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A Proofs

A.1 Proof of Theorem 1

Theorem. For given orthogonal matrices U0, · · · ,Up the tensor G that minimizes (2) is
given by

G = Ỹ ×1 (U>0 X̃>X̃U0)−1U>0 X̃> ×2 U>1 ×3 · · · ×p+1 U>p .

Proof. Since the Frobenius norm of a tensor is equal to the one of its vectorization the
objective function in (2) can be written as

‖(Up ⊗Up−1 ⊗ · · · ⊗U1 ⊗ X̃U0)vec(G)− vec(Ỹ)‖2
F .

Let M = Up ⊗Up−1 ⊗ · · · ⊗U1 ⊗ X̃U0. The solution w.r.t. vec(G) of this classical linear
least-squares problem is given by (M>M)−1M>. Using the mixed-product and inverse
properties of the Kronecker product and the column-wise orthogonality of U1, · · · ,Up we
obtain vec(G) =

(
Up ⊗ · · · ⊗U1 ⊗ (U>0 X̃>X̃U0)−1U>0 X̃>

)
vec(Ỹ).

A.2 Proof of Proposition 1

Proposition. For 0 ≤ i ≤ p, using the definition of Πi in (3), the optimal solution of

min
Ui∈Rdi×Ri

‖Ỹ ×i+1 Πi − Ỹ‖2
F s.t. U>i Ui = I

is given by the eigenvectors of{
(X̃>X̃)−1X̃>Ỹ(1)Ỹ>(1)X̃ if i = 0
Ỹ(i)Ỹ>(i) otherwise

that corresponds to the Ri largest eigenvalues.

Proof. For any 0 ≤ i ≤ p, since Πi is a projection we have 〈Ỹ ×1 Πi, Ỹ〉 = 〈ΠiỸ(i), Ỹ(i)〉 =
‖ΠiỸ(i)‖2

F , thus minimizing ‖Ỹ ×i Πi − Ỹ‖2
F is equivalent to minimizing ‖ΠiỸ(i)‖2

F −
2〈ΠiỸ(i), Ỹ(i)〉 = −‖ΠiỸ(i)‖2

F . For i ≥ 1, we have ‖ΠiỸ(i)‖2
F = Tr(U>i Ỹ(i)Ỹ>(i)Ui) which

is maximized by letting the columns of Ui be the top Ri eigenvectors of the matrix Ỹ(i)Ỹ>(i).
For i = 0 we have ‖Π0Ỹ(i)‖2

F = Tr(Π0Ỹ(1)Ỹ>(1)Π
>
0 ) = Tr

(
(U>0 AU0)−1U>0 BU0

)
with

A = X̃>X̃ and B = X̃>Ỹ(1)Ỹ>(1)X̃, which is maximized by the top R0 eigenvectors of
A−1B.
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A.3 Proof of Proposition 2

Proposition. If α ∈ RN is an eigenvector with eigenvalue λ of the matrix

(K + γI)−1Y(1)Y>(1)K ,

then v = Φ>α ∈ RL is an eigenvector with eigenvalue λ of the matrix (Φ>Φ +
γI)−1Φ>Y(1)Y>(1)Φ.

Proof. Let α ∈ RN be the eigenvector from the hypothesis. We have

λv = Φ>(λα) = Φ>
(

(K + γI)−1Y(1)Y>(1)K
)

α

= Φ>(ΦΦ> + γI)−1Y(1)Y>(1)ΦΦ>α

=
(

(Φ>Φ + γI)−1Φ>Y(1)Y>(1)Φ
)

v .

A.4 Proof of Theorem 2

Theorem. Let W∗ be a solution of problem (1) and let W be the regression tensor returned
by Algorithm 1. If L : Rd0×···×dp → R denotes the objective function of (1) with respect to
W then

L(W) ≤ (p+ 1)L(W∗).

The proof of this theorem relies on the following lemma which was proved in [1] to obtain a
nice and elegant proof for the approximation guarantees of the HOSVD algorithm for the
problem of low multilinear rank approximation of a given tensor.
Lemma 1. Let T ∈ Rd1×···×dp be a pth order tensor, let m,n ∈ [p], and let P ∈ Rdm×dm

and Q ∈ Rdn×dn be two orthogonal projection matrices. Then

‖T − T ×m P×n Q‖2
F ≤ ‖T − T ×m P‖2

F + ‖T − T ×n Q‖2
F .

Proof. First observe that for any orthogonal projection matrix Π and any tensors A,B we
have

‖A×n Π‖2
F ≤ ‖A‖2

F and ‖A×n (I−Π) + B×n Π‖2
F = ‖A×n (I−Π)‖2

F + ‖B×n Π‖2
F .

