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1 Appendix A
We study the asymptotic property of the KL-naive estimator Ok, and prove Theorem

1.1 Notations and Assumptions

To simplify the notations for the proofs in the following, we define the following notations.
1 0 2] 0
Ologp(z | 6), s(a};O):a ogp(Qm\ ).
00 00 ()
1(6) = E(3(x,0));  1(0,0x1) = E(5(, 0x1) | O)-

We start with investigating the theoretical property of Oxr.

s(x;0) = logp(x | 0); $(x;0)

Lemma 1. Based on Assumption as n — oo, we have B(Qky1, — 0j;) = o((dn)~1). Further, in
terms of estimating the true parameter, we have

E|fxr, — 0|2 = O(N ™! + (dn)™h). )

Proof: Based on Equation (3)) and (@), we know

d 1 n N ~ R
> - > S(250kL) — > /p(xwk)s@% Oxr)dx = 0. 3)

By the law of large numbers, we can rewrite Equation (3)) as

d d
> [ plalbu)s(esfra)de - > / P(rlB3)3(: O )z = o). @
k=1 k=1

We also observe that §(z; Oxr) — §(z; 05y ) = [fo §(z; 0%y, + t(OxL — 0%L))dt] (Or — OkL).
Therefore, Equation (@) can be written as

{Z/ (/0)) / (@ 0%y, + H(Orcr, — HKL))dtdw] (0% — Oir) = op(%). 5)

Under our Assumptionl 1] the Fish Information matrix () is positive definite in a neighborhood of 8™,
then we can find constant C, C such that C; < || [ p(x|%) fo x; O +t(Oxr, — Oy ) )dtde|| <
C. Therefore, we can get E(Oxy, — 05;) = o((dn)~1). O

The following theorem provides the MSE between éKL and 0%, and that between éKL and 0”.
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Theorem 2. Based on Assumption asn — oo, E||fkr, — 05, || = O(-L). Further, in terms of
estimating the true parameter, we have

E|fxr, — 0|2 = O(N ™! + (dn)™h). (6)

Proof: According to the Equation (),

d n
1 ~
Ok = arg max g — s( :ck 0). 7
S A— n]:1

Then the first order derivative of Equation with respect to 8 at 0 = éKL i8 zero,
delzan(i’VéKL) =0 ®)
=1 =1 2 .
By Taylor expansion of Equation (8)), we get
Z Z 770KL + 5(537 ;0xL) Ok — 0%1)) + 0p (kL — O5y,) = 0.

By the law of large numbers, + Y7, (a:j Opp) = 1(0r,05p) + op(L). Under our Assumptlon

1() is positive definite in a neighborhood of 8*. Since @, are in the neighborhood of 8%, (8}, 0% )
is positive definite, for k = 1 € [d]. Then we have

d d n
ki — O, = (O _1(6,05%y.)) 12%2} L 05) +op(i)=o. )
k=1 k=1"" j=1
By the central limit theorem, f Z (ac i3 ; 0%1,) converges to a normal distribution. By some
simple calculation, we have
) ) A d a
Cov(Bxr—Or, Ok —051) = —(3_ 10k, 05r.)) ™" D Var(s(; 0icr) | 9)(Y_ 1(65, 051.) "
k=1 k=1 =

(10)
According to our Assumption we already know I(0y,0%;) is positive definite, C; <
A * d A * — d . * A
(O, Okl < C2-AWC have (37}, I(ekaeKLZ) t= O(é)Aand > Var($(z; Oxy) | Ok) =
O(d). Therefore, E||0ky, — 0%y, [|* = trace(Cov(OkL, — Ok, Okt — 0%1)) = O(5). Because the
MSE between the exact KL estimator 8}, and the true parameter 8" is O(N ~!) as shown in Liu
and Ihler{(2014)), the MSE between Ok, and the true parameter 8™ is

E|fxr — 6°|* ~ Ellfxr — 65y ||* + E||65r, — 8| = O(N " + (dn) ™).

