
Supplementary Information
A Proofs

A.1 Proof of Theorem 1

For convenience, here we define

ω∗(T ) =
1

T − 2L
ω

T−2L∑
t=1

Ξ(O)t−1

Gσ =
∑
z1:L

φ2(z1:L)σ>Ξ(z1:L)> (A.1)

Part (1) We first show the theorem in the case of T = T0 and I →∞.

Let

Gω =
∑
z1:L

φ1(z1:L)ω∗(T0)Ξ(z1:L) (A.2)

Since I →∞, we have

ˆ̄φ1
p→ E

[
ˆ̄φ1

]
= Gωσ

ˆ̄φ>2
p→ E

[
ˆ̄φ>2

]
= ω∗(T0)G>σ

Ĉ1,2
p→ E

[
Ĉ1,2

]
= GωG>σ

Ĉ1,3 (x)
p→ E

[
Ĉ1,2 (x)

]
= GωΞ(x)G>σ

According to Assumption 3 and the Eckart-Young-Mirsky Theorem, we can conclude that

rank (Gω) = rank (Gσ) = rank
(
Ĉ1,2

)
= m

and

Ĉtrun
1,2 = UΣV>

p→ GωG>σ

By using the SVD of GωG>σ

GωG>σ = ŨΣ̃Ṽ>

with rank
(
Ũ
)

= rank
(
Ṽ
)

= rank
(
Σ̃
)

, we can construct an OOMM′ = (ω′, {Ξ′(x)}x∈O,σ′)
with

ω′ = ω̂
(
G>σV

)−1
(A.3)

Ξ′(x) =
(
G>σV

)
Ξ̂ (x)

(
G>σV

)−1
(A.4)

σ′ =
(
G>σV

)
σ̂ (A.5)

which is obviously equivalent to M̂.

We can obtain from rank
(
UΣV>

)
= rank

(
GωG>σ

)
= m that(

UΣV>
)+

= VΣ−1U>
p→
(
GωG>σ

)+
1



where A+ denotes the Moore-Penrose pseudoinverse of A, so

ω′ = ˆ̄φ>2 V
(
G>σV

)−1
p→ ω∗(T0)

Ξ′(x) =
(
G>σV

)
Σ−1U>Ĉ1,3 (x) V

(
G>σV

)−1
p→ G>σVΣ−1U>GωΞ(x)
p→ G>σ

(
GωG>σ

)+
GωΞ(x)

= G+
ωGωG>σ

(
GωG>σ

)+
GωG>σG+>

σ Ξ(x)

= Ξ(x)

σ′ = G>σVΣ−1U> ˆ̄φ1
p→ σ

Note ω′
p→ ω does not hold in general cases.

Part (2) We now consider the case of I = I0 and T →∞.

According to Assumption 2, the limit

Ĉ1,2
p→ E∞

[
φ1(xt−L:t−1)φ2(xt:t+L−1)>

]
= lim

k→∞

∑
z1:L

φ1(z1:L)ωΞ (O)
k

Ξ(z1:L)G>σ

exists. Then
ˆ̄φ1

p→ E∞ [φ1(xt−L:t−1)] = Gωσ

ˆ̄φ>2
p→ E∞

[
φ2(xt:t+L−1)>

]
= lim
k→∞

ωΞ (O)
k

G>σ

Ĉ1,2
p→ E∞

[
Ĉ1,2

]
= GωG>σ

Ĉ1,3 (x)
p→ E∞

[
Ĉ1,2 (x)

]
= GωΞ(x)G>σ

with
Gω = lim

k→∞

∑
z1:L

φ1(z1:L)ωΞ (O)
k

Ξ(z1:L) (A.6)

The remaining part of the proof is omitted because it is the same as in Part (1).