Both equations follow from the fact that the Frobenius norm of a tensor is equal to the one
of any of its matricization. Indeed

‖A×n Π‖2
F = ‖ΠA(n)‖2

F ≤ ‖A(n)‖2
F = ‖A‖2

F

since Π is a projection. The second equality is proved similarly using the orthogonality of Π
and I−Π.
Then, under the hypothesis of the lemma, we have

‖T − T ×m P×n Q‖2
F = ‖T ×m (I−P) + (T − T ×n Q)×m P‖2

F

= ‖T ×m (I−P)‖2
F + ‖(T − T ×n Q)×m P‖2

F

≤ ‖T − T ×m P‖2
F + ‖T − T ×n Q‖2

F .

Let U0, · · · ,Up be the matrices defined in Algorithm 1 and let Π0, · · · ,Πp be the orthogonal
projection matrices defined in problem (3). The regression tensor W returned by HOLRR
satisfies

W ×1 X̃ = Ỹ ×1 Π0 ×2 · · · ×p+1 Πp.

Similarly, it follows from Theorem 1 that a solution W∗ of problem (1) satisfies

W∗ ×1 X̃ = Ỹ ×1 Π∗0 ×2 · · · ×p+1 Π∗p

for some orthogonal projection matrices Π∗i for 0 ≤ i ≤ p.
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Using successive applications of the previous Lemma we obtain

L(W) = ‖W ×1 X̃− Ỹ‖2
F = ‖Ỹ ×1 Π0 ×2 · · · ×p+1 Πp − Ỹ‖2

F ≤
p∑
i=0
‖Ỹ ×i+1 Πi − Ỹ‖2

F .

By Proposition 1, each summand in this upper bound is minimal with respect to Πi, hence
‖Ỹ ×i+1 Πi − Ỹ‖2

F ≤ ‖Ỹ ×i+1 Π∗i − Ỹ‖2
F for any i ∈ [p]. It remains to show that

‖Ỹ ×i+1 Π∗i − Ỹ‖2
F ≤ ‖Ỹ ×1 Π∗0 ×2 · · · ×p+1 Π∗p − Ỹ‖2

F = L(W∗)

for all i ∈ [p]. Indeed, using the fact that the Frobenius norm of a tensor is equal to the one
of its matricization, we obtain for the case i = 0

‖Ỹ ×1 Π∗0 ×2 · · · ×p+1 Π∗p − Ỹ‖2 = ‖Π∗0Ỹ(1)(Π∗p ⊗ · · · ⊗Π∗1)> − Ỹ(1)‖2
F

= ‖(Π∗0 − Id0)Ỹ(1) + Π∗0Ỹ(1)(Π∗p ⊗ · · · ⊗Π∗1 − Id1d2···dp
)>‖2

F

= ‖(Π∗0 − Id0)Ỹ(1)‖2
F + ‖Π∗0Ỹ(1)(Π∗p ⊗ · · · ⊗Π∗1 − Id1d2···dp

)>‖2
F

≥ ‖(Π∗0 − Id0)Ỹ(1)‖2
F

= ‖Ỹ ×1 Π∗0 − Ỹ‖2
F

where we used the orthogonality of Π∗0 and Π∗0 − Id0 . The proofs for other values of i are
similar.

A.5 Proof of Theorem 3

We start by bounding the pseudo-dimension of the class of real-valued functions with domain
Rd0 × [d1]× · · · × [dp]

F̃ =
{

(x, i1, · · · , ip) 7→ (W •1 x)i1,··· ,ip : rank(W) = (R0, · · · , Rp)
}
.

We first recall the definition of the pseudo-dimension of a class of real-valued functions.
Definition 1. A class F of real-valued functions pseudo-shatters the points x1, · · · , xm with
thresholds t1, · · · , tm if for every binary labeling of the points (s1, · · · , sm) ∈ {−,+}m there
exists f ∈ F s.t. f(xi) < ti iff si = −. The pseudo-dimension of a class F is the supremum
over m for which there exist m points that are pseudo-shattered by F (with some thresholds).

We say that a set of polynomials p1, p2, · · · , pk has at least m sign patterns if there exist
x1, · · · , xm such that such that the sign vectors vi = [sign(p1(xi)), · · · , sign(pk(xi))]> are
pairwise distinct. Following [4], the following theorem bounds the number of sign patterns
for a set of polynomials.
Theorem. [3, Theorem 34, 35] The number of sign patterns of r polynomials, each of degree
at most d, over q variables is at most

(
4edr
q

)q
for all r > q > 2.