We complete the proof of this theorem. [J

2 Appendix B

In this section, we analyze the MSE of our proposed estimator HAKL,C and prove Theorem
Theorem 3. Under Assumptions|l| we have

as n— oo, nE||fkn_c — 0k |? < nE|0kL — 0|2

Since 0 & is the MLE of data {m then we have

]1’

o " 1
@) — 0,) = —1(6,) ZS &100) + 0,(=). (11)



Then E(6), — ;) = o(L). According to Theorem . when B, is a constant matrix, for k € [d],

d
A * A * n ) 1
E(fkL-c — Okr) = E(fkL — 0%r) + > BrE(0, — ;) = O(ﬁ)
k=1

Notice that ;- 3" §(Z]; 6,) and 1 S s 6,) are independent when 7 # t. According to
Equation (EI), we know S0_ 1 S §(ah;05,) and 1 S 5(x; 8y,) are correlated to each

other for k € [d],
COV((éKL—C — Oxp), (éKL—C’ —0kL)) = COV(éKL — Ok 01, — OxL)
d d

+ 2 Z kaCOV(éKL — 9KL7 gk — ék)T + Z %kCOV((gk - ék), (gk - ék))%g
k=1 k=1

When By, = —(COV(&;C - ék,gk — ék))_lCov(éKL - 0;(L7§k - ék), we have

COV(éKL,C — BF{L’ éKLfc — BF(L) = COV(éKL — 0}‘@, éKL — OF(L)_

d
o . - . - (12)
Z Cov(8y — 05,05 — 0;,) ' Cov(Ok, — 0%y, 0 — 01)Cov(Oky, — Oy, 0k — 01)T.

k=1

We know E||fkr,—¢ — 05 || = trace(Cov(fxr,—c — Oy, Oxr—c — Ok))s E[|Oxr. — O [|* =
trace(Cov(fxr, — HKL, Ok, — 0}1)). The second term of Equation (12) is a positive definite matrix,

therefore we have nE||fkr,_c — 051 |2 < nE||Okr, — Oy || as n — co. We complete the proof of
this theorem. [

Theorem 4. Under Assumption when N > n x d, we have E||Oxr,_c — 051 |2 = O(42) as
n — o0. Further, in terms of estimating the true parameter, we have

E||fxr_c — 0> = O(N~! + (dn®)7Y).

From Equation (@), we know

d n
01 6
Z%Z—Ogm ) s, (13)

By Taylor expansion, Equation (I3 can be rewritten as

d n
Z[% > 8(@:0x) + (25 01) Bk — 61)) + Op(| 0w — Bx*)] = 0. (14)

k=1 j=1
[0kt — Ok ))? < ||0kr — 01|12 + |03, — 01| As we know from Liu and Ihler| (2014), we have
* ) * * * ) d
10k, — Okll* < (|65 — 67[1* + 16" — 6x|* = Op(); (15)

When N > n x d, we have ||k, — 0,]2 = Op(55). And it is also easy to derive

~ A A . . . e A 1 1 d 1 d
Ok — 0 = Ok — Ok, +0k, —0"+60" -0 :Op(ﬁ)+0p(ﬁ)+op(ﬁ) = op(—; nd N) (16)
where 0%, 9* = op( ) has been proved in Liu and Thler’s paper(2014). According to the law of

large numbers, £ 37" (m] 0r) = 1(0;) + 0p(%), then we have

j=1

. i d d 1 n 1
(OxL — 051) = —(>_ 1(6x 1252} 0k+0(nd) (17)

k=1 k=1 j=1



Notie that - >="_, §(&7; 6,)and X Z?:{S(ié; 6,) are indep~endenAt when 7 # t. Therefore from
and 1} the covariance matrix of n(0xr, — 0%;,) and n(0y — ;) is

