Supplementary Information

A Proofs

A.1 Proof of Theorem[T]

For convenience, here we define

G, = quz(Zl:L)UTE(Zl:L)T (A.D

Part (1) We first show the theorem in the case of T' = Ty and I — oco.

Let
Gw = Z ¢1(21:L)w*(TO)E(21:L) (AZ)
Z1:L
Since I — 0o, we have
Ebl £> E [Ebl} =G,o
b B E[p]] =w'(T)G
C, % E [61,2} —G.G]
C 1,3 (x) 5 E [CLQ (x)} = G, E(z)G/

According to Assumption [3]and the Eckart-Young-Mirsky Theorem, we can conclude that
rank (G,) = rank (G,) = rank (CLQ) =m
and
cryr=uxv' 4 GG
By using the SVD of G,,G ]
G,G] =UxV'

with rank (ﬁ) = rank (\7) = rank (i)), we can construct an OOM M’ = (w', {E'(2) },c0,0")
with

W = &(GlV) (A3)
=@ = (GIV)E@) (GIV) (A4)
o = (GJV)é (A5)

which is obviously equivalent to M.

We can obtain from rank (UXV ") = rank (G, G, ) = m that

(uzvh)" =veUT & (GG



where A denotes the Moore-Penrose pseudoinverse of A, so
C = $V(G]V)
w*(To)
(GIV)Z'UTCi3(2) V(G V)
G, VE'U'G,E(2)
G; (GuG;) ' GuE()
— G!G.G] (G, GT)+G GlG}iTE(x)
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o = GJVZT'U'g,
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Note w’ 5 w does not hold in general cases.

Part (2) We now consider the case of I = Iy and T' — oc.

According to Assumption 2} the limit

61,2 5 [¢1($t L:it— 1)¢2($t~t+L—1)T]
— hm 2051 21 )WE (0)* E(21.1)G,
exists. Then
¢ B Exl¢y(@-re1)] = Guo
by 5 Eoo [o(vrarr1)] = Jim wE Qe
Cr2 B Eo [CLQ] ~ G.G]
Ci3(z) & Eo [01,2 (x)} = G,E(z)G/
with )
G, = lim Y ¢y (21 wE (0)" B(z1.1) (A.6)

The remaining part of the proof is omitted because it is the same as in Part (1).

A.2 Asymptotic correctness of nonequilibrium learning with different initial states

If the i-th observation trajectories is generated by OOM M = (w*, {E(2) }reo,0) fori =1,...,1,
and

Wt = %Zle w?, . . for T — o0
plim;_, o 33, w’, forl — oo
the asymptotic correctness can also be shown as in Appendix [A.T|by setting

Gw = Z ¢1(zl:L>w*(TO)E(21:L)

Z1:L
with
1 T—-2L
* _ ok = t—1
(1) = =g X S(O)

for I — oo, and

for T' — oo.



A.3  Proof of Theorem

Part (1) We first show that there is an OOM Meq = (Weq, {2(2) }zc0, o) which can describe the
equilibrium dynamics of {z;}.

In the case of 7' = Ty and I — oo, we can obtain from Assumptions [2]and [3]that
| 2Lt
. —_— . T
lim G,E(0)"G, = lim Ty 2L ; E [¢1 (Ttg1041) Po (Tr4 Lrktre2Lir) }

k—o0 k—o0

= (Toiﬂ; Toi_lE [, (fft+1:t+L)]> (Eoo {91’2 ($t+1:t+L)TD

= Guo (]Eoo [d’g ($t+1:t+L)TD

= lim E(0)* = owey (A7)
k—o0
with
Weq = (Eoo [4’2 (%&H:HL)TD G:T (A-8)
where G, and G, are defined by (A.2) and (A.I). Then
tl_i;ng.o]P(‘rt+1:t+l =2z1y) = tlirrolo WE(0)'E(21.)0

WE(O)oweqE(21.1)0

WeqB(21:1)0

In the case of I = Iy and T' — oo, because rank (G,,) = m for G,, defined by (A.6), there is a
sufficiently large but finite 7" so that rank (G/,) = m with