The following lemma gives an upper bound on the pseudo-dimension of F̃ using the previous
theorem.
Lemma 2. The pseudo-dimension of the real-valued function class F̃ is upper bounded by
(R0R1 · · ·Rp +

∑p
i=0 Ridi) log

(
4e(p+2)d0d1···dp

d0+d1+···+dp

)
.

Proof. It is well known that the pseudo-dimension of a vector space of real-valued functions
is equal to its dimension [2, Theorem 10.5]. Since F̃ is a (non-linear) subspace of the
d0d1 · · · dp-dimensional vector space{

(x, i1, · · · , ip) 7→ (W •1 x)i1,··· ,ip : W ∈ Rd0×···×dp
}

of real-valued functions with domain Rd0 × [d1]× · · · × [dp], the pseudo-dimension of F̃ is
bounded by d0d1 · · · dp.

Now, let m ≤ d0 · · · dp and let {(xk, ik1 , · · · , ikp)}mk=1 be a set of points that are pseudo-
shattered by F̃ with thresholds t1, · · · , tm ∈ R. Then for each sign pattern (s1, · · · , sm) ∈
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{−,+}m, there exists f̃ ∈ F̃ such that sign(f̃(xk, ik1 , · · · , ikp)− tk) = sk. Any function f̃ ∈ F̃
can be written as

(x, j1, · · · , jp) 7→
(
G ×1 x>U0 ×2 U1 · · · ×p+1 Up

)
j1,··· ,jp

for some G ∈ RR0×···×Rp , Ui ∈ Rdi×Ri for 0 ≤ i ≤ p. Thus, considering the entries of
G,U0, · · · ,Up as variables, the set {f̃(xk, ik1 , · · · , ikp) − tk}mk=1 can be seen as a set of m
polynomials of degree at most p + 2 over these D = R0 · · ·Rp +

∑p
i=0 diRi variables. It

then follows from the previous theorem that 2m ≤
(

4e(p+2)m
D

)D
. The result follows using

m ≤ d0 · · · dp and D ≥
∑p
i=0 di.

Once the pseudo-dimension of the function class F̃ is bounded, one can invoke standard
error generalization bounds in terms of the pseudo-dimension [2, Theorem 10.6] to obtain
the following theorem that gives an upper bound on the excess risk for the class of function

F = {x 7→W •1 x : rank(W) = (R0, · · · , Rp)} .
Theorem. Let L : Rd1×···×dp → R be a loss function satisfying

L(A,B) = 1
d1 · · · dp

∑
i1,··· ,ip

`(Ai1,··· ,ip ,Bi1,··· ,ip)

for some loss function ` : R→ R+ bounded by M . Then for any δ > 0, with probability at
least 1− δ over the choice of a sample of size N , the following inequality holds for all h ∈ F :

R(h) ≤ R̂(h) +M

√√√√2D log
(

4e(p+2)d0d1···dp

d0+d1+···+dp

)
logN

N
+M

√
log
( 1
δ

)
2N

where D = R0R1 · · ·Rp +
∑p
i=0 Ridi.

Proof. For any h : Rd0 → Rd1×···×dp we define h̃ : Rd0 × [d1] × · · · × [dp] → R by
h̃(x, i1, · · · , ip) = h(x)i1···ip . Let D denote the distribution of the input data. We have

R(h) = E
x∼D

[L(f(x), h(x))] = 1
d1 · · · dp

∑
i1,··· ,ip

E
x∼D

[`(f(x)i1···ip , h(x)i1···ip)]

= E
x∼D

ik∼U(dk),k∈[p]

[`(f̃(x, i1, · · · , ip), h̃(x, i1, · · · , ip))]

where U(k) denotes the discrete uniform distribution on [k] for any integer k ≥ 1. It follows
that R(h) = R(h̃). Similarly, one can show that R̂(h) = R̂(h̃). The result then directly
follows using Theorem 10.6 in [2] (see below) to bound R(h̃)− R̂(h̃).

Theorem (Theorem 10.6 in [2]). Let H be a family of real-valued functions and let G =
{x 7→ L(h(x), f(x)) : h ∈ H} be the family of loss functions associated to H. Assume that
the pseudo-dimension of G is bounded by d and that the loss function L is bounded by M .
Then, for any δ > 0, with probability at least δ over the choice of a sample of size m, the
following inequality holds for all h ∈ H:

R(h) ≤ R̂(h) +M

√
2d log

(
em
d

)
m

+M

√
log
( 1
δ

)
2m .