A.2 Asymptotic correctness of nonequilibrium learning with different initial states

If the i-th observation trajectories is generated by OOMM = (ωi, {Ξ(x)}x∈O,σ) for i = 1, . . . , I ,
and

ω∗∗ =

{
1
I

∑I
i=1 ω

i, for T →∞
plimI→∞

1
I

∑I
i=1 ω

i, for I →∞
the asymptotic correctness can also be shown as in Appendix A.1 by setting

Gω =
∑
z1:L

φ1(z1:L)ω∗(T0)Ξ(z1:L)

with

ω∗(T ) =
1

T − 2L
ω∗∗

T−2L∑
t=1

Ξ(O)t−1

for I →∞, and
Gω = lim

k→∞

∑
z1:L

φ1(z1:L)ω∗∗Ξ (O)
k

Ξ(z1:L)

for T →∞.
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A.3 Proof of Theorem 2

Part (1) We first show that there is an OOMMeq = (ωeq, {Ξ(x)}x∈O,σ) which can describe the
equilibrium dynamics of {xt}.
In the case of T = T0 and I →∞, we can obtain from Assumptions 2 and 3 that

lim
k→∞

GωΞ(O)kG>σ = lim
k→∞

1

T0 − 2L

T0−2L−1∑
t=0

E
[
φ1 (xt+1:t+L)φ2 (xt+L+k+1:t+2L+k)

>
]

=

(
1

T0 − 2L

T0−2L−1∑
t=0

E [φ1 (xt+1:t+L)]

)(
E∞

[
φ2 (xt+1:t+L)

>
])

= Gωσ
(
E∞

[
φ2 (xt+1:t+L)

>
])

⇒ lim
k→∞

Ξ(O)k = σωeq (A.7)

with
ωeq =

(
E∞

[
φ2 (xt+1:t+L)

>
])

G+>
σ (A.8)

where Gω and Gσ are defined by (A.2) and (A.1). Then

lim
t→∞

P (xt+1:t+l = z1:l) = lim
t→∞

ωΞ(O)tΞ(z1:l)σ

= ωΞ(O)σωeqΞ(z1:l)σ

= ωeqΞ(z1:l)σ

In the case of I = I0 and T → ∞, because rank (Gω) = m for Gω defined by (A.6), there is a
sufficiently large but finite T ′ so that rank (G′ω) = m with

G′ω =
∑
z1:L

φ1(z1:L)ωΞ (O)
T ′

Ξ(z1:L)

Considering

lim
k→∞

G′ωΞ(O)kG>σ = lim
k→∞

E
[
φ1 (xT ′+1:T ′+L)φ2 (xT ′+L+k+1:T ′+2L+k)

>
]

= G′ωσ
(
E∞

[
φ2 (xt+1:t+L)

>
])

⇒ lim
k→∞

Ξ(O)k = σωeq (A.9)

with ωeq defined by (A.8), we can also conclude that

lim
t→∞

P (xt+1:t+l = z1:l) = ωeqΞ(z1:l)σ

Note in both cases, ωeq satisfies ωeq limk→∞Ξ(O)k = ωeq and

ωeqΞ(O) = lim
t→∞

ωeqΞ(O)t+1

= ωeq

ωeqσ = ωeqΞ(O)σ

= lim
t→∞

∑
x∈O

P (xt = x) = 1

Part (2) In this part, we show that

wΞ(O) = w, wσ = 1

has a unique solution w = ωeq.

According to Appendix A.1 and (A.7), (A.9), if wΞ(O) = w and wσ = 1, we have

w = lim
k→∞

wΞ(O)k

= wσωeq

= ωeq
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Part (3) We now show Theorem 2.

