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Abstract

Deep neural networks have received a considerable attention due to the success
of their training for real world machine learning applications. They are also
of great interest to the understanding of sensory processing in cortical sensory
hierarchies. The purpose of this work is to advance our theoretical understanding of
the computational benefits of these architectures. Using a simple model of clustered
noisy inputs and a simple learning rule, we provide analytically derived recursion
relations describing the propagation of the signals along the deep network. By
analysis of these equations, and defining performance measures, we show that
these model networks have optimal depths. We further explore the dependence of
the optimal architecture on the system parameters.

1 Introduction

The use of deep feedforward neural networks in machine learning applications has become widespread
and has drawn considerable research attention in the past few years. Novel approaches for training
these structures to perform various computation are in constant development. However, there is still a
gap between our ability to produce and train deep structures to complete a task and our understanding
of the underlying computations. One interesting class of previously proposed models uses a series of
sequential of de-noising autoencoders (dA) to construct a deep architectures [5, 14]. At it base, the
dA receives a noisy version of a pre-learned pattern and retrieves the noiseless representation. Other
methods of constructing deep networks by unsupervised methods have been proposed including
the use of Restricted Boltzmann Machines (RBMs) [3, 12, 7]. Deep architectures have been of
interest also to neuroscience as many biological sensory systems (e.g., vision, audition, olfaction and
somatosensation, see e.g. [9, 13]) are organized in hierarchies of multiple processing stages. Despite
the impressive recent success in training deep networks, fundamental understanding of the merits and
limitations of signal processing in such architectures is still lacking.

A theory of deep network entails two dynamical processes. One is the dynamics of weight matrices
during learning. This problem is challenging even for linear architectures and progress has been
made recently on this front (see e.g. [11]). The other dynamical process is the propagation of the
signal and the information it carries through the nonlinear feedforward stages. In this work we
focus on the second challenge, by analyzing the ’signal and noise’ neural dynamics in a solvable
model of deep networks. We assume a simple clustered structure of inputs where inputs take the
form of corrupted versions of a discrete set of cluster centers or ’patterns’. The goal of the multiple
processing layer is to reformat the inputs such that the noise is suppressed allowing for a linear
readout to perform classification tasks based on the top representations. We assume a simple learning
rule for the synaptic matrices, the well known Pseudo-Inverse rule [10]. The advantage of this choice,
beside its mathematics tractability, is the capacity for storing patterns. In particular, when the input
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is noiseless, the propagating signals retain their desired representations with no distortion up to a
reasonable capacity limit. In addition, previous studies of this rule showed that these systems have a
considerable basins of attractions for pattern completion in a recurrent setting [8]. Here we study this
system in a deep feedforward architecture. Using mean field theory we derive recursion relations for
the propagation of signal and noise across the network layers, which are exact in the limit of large
network sizes. Analyzing this recursion dynamics, we show that for fixed overall number of neurons,
there is an optimal depth that minimizes the readout average classification error. We analyze the
optimal depth as a function of the system parameters such as load, sparsity, and the overall system
size.

2 Model of Feedforward Processing of Clustered Inputs

We consider a network model of sensory processing composed of three or more layers of neurons
arranged in a feedforward architecture (figure 1). The first layer, composed of N0 neuron is the
input or stimulus layer. The input layer projects into a sequence of one or more intermediate layers,
which we also refer to as processing layers. These layers can represent neurons in sensory cortices or
cortical-like structures. The simplest case is a single processing layer (figure 1.A). More generally, we
consider L processing layers with possibly different widths (figure 1.B). The last layer in the model is
the readout layer, which represents a downstream neural population that receives input from the top
processing layer and performs a specific computation, such as recognition of a specific stimulus or
classification of stimuli. For concreteness, we will use a layer of one or more readout binary neurons
that perform binary classifications on the inputs. For simplicity, all neurons in the network are binary
units, i.e., the activity level of each neuron is either 0 (silent) or 1 (firing). We denote Si

l

2 {0, 1}, the
activity of the i 2 {1, . . . , N

l

} neuron in the l = {1, . . . , L} layer; N
l

denotes the size of the layer.
The level of sparsity of the neural code, i.e. the fraction f of active neurons for each stimulus, is set
by tuning the threshold T

l

of the neurons in each layer (see below). For simplicity we will assume all
neurons (except for the readout) have the same sparsity,f .

