of the networks signatures and the density of T are in close agreement.

Datasets and preparation

To test the methods we selected 11 publicly available datasets describing social networks, co-
authorship networks and biological networks.

Yeast: Interaction network of 2361 proteins in yeast (Bu et al., 2003).

SmaGri: Coauthorship network of 1059 authors from the Garfield’s collection of citation net-
works (Batagelj & Mrvar, 2014).

SciMet: Coauthorship network of 3084 authors from the Scientometrics journal, 1978-2000 (Batagelj
& Mrvar, 2014).

Netscience: Coauthorship network of 1589 authors working in network theory as compiled by
Newman (2006).

Hagman: Structural brain networks where edges correspond to the number of fiber tracts between
998 brain regions. All five networks in the dataset were simply averaged to produce a single
network (Hagmann et al., 2008).

NIPS: Consisting of the 2865 authors who have coauthored papers together at the 1-12’th NIPS
conference (Roweis, 2009).
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Caltech, Simmons, Reed, Haverford, Swarthmore: Five social networks of
769, 1446, 962, 1518, 1659 students respectively obtained from the Facebook100
dataset (Traud et al., 2011).

The datasets were processes similarly by first removing any vertices without edges, i.e. where ni = 0,
and thresholding at 0 to produce binary networks. Selection of the missing edges for link prediction
was done by first removing a fraction of 5% of all potential edges at random and then, if this procedure
left any vertices without attached edges, re-introducing one of the edges attached to each such vertex
and removing (at random from all other potential edges) a single edge. This procedure was repeated
until 5% of the potential edges were removed and all vertices had at least one edge attached.

Models considered

In addition to non-parametric extensions of the Poisson SBM we compared the CRMSBM against a
degree corrected block model, the degree-corrected stochastic block model (DCSBM) of Herlau et al.
(2014). This model is not exchangeable but does model block structure and sociability.

Specifically the DCSBM assumes a generative process of the form:

(z1, . . . , zn) ∼ CRP(α)

η`m ∼ Gamma(λa, λb)

(θ
(1)
i` ), (θ

(2)
i` ) ∼ Dirichlet((γ)k`i=1)

Aij ∼ Poisson(kzikzjθ
(1)
izi
θ
(2)
jzj
ηzizj ).

To be consistent with the CRMSBM we selected a prior of the form Gamma(2, 1) for α, λa and
λb. The model is somewhat sensitive to the choice of prior for γ however we found a prior of
the form Gamma(2, 1) to perform reasonably well. The DCSBM reduces to a model without
degree-correction, the pIRM (Kemp et al., 2006), by the choice γi` = 1

n`
.
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