The problem (16) is equivalent to

min
w′

E (w′) =
(
w′Ξ′ (O)−w′

) (
G>σV

)
·
(
G>σV

)> (
w′Ξ′ (O)−w′

)>
s.t. w′σ′ = 1

where Ξ′ (O) =
∑
x∈O Ξ′ (x), Ξ′ (x) and σ′ are given by (A.4) and (A.5), and w′ is related to w

with w′ = w
(
G>σV

)−1
. This problem can be further transformed into an unconstrained one

min
w′

E
(
w′
(
I− σ′σ′+

)
+ σ′+

)
+
∥∥w′ (I− σ′σ′+)+ σ′+ −w′

∥∥2 (A.10)

where w′ (I− σ′σ′+) + σ′+ is the projection of w′ on the space {w′|w′σ′ = 1} and I denotes the
identity matrix of appropriate dimension. Considering that Ξ′ (x)

p→ Ξ (x), σ′
p→ σ,(

G>σV
) (

G>σV
)>

= G>σVΣ−1U>UΣV>Gσ

p→ G>σ
(
G>ωGσ

)+
GωG>σGσ

= G>σGσ

and the conclusion in Part (2), we can obtain that the optimal solution of (A.10) converges to ωeq in
probability and ω̂eq

p→ ωeq

(
G>σV

)−1
according to Theorem 2.7 in [1], which yields the conclusion

of Theorem 2.

Part (4) We derive in this part the closed-form solution to (16).

Since the projection of w′′ on the space {w′′|w′′σ̂ = 1} is w′′
(
I− σ̂σ̂+) + σ̂+, (16) can be

equivalent transformed into

min
w′′

∥∥∥w′′ (I− σ̂σ̂+) (Ξ̂(O)− I
)

+ σ̂+
(
Ξ̂(O)− I

)∥∥∥2
The solution to this problem is

w∗ = −σ̂+
(
Ξ̂(O)− I

)((
I− σ̂σ̂+) (Ξ̂(O)− I

))+
which provides the optimal value of ω̂eq as

ω̂eq = w∗
(
I− σ̂σ̂+)+ σ̂+

= σ̂+ − σ̂+
(
Ξ̂(O)− I

)((
I− σ̂σ̂+) (Ξ̂(O)− I

))+ (
I− σ̂σ̂+) (A.11)

A.4 Proof of Theorem 3

Here we only consider the consistency of the binless OOM as I →∞. The proof can be easily to
extended to the case of T → ∞. In addition, we denote E∞[g(xt+1:t+r)] and E[g(x1:r)|M̂eq] by
E∞[g] and EM̂[g] for convenience of notation.

Part (1) We first show that Theorem 3 holds for g (xt+1:t+r) = 1xt+1:t+r∈Bi1×Bi2×...×Bir , where
B1, . . . ,BK is a partition of O and i1:r ∈ {1, . . . ,K}r. In this case, we can construct a discrete
OOM with observation space {B1, . . . ,BK} by the nonequilibrium learning algorithm, which can
provide the same estimate of E∞ [g (xt+1:t+r)] as M̂eq. Therefore, we can show EM̂[g]

p→ E∞[g]
by using the similar proof of Theorem 2.

Part (2) We now consider the case that g is a continuous function. According to the Heine-Cantor
theorem, g is also uniformly continuous. Then, for an arbitrary ε > 0, we can construct a simple
function

ĝ(xt+1:t+r) =
∑

i1,...,ir

ci1i2...ir1xt+1:t+r∈Bi1×...×Bir
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so that
|g(z1:r)− ĝ(z1:r)| ≤ ε, ∀z1:r ∈ Or

where {B1, . . . ,BK} is a partition of O. Then, we have

|E∞[g]− E∞[ĝ]| ≤ E∞[|g − ĝ|] ≤ ε
and ∣∣E∞[ĝ]− EM̂[ĝ]

∣∣ p→ 0

as I →∞ according to the conclusion of Part (1), where E∞[g] = E∞[g(xt+1:t+r)] and EM̂[g] =

E[g(x1:r)|M̂eq].

