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This supplementary document is composed of the proofs for Theorem 4.1 (for both regression and
classification) and Theorem 4.2 in the paper "A Communication-Efficient Parallel Algorithm for
Decision Tree".

First of all, we review the definitions of information gain in classification and variance gain in
regression.

Definition 0.1 [1][2] In classification, the information gain (IG) for attribute Xj ∈ [w1, w2] at node
O, is defined as the entropy reduction of the output Y after splitting node O by attribute Xj at w, i.e.,

IGj(w;O) = Hj − (Hlj(w) +Hrj (w))

= P (w1 ≤ Xj ≤ w2)H(Y |w1 ≤ Xj ≤ w2)− P (w1 ≤ Xj < w)H(Y |w1 ≤ Xj < w)

− P (w ≤ Xj ≤ w2)H(Y |w ≤ Xj ≤ w2),

where H(·|·) denotes the conditional entropy.

In regression, the variance gain (VG) for attribute Xj ∈ [w1, w2] at node O, is defined as variance
reduction of the output Y after splitting node O by attribute Xj at w, i.e.,

V Gj(w;O) = σj − (σlj(w) + σrj (w))

= P (w1 ≤ Xj ≤ w2)V ar[Y |w1 ≤ Xj ≤ w2]− P (w1 ≤ Xj < w)V ar[Y |w1 ≤ Xj < w]

− P (w2 ≥ Xj ≥ w)V ar[Y |w2 ≥ Xj ≥ w],

where V ar[·|·] denotes the conditional variance.

The conditional entropy H(·|·) and the conditional variance V ar(·|·) are calculated according to the
conditional distribution P (·|·). For K class classification, we assume Y is a discrete random variable
which takes value from the set {1, · · · ,K} and we have

H(Y |w1 ≤ Xj ≤ w2) = −E(Y |w1≤Xj≤w2) log p(Y |w1 ≤ Xj ≤ w2) (1)

= −
K∑
k=1

p(Y = k|w1 ≤ Xj ≤ w2) log p(Y = k|w1 ≤ Xj ≤ w2). (2)

For regression, we assume that Y is a continuous random variable and

V ar(Y |w1 ≤ Xj ≤ w2) = E
[
(Y − E[Y |w1 ≤ Xj ≤ w2)]2

∣∣w1 ≤ Xj ≤ w2

]
(3)

=

∫
p(y|w1 ≤ Xj ≤ w2)y2dy −

(∫
p(y|w1 ≤ Xj ≤ w2)ydy

)2

. (4)

∗Denotes equal contribution. This work was done when the first author was visiting Microsoft Research Asia.
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1 Theorem 4.1 and its Proof for classification and regression

Theorem 4.1: In classification, suppose we have M local machines, and each one has n training data. PV-Tree
at an arbitrary tree node with local voting size k and global majority voting size 2k will select the most
informative attribute with a probability at least

M∑
m=[M/2+1]

CmM

1−

 d∑
j=k+1

δ(j)(n, k)

m d∑
j=k+1

δ(j)(n, k)

M−m

,

where δ(j)(n, k) = α(j)(n) + 4e−c(j)n(l(j)(k))2 with limn→∞ α(j)(n) = 0 and c(j) is constant.

Proof for classification:

Firstly we introduce some notations. We use subscript n to denote the corresponding empirical statistic-
s, which is calculated based on the empirical distribution Pn. Let w∗j = argmaxwIGj(w) and w∗n,j =
argmaxwIGn,j(w). We denote IGj(w∗j ) as IGj , which is the largest information gain for attribute j. We de-
note IGn,j(w∗n,j) as IGn,j , which is the largest empirical information gain for attribute j. As we defined in the
main paper, we denote the index of attribute with the j-th largest information gain as (j), and its corresponding
information gain as IG(j), i.e.,

IG(1) ≥ · · · ≥ IG(j) ≥ · · · ≥ IG(d).

The corresponding empirical information gain for attribute (j) denoted as

IGn,(1), ..., IGn,(j), ..., IGn,(d).