B Experiments

B.1 Running Times

The running times of different tensor response regression algorithms on synthetic and real
data sets are given in Table 1.
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Table 1: Average running times in seconds for some of the experiments. We did not run
MLMT-NC on the real world data sets because it is computationally very expensive. The
implementation of the Greedy algorithm is limited to 2nd order output tensors, this is why
we did not run it on the synthetic and Meteo UK data sets. Finally, the synthetic non linear
data was generated using a polynomial relation which is why the RBF kernel was not used
on this data set.

Data set MLMTL-NC ADMM Greedy HOPLS HOLRR K-HOLRR
(poly)

K-HOLRR
(rbf)

Synthetic 945.79 12.92 − 0.12 0.04 0.53 −
CCDS − 235.73 75.47 121.28 100.94 0.46 0.61

Foursquare − 33.83 37.70 22.3 14.41 19.20 19.67
Meteo UK − 40.23 − 2.12 1.67 1.57 1.66

B.2 Image Reconstruction from Noisy Measurements

To give an illustrative intuition on the differences between matrix and multilinear rank
regularization we generate data from the model Y = W •1 x + E where the tensor W is a
color image of size m× n encoded with three color channels RGB. We consider two different
tasks depending on the input dimension: (i) W ∈ R3×m×n, x ∈ R3 and (ii) W ∈ Rn×m×3,
x ∈ Rn. In both tasks the components of both x and E are drawn from N (0, 1) and the
regression tensor W is learned from a training set of size 200.
This experiment allows us to visualize the tensors returned by the RLS, LRR and HOLRR
algorithms. The results are shown in Figure 1 for three images: a green cross (of size 50×50),
a thumbnail of a Rothko painting (44× 70) and a square made of triangles (70× 70), note
that the first two images have a low rank structure which is not the case for the third one.
We first see that HOLRR clearly outperforms LRR on the task where the input dimension is
small (task (i)). This is to be expected since the rank of the matrix W(1) is at most 3 and
LRR is unable to enforce a low-rank structure on the output modes of W . When the rank
constraint is set to 1 for LRR and (3, 1, 1) for HOLRR, we clearly see that (unlike HOLRR)
the LRR approach does not enforce any low-rank structure on the regression tensor along
the output modes. On task (ii) the difference is more subtle, but we can see that setting a
rank constraint of 2 for the LRR algorithm prevents the model from capturing the white
border around the green cross and creates the vertical lines artifact in the Rothko painting.
For higher values of the rank the model starts to learn the noise. The tensor returned by
HOLRR with rank (2, 2, 3) for the cross image and (4, 4, 3) for the Rothko painting do not
exhibit these behaviors and give better results on these two images. On the square image
which does not have a low-rank structure both algorithms exhibit underfitting for low values
of the rank parameter. Overall, we see that capturing the multilinear low-rank structure of
the output data allows HOLRR to separate the noise from the true signal better than RLS
and LRR.
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target HOLRR (3, 1, 1) HOLRR (3, 4, 4) HOLRR (3, 8, 8)HOLRR (3, 16, 16)

RLS LRR 1 LRR 2 LRR 3 LRR 4

target HOLRR (3, 1, 1) HOLRR (3, 4, 4) HOLRR (3, 8, 8)HOLRR (3, 16, 16)

RLS LRR 1 LRR 2 LRR 3 LRR 4

target HOLRR (3, 1, 1) HOLRR (3, 4, 4) HOLRR (3, 8, 8)HOLRR (3, 16, 16)

RLS LRR 1 LRR 2 LRR 3 LRR 4

target HOLRR (2, 2, 3) HOLRR (4, 4, 3) HOLRR (6, 6, 3) HOLRR (8, 8, 3)

RLS LRR 2 LRR 4 LRR 6 LRR 8

target HOLRR (2, 2, 3) HOLRR (4, 4, 3) HOLRR (6, 6, 3) HOLRR (8, 8, 3)

RLS LRR 2 LRR 4 LRR 6 LRR 8

target HOLRR (2, 2, 3) HOLRR (4, 4, 3) HOLRR (6, 6, 3) HOLRR (8, 8, 3)

RLS LRR 2 LRR 4 LRR 6 LRR 8

Figure 1: Image reconstruction from noisy measurements: Y = W •1 x + E where W is a
color image (RGB). (left) Task (i): input dimension is the number of channels. (right) Task
(ii): input dimension is the height of the image. Each image is labeled with the name of the
algorithm followed by the value used for the rank constraint.
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