Figure 1: Schematics of the network. The network receives input from N0 neurons and then projects
them onto an intermediate layer composed of N

t

processing neurons. The neurons can be arranged in
a single (A) or multiple (B) layers. The readout layer receives input from the last processing layer.

Input The input to the network is organized as clusters around P activity patterns. At it center, each
cluster has a prototypical representation of an underlying specific stimulus, denoted as ¯Si

0,µ, where
i = 1, ..., N0 , denotes the index of the neuron in the input layer l = 0, and the index µ = 1, ..., P ,
denotes the pattern number. The probability of an input neuron to be firing is denoted by f0. Other
members of the clusters are noisy versions of the central pattern, representing natural variations in the
stimulus representation due to changes in physical features in the world, input noise, or neural noise.
We model the noise as iid Bernoulli distribution. Each noisy input Si

0,⌫ from the ⌫th cluster, equals
¯Si

0,⌫ (

¯�S
i

0,⌫) with probability (1 +m0)/2, ((1�m0)/2) respectively. Thus, the average overlap of
the noisy inputs with the central pattern, say µ = 1 is

m0 =

1

N0f(1� f)
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ranging from m0 = 1 denoting the noiseless limit, to m0 = 0 where the inputs are uncorrelated with
the centers. Topologically, the inputs are organized into clusters with radius 1�m0.

Update rule The state Si

l

of the i-th neuron in the l > 0 layer is determined by thresholding the
weighted sum of the activities in the antecedent layer:

Si

l

= ⇥

�
hi

l

� T
l

�
. (2)

Here ⇥ is the step function and the field hi

l

represent the synaptic input to the neuron

hi

l

=

Nl ! 1X

j=1

W ij

l,l! 1

⇣
Sj

l! 1 � f
⌘
. (3)

where the sparsity f is the mean activity level of the preceding layer (set by thresholding, Eq. (2)).

Synaptic matrix A key question is how the connectivity matrix W ij

l,l! 1 is chosen. Here we construct
the weight matrix by first allocating for each layer l , a set of P random templates ⇠

l,µ

2 {0, 1}N
(with mean activity f ), which are to serve as the representations of the P stimulus clusters in the layer.
Next, W has to be trained to ensure that the response, ¯S

l,µ

, of the layer l to a noiseless inputs, ¯S0,µ,
equals ⇠

l,µ

. Here we use an explicit recipe to enforce these relations, namely the pseudo-inverse (PI)
model [10, 8, 6], given by
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where
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is the correlation matrix of the random templates in the lth layer. For completeness we also denote
⇠0,µ =

¯S0,µ. This learning rule guarantees that for noiseless inputs, i.e., S0 = ⇠0,µ, the states of all
the layers are S

l,µ

= ⇠
l,µ

. This will in turn allow for a perfect readout performance if noise is zero.
The capacity of this system is limited by the rank of Cl so we require P < N

l

[8].

A similar model of clustered inputs fed into a single processing layer has been studied in [1] using a
simpler, Hebbian projection weights.

3 Mean Field Equations for the Signal Propagation

To study the dynamics of the signal along the network layers, we assume that the input to the network
is a noisy version of one of the clusters, say, cluster µ = 1. In the notation above, the input is a state
{Si

0} with an overlap m0 with the pattern ⇠0,1. Information about the cluster identity of the input is
represented in subsequent layers through the overlap of the propagated state with the representation
of the same cluster in each layer; in our case, the overlap between the response of the layer l, S

l

, and
⇠
l,1 , defined similarly to Eq. (1), as:

m
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In each layer the load is defined as

↵
l

=

P

N
l

. (7)

Using analytical mean field techniques (detailed in the supplementary material), exact in the limit of
large N , we find a recursive equation for the overlaps of different layers. In this limit the fields and
the fluctuations of the fields �hi

l

, assume Gaussian statistics as the realizations of the noisy input vary.
The overlaps are evaluated by thresholding these variables, given by

3