Note that IGn,(1), ..., IGn,(j), ..., IGn,(d) may not be in an increasing order. Similarly, we denote the index of
attribute with the j-th largest empirical information gain as (j′), and its corresponding empirical information
gain as IGn,(j′),i.e.,

IGn,(1′) ≥ · · · ≥ IGn,(j′) ≥ · · · ≥ IGn,(d′).

Our proof idea is as follows:

Step 1: Because IGn,j ∈ d(IGj , lj(k)) is a sufficient condition for (1) ∈ {(1
′
), ..., (k

′
)} to be satisfied2, we

use concentration inequalities to derive a lower bound of probability for IGn,j ∈ d(IGj , lj(k)),∀j, where
d(x, ε) denotes the neighborhood of x with radius ε.

Step 2: By local top-k and global top-2k voting, the most informative attribute (1) will be contained in the global
selected set, i.e., (1) ∈ {(1

′
), ..., (k

′
)}, if only no less than [M/2 + 1] local workers select it. We calculate the

probability for the case no less than [M/2 + 1] of all machines select attribute (1) using binomial distribution.

Firstly, we give the probability to ensure (1) ∈ {(1
′
), ..., (k

′
)}. We bound the difference between the information

gain and the empirical information gain for an arbitrary attribute. To be clear, we will prove, with probability at
least δj(n, k), we have

|IGn,j − IGj | ≤ lj(k).

For simplify the notations, let Hl
j(w) = H(Y |w1 ≤ Xj ≤ w), P lj (w) = P (w1 ≤ Xj ≤ w), Hr

j (w) =

H(Y |w ≤ Xj ≤ w2) and P rj (w) = P (w ≤ Xj ≤ w2). We decomposeHln,j(w∗n,j)−Hlj(w∗j ) as

Hln,j(w∗n,j)−Hlj(w∗j ) (5)

= P ln,j(w
∗
n,j)H

l
n,j(w

∗
n,j)− P lj (w∗j )Hl

j(w
∗
j ) (6)

= P ln,j(w
∗
n,j)H

l
n,j(w

∗
n,j)− P ln,j(w∗j )Hl

j(w
∗
j ) + P ln,j(w

∗
j )Hl

j(w
∗
j )− P lj (w∗j )Hl

j(w
∗
j ). (7)

We decomposeHrn,j(wn,j∗)−Hrj (w∗j ) in a similar way, i.e.,

Hrn,j(w∗n,j)−Hrj (w∗j ) (8)

= P rn,j(w
∗
n,j)H

r
n,j(w

∗
n,j)− P rn,j(w∗j )Hl

j(w
∗
j ) + P rn,j(w

∗
j )Hr

j (w∗j )− P rj (w∗j )Hr
j (w∗j ). (9)

2In order to (1) ∈ {(1
′
), ..., (k

′
)}, the number of IGn,j which is larger than IGn,(1) is at most k − 1.
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By adding Ineq.(7) and Ineq.(9), we have the following,

P (|IGn,j − IGj | > lj(k))

= P
(∣∣∣Hln,j(w∗n,j) +Hrn,j(w∗n,j)− (Hlj(w∗j ) +Hrj (w∗j ))

∣∣∣ > lj(k)
)

≤ P
(∣∣∣P ln,j(w∗j )Hl

j(w
∗
j )− P lj (w∗j )Hl

j(w
∗
j )
∣∣∣ > lj(k)

3

)
+

P

(∣∣P rn,j(w∗j )Hr
j (w∗j )− P rj (w∗j )Hr

j (w∗j )
∣∣ > lj(k)

3

)
+

P

(∣∣∣P ln,j(w∗n,j)Hl
n,j(w

∗
n,j)− P ln,j(w∗j )Hl

j(w
∗
j ) + P rn,j(w

∗
n,j)H

r
n,j(w

∗
n,j)− P rn,j(w∗j )Hr

j (w∗j )
∣∣∣ > lj(k)

3

)
∆
= I1 + I2 + I3

For term I1, by using Hoeffding’s inequality, we have

I1 ≤ P
(
Hl
j(w
∗
j )×

∣∣P lj (w∗j )− P ln,j(w∗j )
∣∣ > lj(k)