GL =Y ¢ (21.0)wE (0) E(21.L)

Z1:L
Considering
klggo G;E(O)kG; = kll)H;O E [¢1 (QST/+1;T/+L> ¢2 (ZET/+L+k+1:T/+2L+k)T
= Glo (Eoo [d)z (xt+1:t+L)TD
= lim E(O)k = OWe¢q (A9)
k—o0

with we defined by (A.8), we can also conclude that

Hm P (2441641 = 21:0) = WeqB(21:1)0
t—o0

Note in both cases, weq satisfies weq limy_— o0 E(0)k = Weq and
WeqB(0) = tlggo We BE(O)H
= Weq
Weq0 = wWeqa(0)o
= lim Paxy =2)=1

t—o0
zeO

Part (2) In this part, we show that
wEO)=w, wo=1
has a unique solution W = weg.
According to Appendix[A.T|and (A.7), (A.9), if wE(O) = w and wo = 1, we have

w = lim wE(0)*
k—o0
= WOWeq

Weq



Part (3) We now show Theorem[2]
The problem (16) is equivalent to
Hvlvi/l’lE (w) = (W& (0)-w) (GUTV)
(GIv) (wE (0)-w)"
s.t. wo' =1
where 2' (0) = 3", .o E' (¢), E' (z) and o’ are given by and (A.5), and w’ is related to w
with w' = w (G] V) ' This problem can be further transformed into an unconstrained one

min E (w' (I-o¢'c"") + o) +||w (I-0'0"") + o' - w'H2 (A.10)

where w' (I — 0’a’") + o'* is the projection of w’ on the space {w’|w’c’ = 1} and I denotes the

identity matrix of appropriate dimension. Considering that Z' (z) % Z (2), o/ 5 o,

(GIV)(@cIv)! = clvs'uTusv'a,
% gl (GG, G.GlG,
= G/G,
and the conclusion in Part (2), we can obtain that the optimal solution of (@p CONVErges to Weq in
probability and weq LN Weq (G;V) ! according to Theorem 2.7 in [1], which yields the conclusion

of Theorem
Part (4) We derive in this part the closed-form solution to (I6).

Since the projection of w”’ on the space {w”|w”6 = 1} isw” (I-667) + 67, 1} can be
equivalent transformed into

2
. 17} A —+ ﬁ. _ ~+ ,& _
min HW (I-667") (._.((9) I) +0o (._.((9) I)H
The solution to this problem is

. . +
w' = -6 (8(0)-1) (1-66) (E(0) - 1))
which provides the optimal value of W4 as
Weq = W (I-66")+6"

= ¢t -6" (B(0)-1) ((1-56") (B(O) - 1))+ (I-66%)  (AlD)

A.4 Proof of Theorem 3|

Here we only consider the consistency of the binless OOM as I — oo. The proof can be easily to

extended to the case of T — co. In addition, we denote E[g(%ty1.¢4)] and E[g(a:l:T)|/\>leq] by
Eo[g] and E ,, [g] for convenience of notation.

Part (1) We first show that Theoremholds for g (441:44r) = l_qctJrl:tJrT,glgj1 xBiy ... x By, > where
Bi,...,Bk is a partition of O and i1, € {1,..., K}". In this case, we can construct a discrete
OOM with observation space {Bi, ..., Bk} by the nonequilibrium learning algorithm, which can

provide the same estimate of Eo [9 (T4 41:04)] a5 Meq. Therefore, we can show E xl9] 5 Eoolg]
by using the similar proof of Theorem 2}

Part (2) We now consider the case that g is a continuous function. According to the Heine-Cantor
theorem, g is also uniformly continuous. Then, for an arbitrary ¢ > 0, we can construct a simple
function

g(xt+1:t+r) = Z Cz'liz...irlel:,,JrTeBh X...xBi,.