It can be known from the boundness of feature functions, there exists a constant ξ such that

1maxx∈X‖Ŵx‖<ξ/|X |
p→ 1 (A.12)

Under the condition that maxx∈X

∥∥∥Ŵx

∥∥∥ < ξ/ |X |, we have

∣∣∣EM̂eq
[ĝ]− EM̂eq

[g]
∣∣∣ = ω̂eq

( ∑
z1:r∈X r

(ĝ(z1:r)− g(z1:r)) Wz1 . . .Wzr

)
σ̂

≤ ‖ω̂eq‖ ‖σ̂‖

( ∑
z1:r∈X r

ξrε

|X |r

)
= ‖ω̂eq‖ ‖σ̂‖ ξrε

In addition, considering that we can show as in Appendix A.1 that

ω̂eq
p→ ωeqG

>
σV

σ̂
p→

(
G>σV

)−1
σ

we can obtain
1‖ω̂eq‖‖σ̂‖≤ξ0

p→ 1 (A.13)
and

1∣∣∣EM̂eq
[ĝ]−EM̂eq

[g]
∣∣∣≤ξ0ξrε p→ 1

where ξ0 is a constant larger than ‖ω̂eq‖ · ‖σ̂‖.
Based on the above analysis and the fact that∣∣∣E∞[g]− EM̂eq

[g]
∣∣∣ =

∣∣∣E∞[g]− E∞[ĝ] + E∞[ĝ]− EM̂eq
[ĝ] + EM̂eq

[ĝ]− EM̂eq
[g]
∣∣∣

≤ |E∞[g]− E∞[ĝ]|+
∣∣∣E∞[ĝ]− EM̂eq

[ĝ]
∣∣∣+
∣∣∣EM̂eq

[ĝ]− EM̂eq
[g]
∣∣∣

we can get

Pr
(∣∣∣E∞[g]− EM̂eq

[g]
∣∣∣ ≤ (ξ0ξ

r + 2) ε
)
≥ Pr

(
|E∞[g]− E∞[ĝ]| ≤ ε,

∣∣∣E∞[ĝ]− EM̂eq
[ĝ]
∣∣∣ ≤ ε,∣∣∣EM̂eq

[ĝ]− EM̂eq
[g]
∣∣∣ ≤ ξ0ξrε)

→ 1

Because this equation holds for all ε > 0, we can conclude that EM̂eq
[g]

p→ E∞[g].

Part (3) In this part, we prove the conclusion of the theorem in the case where g is a Borel
measurable function and bounded with |g(z1:r)| < ξg for all z1:r ∈ Or, and there exist constants ξ̄
and ξ so that ‖Ξ (x)‖ ≤ ξ̄ and limt→∞ P (xt+1:t+r = z1:r) ≥ ξ for all x ∈ O and z1:r ∈ Or.

According to Theorem 2.2 in [2], for an arbitrary ε > 0, there is a continuous function ĝ′ satisfies
E∞[1xt+1:t+r∈Kε(ĝ′)] < ε, where Kε(ĝ′) = {z1:r|z1:r ∈ Or, |ĝ′(z1:r)− g(z1:r)| > ε}. Define

ĝ(z1:r) =

{
ĝ′(z1:r), |ĝ′(z1:r)| ≤ ξg
−ξg, ĝ′(z1:r) < −ξg
ξg, ĝ′(z1:r) > ξg
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It can be seen that ĝ is a continuous function which is also satisfies E∞[1xt+1:t+r∈Kε(ĝ)] < ε and
bounded with |ĝ(z1:r)| < ξg . So the difference between E∞[g] and E∞[ĝ] satisfies
|E∞[g]− E∞[ĝ]| ≤ E∞ [|g(xt+1:t+r)− ĝ(xt+1:t+r)|]

= E∞[1xt+1:t+r∈Kε(ĝ)]E∞ [|g(xt+1:t+r)− ĝ(xt+1:t+r)| |xt+1:t+r ∈ Kε(ĝ)]

+E∞[1xt+1:t+r /∈Kε(ĝ)]E∞ [|g(xt+1:t+r)− ĝ(xt+1:t+r)| |xt+1:t+r /∈ Kε(ĝ)]