3

)
(10)

≤ P

(∣∣∣P lj (w∗j )− P ln,j(w∗j )
∣∣∣ > lj(k)

3Hl
j(w
∗
j )

)
(11)

≤ 2 exp

(
− 2nlj(k)2

9(Hl
j(w
∗
j ))2

)
(12)

Similarly, for term I2, we have

I2 ≤ 2 exp

(
− 2nlj(k)2

9(Hr
j (w∗j ))2

)
(13)

Let cj = min

{
2

9(Hl
j(w∗j ))2

, 2

9(Hl
j(w∗j ))2

}
, we have

I1 + I2 ≤ 4 exp
(
−cjnlj(k)2). (14)

For the term I3, we have

J

= P ln,j(w
∗
n,j)H

l
n,j(w

∗
n,j)− P ln,j(w∗j )Hl

j(w
∗
j ) + P rn,j(w

∗
n,j)H

r
n,j(w

∗
n,j)− P rn,j(w∗j )Hr

j (w∗j )

=
1

n

n∑
i=1

I(w1 ≤ xi,j ≤ w∗n,j)Hl
n,j(w

∗
n,j) +

1

n

n∑
i=1

I(w∗n,j < xi,j ≤ w2)Hr
n,j(w

∗
n,j)

− 1

n

n∑
i=1

I(w1 ≤ xi,j ≤ w∗j )Hl
j(w
∗
j )− 1

n

n∑
i=1

I(w∗j < xi,j ≤ w2)Hr
j (w∗j ),

where xi,j is the j-th attribute for the i-th instance in the training set.

Let Θ denote the set of all possible values of (pl1, p
r
1, · · · , plK−1, p

r
K−1, wj), where plk = P (Y = k|w1 ≤

Xj ≤ wj) and prk = P (Y = k|wj < Xj ≤ w2). Define the criterion function M(θ) = Pmθ ,
where mθ(x, y) = − log plkI(w1 ≤ x ≤ wj) − log prkI(w2 ≥ x > wj) if y = k. The vector
θ∗ = (pl∗1 , p

u∗
1 , · · · , pl∗K−1, p

u∗
K−1, w

∗
j ) maximizes M(θ), while θ∗n = (pl∗n,1, p

r∗
n,1, · · · , pl∗n,K−1, p

r∗
n,K−1, w

∗
n,j)

minimizes Mn(θ). Straightforward algebra shows that

(mθ −mθ∗)(X,Y ) = I(Y = k)[(log pl∗k − log pr∗k )(I(w1 ≤ X ≤ w∗j,n)− I(w1 ≤ X < d∗j ))(15)

+(log pl∗n,k − log pl∗k )I(w1 ≤ X ≤ w∗n,j) (16)
+(log pu∗n,k − log pr∗k )I(w∗n,j ≤ X ≤ w2)] (17)

By following the proof of Theorem 1 in [3], we can get that n2/3I3 converges to c2 maxtQ(t), where c2 is a
constant and Q(t) is composed by the standard two-sided Brownian Motion [3]. Therefore, we have

P
(
|J | > c2n

− 2
3 qα
)
< α. (18)
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where qα is the upper α-quantile of maxtQ(t). Let c2n−
2
3 qαj(n) =

lj(k)

3
. With probability at most αj(n),

we have IGn,j(w∗j )− IGn,j > lj(k)

2
, i.e.,

I2 = P

(
|J | > lj(k)

3

)
< αj(n) (19)

By combining Inequalities (14) and (19), we have, with probability at most δj(n, k) = αj(n) +
4 exp (−cjnlj(k)2),

|IGn,j − IGj | > lj(k). (20)
Thus we can get

P
(∣∣IGn,(j) − IG(j)

∣∣ ≤ lj(k),∀j ≥ k + 1
)
≥ 1−

d∑
j=k+1

δ(j)(n, k). (21)

By binomial distribution, we can derive the results in the theorem. �

Proof for regression:

The proof is similar to classification. We continue to use notations in the previous section and just substitute IG
to V G.