T yeeeslp



so that

‘g(zl:r) - 9(21:7*)| S €, vZl:r S OT
where {Bi, ..., Bk} is a partition of O. Then, we have

Ex[9] —Eco[9]] < Eco[lg — gl] <€
and »

[Ecold] — E (9] =0

as I — oo according to the conclusion of Part (1), where E. [g] = Eoc[g(2¢41:¢+-)] and E y[g] =
E[g(xl:r)‘Meq]'
It can be known from the boundness of feature functions, there exists a constant & such that

D,
Lnaspc |[Wa|<e/12) = 1 (A.12)

Under the condition that max,e x wa < &/ |X|, we have

EMCQ [g] - EMCq [g}‘ = “:’eq ( Z (g(zlz'r') - g(zlzr)) Wz1 e 'Wzr> o
21 €EXT
. . (e
< lweqll o]l < > X|T>
210 €XT

[@eql &[] "€

In addition, considering that we can show as in Appendix [A-T]that

Geq B weqGIV

. -1

& 5 (GIV) o
we can obtain .

Ligullel<eo = 1 (A.13)
and ,

LB 1 (81-E o] 087 7

where & is a constant larger than ||weq]| - ||&]-

Based on the above analysis and the fact that

[Ewclg] ~ gy, lo]| = [Eoold] = Eclg] + Ewcld] — Eq, [6] +Eyy, 9] — Engy, l9]

< [Bocl] — Eooldll + [Eacls] - By, [0]] + [Eoce,, 191 — E ]

we can get

Pr(‘]Eoo[g} “E,,

eq

9| < @& +2)¢) > Pr(Ewls] - Exlgl <«

’]EMeq 9] - Ext., [9]’ < 505'%)
— 1

Eoold] — E ]| < .

Because this equation holds for all € > 0, we can conclude that E ; [9] & Eolg).

Part (3) In this part, we prove the conclusion of the theorem in the case where g is a Borel
measurable function and bounded with |g(21.,-)| < &g for all 1., € O", and there exist constants £

and £ so that | = (z)[| < €and limy o0 P (Tpa1:64r = 210) > Eforallz € O and 2y, € O".

According to Theorem 2.2 in [2], for an arbitrary € > 0, there is a continuous function ¢’ satisfies
EOC[lrf,+1:t+T€ICE(§/)] < €, where ’Ce(g/) = {ler|zlzr S OT, |§/(Zl;r) — g(Zly,‘)| > 6}. Define

J'(z1:r), |§’(21:r)| <&
9(z1:) = { —&g, gi(zlzr) < =&
g

&g (21:0) > &g



It can be seen that § is a continuous function which is also satisfies Eoo[1,, .., ex. (5] < € and
bounded with |G(z1.-)| < &,. So the difference between E[g] and Eo [g] satisfies

Exolg] = Exclgll < Eoollg(xt41:4r) = §(@ts1:040) ]

= Eoolleyirisreke (@) Boo |9(Tt41:04r) = G(@ts1:600)| [Ter 1040 € Ke(G)]
FEoo[Laririrgie (@) Boo [19(Tt41:04r) — G(@tt1:t40) | [Teg 1040 & Ke(9)]
€2, +e=(2{+1)e
For the difference between E.[§] and E Moy [§], we can obtain from the above that

IN

Exlg] — E Mg [g]‘ % 0as I — oo by considering that § is continuous, which implies that there is
an I such that
Pr (‘Ew[g] —EMCq[g]‘ > e) <e VI>I

Next, let us consider the value of ‘E Mg [ — E Moy lg] ‘ Note that

’EM[Q] _EM[QH < ||":’O|| H&H Z (g(zlzr) _g(zlzr))wm Wzr

21 EXT
§o€” .
< T Z (g(’zl:r) - g(zlzr))
X[, e
under the condition that ‘ N, and ||@eq || /16| < &. Therefore, there exists an I; such
that
E [0 > S8 Y ) — o) VISL o (AL4)
Meq el |X| g \21.r) — g 21 < €, > 1 .
21 reX’

due to (A.12) and (A.13). Let 2/ .,. denotes a random sample taken uniformly from X”. We can obtain
that

P(z),) = P(2})...P(z))
< (lwlleoléod)”
where {o > ||E (O)kH for any k > 0. Note {n < oo because we can show the existing of the limit
of {HE (0)0‘ =20 H } by similar steps in Appendix Thus
1 P A~
E [X' > (@Glaur) - 9(z1;r))H < E[E[§(z).,) — g(=}.)]|1X]]
21 €EXT