≤ ε · 2ξg + ε = (2ξg + 1) ε

For the difference between E∞[ĝ] and EM̂eq
[ĝ], we can obtain from the above that∣∣∣E∞[ĝ]− EM̂eq

[ĝ]
∣∣∣ p→ 0 as I →∞ by considering that ĝ is continuous, which implies that there is

an I0 such that
Pr
(∣∣∣E∞[ĝ]− EM̂eq

[ĝ]
∣∣∣ > ε

)
< ε, ∀I > I0

Next, let us consider the value of
∣∣∣EM̂eq

[ĝ]− EM̂eq
[g]
∣∣∣. Note that

∣∣EM̂[ĝ]− EM̂[g]
∣∣ ≤ ‖ω̂0‖ ‖σ̂‖

∥∥∥∥∥ ∑
z1:n∈X r

(ĝ(z1:r)− g(z1:r)) Ŵz1 . . .Ŵzr

∥∥∥∥∥
<

ξ0ξ
r

|X |r

∣∣∣∣∣ ∑
z1:r∈X r

(ĝ(z1:r)− g(z1:r))

∣∣∣∣∣
under the condition that

∥∥∥Ŵx

∥∥∥ < ξ/ |X | and ‖ω̂eq‖ ‖σ̂‖ ≤ ξ0. Therefore, there exists an I1 such
that

Pr

(∣∣∣EM̂eq
[ĝ]− EM̂eq

[g]
∣∣∣ ≥ ξ0ξ

r

|X |r

∣∣∣∣∣ ∑
z1:r∈X r

(ĝ(z1:r)− g(z1:r))

∣∣∣∣∣
)
< ε, ∀I > I1 (A.14)

due to (A.12) and (A.13). Let x′1:r denotes a random sample taken uniformly from X r. We can obtain
that

P (x′1:r) = P (x′1) . . .P (x′r)

≤
(
‖ω‖ ‖σ‖ ξO ξ̄

)r
where ξO ≥

∥∥∥Ξ (O)
k
∥∥∥ for any k ≥ 0. Note ξO <∞ because we can show the existing of the limit

of {
∥∥∥Ξ (O)

0
∥∥∥ ,∥∥∥Ξ (O)

1
∥∥∥ , . . .} by similar steps in Appendix A.3. Thus

E

[
1

|X |r

∣∣∣∣∣ ∑
z1:r∈X r

(ĝ(z1:r)− g(z1:r))

∣∣∣∣∣
]
≤ E [E [|ĝ(x′1:r)− g(x′1:r)| |X ]]

= E [|ĝ(x′1:r)− g(x′1:r)|]
= E

[
1x′

1:r∈Kε(ĝ)
]
E [|ĝ(x′1:r)− g(x′1:r)| |x′1:r ∈ Kε(ĝ)]

+E
[
1x′

1:r /∈Kε(ĝ)
]
E [|ĝ(x′1:r)− g(x′1:r)| |x′1:r /∈ Kε(ĝ)]

≤ ξµε · 2ξg + ε = (2ξgξµ + 1) ε

where ξµ =
(
‖ω‖ ‖σ‖ ξO ξ̄

)r
/ξ. By the Markov’s inequality, we have

Pr

[
1

|X |r

∣∣∣∣∣ ∑
z1:r∈X r

(ĝ(z1:r)− g(z1:r))

∣∣∣∣∣ ≥ √ε
]
≤ (2ξgξµ + 1)

√
ε (A.15)

Combining (A.14) and (A.15) leads to

Pr
(∣∣∣EM̂eq

[ĝ]− EM̂eq
[g]
∣∣∣ ≥ ξ0ξr√ε) ≤ Pr

(∣∣∣EM̂eq
[ĝ]− EM̂eq

[g]
∣∣∣ ≥ ξ0ξ

r

|X |r

∣∣∣∣∣ ∑
z1:r∈Xr

(ĝ(z1:r)− g(z1:r))

∣∣∣∣∣
)

+ Pr

(
1

|X |r

∣∣∣∣∣ ∑
z1:r∈X r

(ĝ(z1:r)− g(z1:r))

∣∣∣∣∣ ≥ √ε
)

≤ ε+ (2ξgξµ + 1)
√
ε
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for all I > I1.

