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1 Experimental procedures

1.1 Determining the threshold

In each layer l, the threshold T
l

is calculated so the desired sparsity is maintained
[eq (9) in the main text]. A fixed threshold implies a mean activity f when
averaged over many realizations of noise. For practical reasons in simulations,
we strictly enforce sparsity by setting the activity of the fN neurons with the
highest local fields hi to 1, while silencing the remaining (1 � f)N neurons.
For large systems, where the fluctuations of the mean activity around f are
negligible, this approximation is both valid and highly efficient.

1.2 MNIST data set

For a visual example of the processing by de-nosing network which we study, we
have created a set of binary images, based on the well known MNIST [1] dataset
for handwritten digits. The model requires a large set of uncorrelated binary
inputs. For this end we have crated a set of 1000 unique 3-digit numbers, where
each image is composed of three digits taken from the MNIST dataset. Each
image is then thresholded to get a binary {0, 1} values for all the pixels. The
result is a rectangular 1200 binary pixels image.
We trained network of various sizes and layouts to autoencode [2] a subset of
size P of the dataset. Varying P allows to change the input load ↵0 = P/1200.
For each trained network, noisy samples of the input were tested. A noisy input
was created by adding Bernuli noise in order to obtain the desired initial overlap
with the original pattern, m0. The output of the network was of equal size to
the input layer, N

ro

= 1200 and was trained to re-encode the input images from
the final processing layer.
In figure 4 in the main text, we show typical example of the results. In that
example we have trained two networks with P = 800 (↵0 = 0.66) input images.
Each network has N

t

= 72000 intermediate neurons giving expansion factor
 = 60. In one network all neurons were organized in a single layer layout,
while in the other ’deep’ network, they were stacked in L = 10 equally sized
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layers. The output presented in the figure are the thresholded fields on the
readout neurons. The activity level of the readout layer f

ro

was chosen to
match the input pattern, to allow autoencoding of the images.
It is important to note that this network does not preform any classification.
The MNIST dataset is used here only as an accessible bank of binary images
used to illustrate the performances of the networks in terms of noise reduction.

2 Mean field derivation of the recursion equa-

tions

Here we provide the derivation of the recursive equations using mean field
derivation. For convenience of notation we denote zero averaged variables
xi

µ,l

= ⇠i
µ,l

� f and si
l

= Si

l

� f , where f is the sparsity level of all layers
(except possibly the input layer). The templates ⇠i

µ,l

= {0, 1} are binary vari-
ables associated with the random sparse pattern allocated at layer l for for the
µ -th cluster. Similarly, Si

l

is the activation of layer l neurons resulted by prop-
agating along the layers a given input. We consider the case where the input
is a noisy version of one of the input cluster centers, say cluster 1 . Thus, Si

l

=⇠i1,0 with probability (1 +m0)/2 and �⇠i1,0 with probability (1 �m0)/2. We
are interested in the statistics of the fields at all layers, induced by this input.
In the large N limit the field induced on the neuron i of the l � th layer obeys
a gaussian statistics. characterized by a mean

⌦
hi

l

↵
and variance �2

l

.
The overlap with the central pattern in each layer is given by (eq. (6) in the
main text)

m
l

=

1

Nf(1� f)

NX

i=1

⌦
xi

1,ls
i

l

↵
l

=

1

Nf(1� f)

NX

i=1

⌦
xi

1,l

�
⇥

⇥
hi

l

� T
l

⇤� f
�↵

l

. (1)

Here the angular brackets denote explicit average over the random templates
the layer l, while averaging on previous layers is implicit in the calculation of the
fields h

l

over the statistics of the precedent layers. To preform the average, we
note that the random templates ⇠

µ,l

obey the sparseness requirements, namely
that only a fraction f of the bits are 1, then average over xi

µ,l

can be broken
into two contributions: a fraction f with an average of (1 � f) and a fraction
(1 � f) with an average of (�f). Taking this statistics into account, we can
write eq (1) as

m
l

=

1

N

NX

i=1

⌦
⇥

⇥
h+
l

� T
l

⇤�⇥

⇥
h�
l

� T
l

⇤↵
h

(2)

where hi+
l

(hi�
l

) implies the mean input to neuron i in the case that ⇠i1,l = 0

(⇠i1,l = 1). Performing the gaussian integral over the fields results in
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m
l