= Efg(=.,) — g(21.)l]
= E[ly ex.p) E19@1,) — g(@h,)] |21, € Ke(3)]
+E [1oy ¢k, (o)) Ell3(21.0) — 9(@1)| |21 & Ke(9)]
< Gue-2y+e= (268, +1)€
where ¢, = ([|w]| ||| 505) /€. By the Markov’s inequality, we have

Pr ﬁ Z (9(z1) = g(21)) | 2 \[] < (2660 +1) Ve (A.15)
210 €EXT
Combining (A.T4) and (A.15) leads to
Pr (‘EMeq [g] - EMeq [g}‘ Z §0§T\/g> S Pr (‘EMeq [g] — EMe [g]‘ f;)jr Z (Q(ler) - g(zlzr)) >
210 €XT
o <')(1‘|T Z (9(21:) — g(21:))| = \ﬁ)
217 €XT
< et (268 + 1) Ve



forall I > I.

From all the above, we have
Pr (|Bocl] — By, [9]] < 206 + De + o€ Ve)
> Pr ([Ewcld] ~ By, 0] < & [Bay, [0~ B, 9] < €06 V)
> 1= Pr ([Ewcld] ~ By, [9]] > €) = Pr ([Exq, 8]~ By, o] > €07 V)
> 1—2e— (2558, + 1) Ve

for all I > max{Iy, I}, which yields Evi., [9] = Eoo[g] due to the arbitrariness of e.

B Settings in applications

B.1 Models
The one-dimensional diffusion processes in Section [5|are driven by the Brownian dynamics with
8 =0.3,
V(@) = e (e =il +0.001)u,
xTr) =
S0 (J& = ¢ +0.001) 72

and the sample interval is 0.002. For the two-dimensional process, 5 = 2,

3
V(z) = —log (ZPZN (| s, Ei))

and the sample interval is 0.01, where ¢;.5 = (—0.3,0.5,1,1.5,2.3), uy.5 = (21,4,8,—1,20),
p1:3 = (0.25,0.25,0.5), 1 = (0, —0.5), 2 = (—1,0.5), uz = (1, —0.5). The simulation details of
alanine dipeptide is given in [3].

B.2 Algorithms

The parameters of discrete spectral learning are chosen as: L = 3, m = 10, and ¢p; = ¢, are
indicator functions of all O% observation subsequences with length L.

The parameters of binless spectral learning are almost the same as discrete ones, except ¢; = ¢,
are Gaussian activation functions with random weights of functional link neural networks with
Dy = Dy = 100.

The number of hidden states of HMMs is 10. For continuous data, we partition the state space into
100 discrete bins k-mean clustering, and then learn HMMs by the EM algorithm, where the HMM
package in PYEMMA [4] is used. All observation samples within the same bin are assumed to be
independent for quantitative analysis.

References

[1] W. K. Newey and D. McFadden, “Large sample estimation and hypothesis testing,” Hand-
book of Econometrics, vol. 4, pp. 2111-2245, 1994.

[2] K. Hornik, M. Stinchcombe, and H.White, “Multilayer feedforward networks are universal
approximators,” Neural Netw., vol. 2, no. 5, pp. 359-366, 1989.

[3] B. Trendelkamp-Schroer and F. Noé, “Efficient estimation of rare-event kinetics,” Phys. Rev.
X, vol. 6, pp. 011009, 2016.

[4] M. K. Scherer, B. Trendelkamp-Schroer, F. Paul, G. Pérez-Hernandez, M. Hoffmann, N.
Plattner, C. Wehmeyer, J. -H. Prinz, and F. Noé, “PyEMMA 2: A software package for
estimation, validation, and analysis of Markov models,” J. Chem. Theory Comput., vol. 11,
no. 11, pp. 5525-5542, 2015.



	Proofs
	Proof of Theorem 1
	Asymptotic correctness of nonequilibrium learning with different initial states
	Proof of Theorem 2
	Proof of Theorem 3

	Settings in applications
	Models
	Algorithms