d d
Cov(n(OxL — Oxp), n(0x — 0x)) =n(>_1(6:) " + (O _I(6x))'0(1)
k=1 k=1
for k € [d]. According to Assumptlonl we know 3¢ b1 1(8;) = O(d). Then we will have
d
. . ~ A 1
Cov(n(fkr — O5cr.), n(0r — 0x)) = n(>_1(6,)) " + O(5), for k € [d). (18)
k=1
According to Theorem 2] and Equation (I0), by the law of large numbers, it is easy to derive

d

Cov(n(BkL — 05), n(Okr — O5)) = n(>_ 1(x) ™" +o(1).
k=1

Cov(n(fki—c — Oxy,), n(Oki—c — Oky,)) = Cov(n(kr. — Oky,), n(Okr. — Oy
d d

+2> %, Cov(n(fkL — O5r). n(0k — 0x)) T+ BrCov(n(0r — i), n(0; — 0i)) B,
k=1 k=1
(19)

where 2B}, is defined in (8),

d
= (3 1(0:) 7 1(By). e ld).
k=1

According to Equation , we know Cov( (ék —0;),n(0r — 6;)) = n(I(6;))"* + o(1). By
some simple calculation, we know that n2Cov(Qxr,_c — Oy, Oxr—c — Oiy) = O(3). Therefore,
under the Assumption[I] when N > n x d, we get the following result,

1

E|0x1—c — 0%y ||* = trace(Cov(fkr—c — Oy, Oxi—c — Oky)) = O(W

).
We know E||0%;, — 0*||> = O(N 1) from Liu and IThler| (2014). Then we have
E[6ki-c — 67|* ~ E||Oxi—c — O |l” + Ell65y, — 67> = O(N " + (dn®) 7).

The proof of this theorem is complete. [

3 Appendix C

In this section, we analyze the asymptotic property of Ox1_w and prove Theoreml 51 We show the

MSE between OKL w and 0%, is much smaller than the MSE between the KL-naive estimator OKL
and 0%,

Lemma 5. Under Assumption|[l} as n — oo, 17)(8) is a more accurate estimator of n(8) than 7)(9),
ie.,

nVar(7(0)) < nVar((0)), forany € ©. (20)
By Taylor expansion,
7 . - L
PO _ 1 4 (105 p(al6) ~ ogp((60) + 0,185 — 0. e
p(x|0r)

we will have

d n
= S S (@5 0) — (@ 810)s(@:0) + 0,10 — 64l

k=1 j=1



Since s(x; 6;) — s(@; 0;) = $(w; 0y ) (65, — 6},), according to equation (11), we have

d n
~ 1 . ~ Ak ~ ~
7(6) ZEZ $(@5; 0)3(a5:01) (B — 67) + Oy (1|6 — 61]%).
k=1 j=1
Then according to equatlon (TT), we hav
ZIE (@5 0)3(25; 0r) | Ox)) I Qis :0:) + 0, (d)
nFl
Denote £(0) = — Y i_; E(s(&};0)s(};01) | 0:)1(8,) 'L " (2% ;). According to

Henmi et al. (2007), £(8) is the orthogonal projection of 7(6) onto the linear space spanned
by the score vector component for each 6y, where k € [d]. Then we will have Var(7j()) =
Var(77(0)) + Var(£(8)). Therefore, nVar(77(0)) < nVar(1(6)).

Theorem 6. Under the Assumption|l| for any {8y}, we have that

asn — 0o, nE|Oxr_w — 0%y |* < nE||fx1, — 05 ||*-
Proof: From Equation , we know
\Ok ;
Z Z ] ) 0KL W) =0.
— j=1 p
eld) — cxpflog p(aldy) ~ logp(|04)} = 1+ (logp(e10y) ~log p(l61) + 0,16 -

p(x
6)?), we have

d n n
1 1 A ~ 4 ~ .
Zgzs 33]70KL W Z[EZS :BJ,HKL W (;cf,gk)T(ek—0,6)+Op(||0k—0k||2)} =0