= H

"
T
l

� ⌦h+
l

↵
p
�2
l

#
�H

"
T
l+1 �

⌦
h�
l

↵
p
�2
l

#
, (3)

where H(x) =
R1
x

dx exp(�x2/2). Using the same arguments, we can write an
equation for the mean activity level in each layer, which by construction is equal
to f ,

f = f

"
T
l

� ⌦h+
l

↵
p
�2
l

#
+ (1� f)H

"
T
l

� ⌦h�
l

↵
p
�2
l

#
. (4)

By solving (4), the correct threshold T
l

for each layer, which results in activity
f is found.
The theory provides recursion relations for the means and variances of the field

hi

l

=

X

j

W ij

l,l�1s
l�1
j

(5)

where the weight matrix is defined as

W
l,l�1 =

1

Nf(1� f)
X l

[Cl�1
]X(l�1)T . (6)

Here we denote X l the N ⇥ P matrix of than random patterns {xi

µ,l

}, and
Cl

=

1
Nf(1�f)X

lTX l, is a P ⇥P matrix of their correlations. In eq (3) and (4),
�2
l

⌘ ⌦�h2
l

↵
is the variance of the fluctuations in the field.

We can write zero averaged activity sl�1
j

as a mean and fluctuations

sl�1
j

= m
l�1x

j

1,l�1 + �sl�1
j

, (7)

where the mean of �sl�1
j

is zero. By accounting for the binary sparse statistics
of sl�1

j

we havee

⌦
(�sl�1

j

)

2
↵
= f(1� f)(1�m2

l�1). (8)

Thus,
hhi

l

i = m
l�1

X

j

W ij

l,l�1x
j

1,l�1 = m
l�1x

i

1,l�1 (9)

by virtue of the fact that the summation over the input index j yields
P

j

xj

⌫,l�1x
j

1,l�1 =

Nf(1� f)Cl�1
⌫,1 . It follows that

hh+
l

i = (1� f)m
l�1, hh�

l

i = �fm
l�1. (10)
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2.1 Fluctuations

The variance of the fields is given by

�2
l

⌘
D�

�hi

l

�2E
=

1

N3f2
(1� f)2

Tr
N

D
X l

⇥
Cl�1

⇤�1X(l�1)T h�sl�1�sl�1T iXTl

[Cl�1
]

�1X�(l�1)
E
.

(11)

The inner averaging,

h�sl�1�sl�1T i, (12)

is over the noise injected by the noisy inputs; the external average is over pat-
terns (since this quantity is self-averaging).
First, it is straightforward to average over the patterns in the l-th layer, X l,
yielding,

�2
l

=

1

N2f(1� f)
Tr

P

D⇥
Cl�1

⇤�2X(l�1)T h�sl�1�sl�1T iX(l�1)
E
. (13)

The challenge is to compute the average over the signal (12). We separate this
average into two contributions,

h�sl�1�sl�1T i = f(1� f)(1�m2
l�1) + ql�1. (14)

The first term is due to variance in the distribution of overlaps across patterns.
Its contribution to the total variance of the fields is given by

�

l

=

f(1� f)(1�m2
l�1)

N2f(1� f)
Tr

P

h⇥Cl�1
⇤�2X(l�1)TX(l�1)i

=

f(1� f)(1�m2
l�1)

N
Tr

P

h⇥Cl�1
⇤�1i

=

↵f(1� f)(1�m2
l�1)

1� ↵
. (15)

The second term, ql�1, contains all the non-diagonal terms in the correlation
matrix, and expresses cross-correlations in the noise.

2.2 Noise correlations

The expression in (15) would be the only contribution if there were no correla-
tions in the noise. Indeed in the input layer the noise is assumed uncorrelated.
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However as a noisy pattern (i.e., a pattern that does not perfectly overlap the
central template) propagate through the layers, spatial correlations form, which
cannot be neglected. The values in the matrix ql�1 in (14) are fluctuating with
the patterns X, and their mean, once the quenched average over the patterns is
taken, vanishes. Nevertheless, their contribution to (11) is non-zero, and cannot
be neglected1. To compute this contribution, we examine individual terms for
a given j and j0,