Similarly, we will prove, with probability at least δj(n, k), we have

|V Gn,j − V Gj | ≤ lj(k).

By the definition of variance gain, we have the following,

P (|V Gn,j − V Gj | > lj(k))

≤ P (|σln,j(w∗n,j) + σrn,j(w
∗
n,j)− σlj(w∗j )− σrj (w∗j )| > lj(k))

≤ P
(∣∣∣P ln,j(w∗j )σlj(w

∗
j )− P lj (w∗j )σlj(w

∗
j )
∣∣∣ > lj(k)

3

)
+

P

(∣∣P rn,j(w∗j )σrj (w∗j )− P rj (w∗j )σrj (w∗j )
∣∣ > lj(k)

3

)
+

P

(∣∣∣P ln,j(w∗n,j)σln,j(w∗n,j)− P ln,j(w∗j )σlj(w
∗
j ) + P rn,j(w

∗
n,j)σ

r
n,j(w

∗
n,j)− P rn,j(w∗j )σrj (w∗j )

∣∣∣ > lj(k)

3

)
, I1 + I2 + I3

For term I1, by using Hoeffding’s inequality, we have

I1 ≤ P
(
σlj(w

∗
j )×

∣∣P lj (w∗j )− P ln,j(w∗j )
∣∣ > lj(k)

3

)
≤ P

(∣∣∣P lj (w∗j )− P ln,j(w∗j )
∣∣∣ > lj(k)

3σlj(w
∗
j )

)
(22)

≤ 2 exp

(
− 2nlj(k)2

9(σlj(w
∗
j ))2

)
(23)

Similarly, for term I2, we have

I2 ≤ 2 exp

(
− 2nlj(k)2

9(σrj (w∗j ))2

)
(24)

Let cj = min

{
2

9(σl
j(w∗j ))2

, 2

9(σl
j(w∗j ))2

}
, we have

I1 + I2 ≤ 4 exp
(
−cjnlj(k)2). (25)

For the term I3, let J = P ln,j(w
∗
n,j)σ

l
n,j(w

∗
n,j) − P ln,j(w

∗
j )σlj(w

∗
j ) + P rn,j(w

∗
n,j)σ

r
n,j(w

∗
n,j) −

P rn,j(w
∗
j )σrj (w∗j ). According to Theorem 2.2 established by [3], the following holds,

P
(
|J | > c2n

− 2
3 qα
)
< α. (26)
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where c2 is a constant for fixed distribution P and qα is the upper α-quantile of the standard two-sided Brownian
Motion [3]. With probability at most αj(n), we have |J | > lj(k)

3
, i.e.,

I3 = P

(
|J | > lj(k)

3

)
< αj(n) (27)

By combining Ineq.(25) and (27), we have, with probability at most δj(n, k) = αj(n) + 4 exp (−cjnlj(k)2),

|V Gn,j − V Gj | > lj(k). (28)

Thus we can get

P
(∣∣V Gn,(j) − V G(j)

∣∣ ≤ h, ∀j ≥ k + 1
)
≥ 1−

d∑
j=k+1

δ(j)(n, k). (29)

By binomial distribution, we can derive the results in the theorem. �

2 Theorem 4.2 and its proof

Theorem 4.2: We denote quantized histogram with b bins of the underlying distribution P as P b, that of the
empirical distribution Pn as P bn, the information gain of Xj calculated under the distribution P b and P bn as
IGbj and IGbn,j respectively, and fj(b) , |IGj − IGbj |. Then, for ε ≤ minj=1,··· ,d fj(b), with probability at
least δj(n, fj(b)− ε)), we have |IGbn,j − IGj | > ε.

Proof:
First, |IGbn,j − IGj | = |IGbn,j − IGbj + IGbj − IGj | ≥ ||IGbn,j − IGbj | − |f(b)||. Second, when n is large
enough, we have |f(b)| − |IGbn,j − IGbj | > ε with probability δj(n, fj(b) − ε)) for ε ≤ minj=1,··· ,d fj(b).
Thus, the proposition is proven. �
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