(22)
From the asymptotic property of MLE, we know E|[|6), — 0, ||> = Ltrace(I(0})). Therefore, we
know (|6, — Ox > = O, (5;) and 35_, 101 — Ox> = O, ().

n

Similar to the derivation of equation (9), according to equation (IT)), we have the following equation,

d
Oxr-w—0% = (O 10k, 0%1))” Z Z $(E; 05c)—
k=1
d d 1 n d
(0 16k 03c0)) ™ DB Ot w)T8(55:60) | 04)— 37 5(35:61) = Op(5).
k=1 =1
Then we have,
Oxr, 051, = O w — Oy,
d d 1 n d
A * — o~k A .~k A A o~k A
(3210, 050)) ™ S B O w) TS 61) |00~ D7 3(@5:00) = 0,(5).
k=1 k=1 =1

According to Henmi et al.(2007), we know the second term of above equation is the orthogonal
projection of (k1 — 0%p,) onto the linear space spanned by the score component for each 6y, for
k € [d]. Then

nE|Oxr-w — OxLl” < nE[|0kr, — 0% |I*.

We complete the proof of this theorem. [

Theorem 7. Under the Assumptions when N > n x d, E|@xr,_w — 051 |2 = O(4kz). Further,
its MSE for estimating the true parameter 8" is

]EHHAKL,W — 9*||2 = O(N_l + (an)_l).



According to Equation (22),

d d
25 2 8@ banw) -3

k=1 j=1

3 8@ Oww)3(@: 007 (B 01) = 0,2,

Jj=1

S|
3=

Approximating the first term of the above equation by Taylor expansion, we will get

n

d
1 1
St - S S
- = B jn‘ (23)
1
- 0 0 0 0
+};n;S kL—w — 0k) + Op(|0xL—w — 0[1?)].

Since ||OkL_w — 012 < ||[OxL—w — Ok ||? + 0%, — 0x|%, according to equation , then
[6xr—w —0k|> = Op(||@xr—w — 0% ||*+ ). We can easily derive s(ﬁc'f, Oxr—w) = s(if, 0;)+
Op(éKL,W — ék) for k € [d]. When N > n x d, we will have

d n d
1 kA 1SN oA n R
D0 D@00+ D s(@: 0 (B — 6)

1 sk AT/ A R . d
=30 > 8@k 00)5(@5: 6)7 (O — 61) + O, (0w — Oice?) = O().
k j=1

(24)

izj 1 (:cJ,Ok) = I(Ok)+op( ) and we also know that 1 D D (Nk'ék)'(Nk'ék)T = 1(6;)+
0,(1). From || we know O — 6, = 0p(&) =0,(%). When N > n x d, we have

d n d
Z % Z s(if, ék)+ Z (ék)(éKL w — 0k1,)
k=1 j=1 k=1
d
+

k=1

(25)

) . d
1(0:) (0 — 0)) + Op(||0x—w — 05111 :O(ﬁ)'

S|

Based on the Equation (TT)), the first term and the third term of Equation (23)) are cancelled. By some
simple calculation, we will get

d d
n*(Oxe-w — i) (Y 1(60)) (D 1(01)) (Oxr—w — O51) = Op(d). (26)

k=1 k=1

This indicates, Cov(n (35— 1(8k))(Oxr—w — O5cr) (S iy 1(01)(Bxr—w — Ocr)) = <>
as n — co. We know n?E|fx_w — 051 |2 = trace(Cov(n(@kn_w — BKL) n(Oxr,

0%1.)). According to Assumpt10n I1(6},) is positive definite and then trace(> ¢ el 1(6y)) = ( )

Therefore, we have
d 1

#n?) = g
We know E||0%;, — 6%||> = O(N~1) from|Liu and Ihler|(2014). Then we have

E|0xi—w — 05 ]* = O(

E|0xi-w — 07| ~ E||fx—w — 0x.|> + E[|05, — 07| = O(N ™! + (dn?) 7).

The proof of this theorem is complete. [
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