Zl�1
=

1

Nf(1� f)
Tr

P

⇥
Cl�1

⇤�2X(l�1),jTX(l�1),j0

⌘ ↵u(l�1)T
⇥
Cl�1

⇤�2vl�1 (16)

where

ul�1
µ

= x(l�1),j
µ

/
p
Pf(1� f), (17)

vl�1
µ

= x(l�1),j0

µ

/
p
Pf(1� f) (18)

are two P -dimensional vectors, normalized so thatuTu = vT v = 1. Furthermore,
we have

uT v ⇠ O
✓

1p
↵N

◆
. (19)

Below, we will use this property to derive the results for large N . We can write
the pattern correlation matrix C itself as

C = C0 + ↵
�
uuT

+ vvT
�

(20)

where C0is the contributions from all sites other than j and j0.
In here and the following we temporally suppress the layer index superscript
without ambiguity, and remember that X and C are defined independently for
each layer. The inverse of eq (20) can be written as

C�2
= [I + �]�2C�2

0 , (21)

where I is the P ⇥ P identity matrix, and

� = ↵C�1
0

�
uuT

+ vvT
�
. (22)

Since C0 is a random matrix, independent of the values in the sites j and j0, we
allow averaging over it, resulting in [4]

⌦
C�1

0

↵
=

1

1� ↵
I (23)

⌦
C�2

0

↵
=

1

(1� ↵)
3 I. (24)

1
Contrary to the assumption of Meir and Domany, [3], where the contribution of the of

those fluctuations was neglected.
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Eq. (21) can be represented as a power series in the matrix � as

C�2
=

1

(1� ↵)
3

⇥
I � 2� + 3�2 � 4�3 + . . .

⇤
. (25)

Substituting into equation (16), we get

Z =

1

(1� ↵)
3u

T

⇥
I � 2� + 3�2 � 4�3 + . . .

⇤
vT . (26)

Using the expression for � from (22), and keeping only leading orders in uT v,
we get

Z =

1

(1� ↵)
3

"
1� 2

2 ↵

1� ↵
+ 3

2

✓
↵

1� ↵

◆2

� 4

2

✓
↵

1� ↵

◆3

+ ...

#
uT v

=

1� 2↵

1� ↵
uT v. (27)

The factor in the last equality of (27)results from the sum of an infinite power
series in ↵/(1 � ↵). Finally, substituting this results in eq., (13) for the full
variance

�2
= �

l

+Q
l

(28)

where

Q
l

=

(1� 2↵)

(1� ↵)

1

N2f(1� f)

*
X

⌫,j 6=j

0

x(l�1),j
⌫

x(l�1),j0

⌫

�sl�1
j

�sl�1
j

0

+
(29)

Finally, noting that each xl�1
j

are effectively Gaussian, we can write the average

1p
Nf(1� f)

*
X

,j

x(l�1),j
⌫

�sl�1
j

+
= �

l�1
@

@hl�1
j

h�sl�1
j

i

=

p
�
l�1

@

@z
h⇥ �hh

l�1i+ z
p
�
l�1 � T

l�1

�
(30)

yielding

Q
l

=

1� 2↵

(1� ↵)

✓
fH 0


(T

l�1 � (1� f)m
l�1)

�
l�1

�
+ (1� f)H 0


(T

l�1 +m
l�1)

�
l�1

�◆2

.

(31)
where,

H 0
(x) = � 1p

2⇡
exp

��x2/2
�
. (32)
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3 Readout weights

Since the readout has a different sparsity f
ro

6= f , it is important to take notice
on which sparsity factor appears where in the update equation. For correctness
we bring here the exact expression for the readout weights

m
ro

= H


T
ro

� (1� f
ro

)m
Lp

�

ro

+Q
ro

�
�H


T
ro

+ f
ro

m
Lp

�

ro

+Q
ro

�
, (33)

f
ro

= f
ro

H


T
ro

� (1� f
ro

)m
lp

�

ro

+Q
ro

�
+ (1� f

ro

)H

"
T
ro

+ f
ro

m
Lp

�

l+1 +Q
l+1

#
. (34)

�

ro

= f(1� f)
↵

1� ↵

�
1�m2

L

�
. (35)

and

Q
ro

=

1� 2↵

2⇡(1� ↵)
⇥

 
f exp

"
� (T

L

� (1� f)m
L�1)

2

2(�

L

+Q
L

)

#
+ (1� f) exp

"
� (T

L

+ fm
L�1)

2

2(�

L

+Q
L

)

#!2

. (36)
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