From all the above, we have

Pr
(∣∣∣E∞[g]− EM̂eq

[g]
∣∣∣ ≤ 2(ξg + 1)ε+ ξ0ξ

r
√
ε
)

≥ Pr
(∣∣∣E∞[ĝ]− EM̂eq

[ĝ]
∣∣∣ ≤ ε, ∣∣∣EM̂eq

[ĝ]− EM̂eq
[g]
∣∣∣ ≤ ξ0ξr√ε)

≥ 1− Pr
(∣∣∣E∞[ĝ]− EM̂eq

[ĝ]
∣∣∣ > ε

)
− Pr

(∣∣∣EM̂eq
[ĝ]− EM̂eq

[g]
∣∣∣ > ξ0ξ

r
√
ε
)

≥ 1− 2ε− (2ξgξµ + 1)
√
ε

for all I > max{I0, I1}, which yields EM̂eq
[g]

p→ E∞[g] due to the arbitrariness of ε.

B Settings in applications

B.1 Models

The one-dimensional diffusion processes in Section 5 are driven by the Brownian dynamics with
β = 0.3,

V (x) =

∑5
i=1 (|x− ci|+ 0.001)

−2
ui∑5

i=1 (|x− ci|+ 0.001)
−2

and the sample interval is 0.002. For the two-dimensional process, β = 2,

V (x) = − log

(
3∑
i=1

piN (x|µi,Σi)

)
and the sample interval is 0.01, where c1:5 = (−0.3, 0.5, 1, 1.5, 2.3), u1:5 = (21, 4, 8,−1, 20),
p1:3 = (0.25, 0.25, 0.5), µ1 = (0,−0.5), µ2 = (−1, 0.5), µ3 = (1,−0.5). The simulation details of
alanine dipeptide is given in [3].

B.2 Algorithms

The parameters of discrete spectral learning are chosen as: L = 3, m = 10, and φ1 = φ2 are
indicator functions of all OL observation subsequences with length L.

The parameters of binless spectral learning are almost the same as discrete ones, except φ1 = φ2
are Gaussian activation functions with random weights of functional link neural networks with
D1 = D2 = 100.

The number of hidden states of HMMs is 10. For continuous data, we partition the state space into
100 discrete bins k-mean clustering, and then learn HMMs by the EM algorithm, where the HMM
package in PyEMMA [4] is used. All observation samples within the same bin are assumed to be
independent for quantitative analysis.

References

[1] W. K. Newey and D. McFadden, “Large sample estimation and hypothesis testing,” Hand-
book of Econometrics, vol. 4, pp. 2111–2245, 1994.

[2] K. Hornik, M. Stinchcombe, and H.White, “Multilayer feedforward networks are universal
approximators,” Neural Netw., vol. 2, no. 5, pp. 359–366, 1989.

[3] B. Trendelkamp-Schroer and F. Noé, “Efficient estimation of rare-event kinetics,” Phys. Rev.
X, vol. 6, pp. 011009, 2016.

[4] M. K. Scherer, B. Trendelkamp-Schroer, F. Paul, G. Pérez-Hernández, M. Hoffmann, N.
Plattner, C. Wehmeyer, J. -H. Prinz, and F. Noé, “PyEMMA 2: A software package for
estimation, validation, and analysis of Markov models,” J. Chem. Theory Comput., vol. 11,
no. 11, pp. 5525-5542, 2015.

7


	Proofs
	Proof of Theorem 1
	Asymptotic correctness of nonequilibrium learning with different initial states
	Proof of Theorem 2
	Proof of Theorem 3

	Settings in applications
	Models
	Algorithms




