
Budgeted stream-based active learning
via adaptive submodular maximization

Kaito Fujii
Kyoto University

JST, ERATO, Kawarabayashi Large Graph Project
fujii@ml.ist.i.kyoto-u.ac.jp

Hisashi Kashima
Kyoto University

kashima@i.kyoto-u.ac.jp

Abstract

Active learning enables us to reduce the annotation cost by adaptively selecting
unlabeled instances to be labeled. For pool-based active learning, several effec-
tive methods with theoretical guarantees have been developed through maximiz-
ing some utility function satisfying adaptive submodularity. In contrast, there have
been few methods for stream-based active learning based on adaptive submodu-
larity. In this paper, we propose a new class of utility functions, policy-adaptive
submodular functions, which includes many existing adaptive submodular func-
tions appearing in real world problems. We provide a general framework based
on policy-adaptive submodularity that makes it possible to convert existing pool-
based methods to stream-based methods and give theoretical guarantees on their
performance. In addition we empirically demonstrate their effectiveness by com-
paring with existing heuristics on common benchmark datasets.

1 Introduction

Active learning is a problem setting for sequentially selecting unlabeled instances to be labeled, and
it has been studied with much practical interest as an efficient way to reduce the annotation cost. One
of the most popular settings of active learning is the pool-based one, in which the learner is given
the entire set of unlabeled instances in advance, and iteratively selects an instance to be labeled next.
The stream-based setting, which we deal with in this paper, is another important setting of active
learning, in which the entire set of unlabeled instances are hidden initially, and presented one by one
to the learner. This setting also has many real world applications, for example, sentiment analysis of
web stream data [26], spam filtering [25], part-of-speech tagging [10], and video surveillance [23].

Adaptive submodularity [19] is an adaptive extension of submodularity, a natural diminishing return
condition. It provides a framework for designing effective algorithms for several adaptive problems
including pool-based active learning. For instance, the ones for noiseless active learning [19, 21]
and the ones for noisy active learning [20, 9, 8] have been developed in recent years. Not only they
have strong theoretical guarantees on their performance, but they perform well in practice compared
with existing widely-used heuristics.

In spite of its considerable success in the pool-based setting, little is known about benefits of adaptive
submodularity in the stream-based setting. This paper answers the question: is it possible to con-
struct algorithms for stream-based active learning based on adaptive submodularity? We propose a
general framework for creating stream-based algorithms from existing pool-based algorithms.

In this paper, we tackle the problem of stream-based active learning with a limited budget for making
queries. The goal is collecting an informative set of labeled instances from a data stream of a
certain length. The stream-based active learning problem has been typically studied in two settings:

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

the stream setting and the secretary setting, which correspond to memory constraints and timing
constraints respectively; we treat both in this paper.

We formalize these problems as the adaptive stochastic maximization problem in the stream or sec-
retary setting. For solving this problem, we propose a new class of stochastic utility functions:
policy-adaptive submodular functions, which is another adaptive extension of submodularity. We
prove this class includes many existing adaptive submodular functions used in various applications.
Assuming the objective function satisfies policy-adaptive submodularity, we propose simple meth-
ods for each problem, and give theoretical guarantees on their performance in comparison to the
optimal pool-based method. Experiments conducted on benchmark datasets show the effectiveness
of our methods compared with several heuristics. Due to our framework, many algorithms developed
in the pool-based setting can be converted to the stream-based setting.

In summary, our main contributions are the following:

• We provide a general framework that captures budgeted stream-based active learning and other
applications.

• We propose a new class of stochastic utility functions, policy-adaptive submodular functions,
which is a subclass of the adaptive submodular functions, and prove this class includes many
existing adaptive submodular functions in real world problems.

• We propose two simple algorithms, AdaptiveStream and AdaptiveSecretary, and give the-
oretical performance guarantees on them.

2 Problem Settings

In this section, we first describe the general framework, then illustrate applications including stream-
based active learning.

2.1 Adaptive Stochastic Maximization in the Stream and Secretary Settings

Here we specify the problem statement. This problem is a generalization of budgeted stream-based
active learning and other applications.

Let V = {v1, · · · , vn} denote the entire set of n items, and each item vi is in a particular state out of
the set Y of possible states. Denote by ϕ : V → Y a realization of the states of the items. Let Φ be a
random realization, and Yi a random variable representing the state of each item vi for i = 1, · · · , n,
i.e., Yi = Φ(vi). Assume that ϕ is generated from a known prior distribution p(ϕ). Suppose the
state Yi is revealed when vi is selected. Let ψA : A→ Y denote the partial realization obtained after
the states of items A ⊆ V are observed. Note that a partial realization ψA can be regarded as the set
of observations {(s, ψA(s)) | s ∈ A} ⊆ V × Y .

We are given a set function1 f : 2V×Y → R≥0 that defines the utility of observations made when
some items are selected. Consider iteratively selecting an item to observe its state and aiming to
make observations of high utility value. A policy π is some decision tree that represents a strategy
for adaptively selecting items. Formally it is defined to be a partial mapping that determines an
item to be selected next from the observations made so far. Given some budget k ∈ Z>0, the goal
is constructing a policy π maximizing EΦ[f(ψ(π,Φ))] subject to |ψ(π, ϕ)| ≤ k for all ϕ where
ψ(π, ϕ) denotes the observations obtained by executing policy π under realization ϕ.

This problem has been studied mainly in the pool-based setting, where we are given the entire set V
from the beginning and adaptively observe the states of items in any order. In this paper we tackle
the stream-based setting, where the items are hidden initially and arrive one by one. The stream-
based setting arises in two kinds of scenarios: one is the stream setting2, in which we can postpone
deciding whether or not to select an item by keeping it in a limited amount of memory, and at any
time observe the state of the stored items. The other is the secretary setting, in which we must decide

1In the original definition of stochastic utility functions [19], the objective value depends not only on the
partial realization ψ, but also on the realization ϕ. However, given such f : 2V ×YV → R≥0, we can redefine
f̃ : 2V ×Y → R≥0 as f̃(ψA) = EΦ[f(A,Φ) | Φ ∼ p(Φ|ψA)], and it does not critically change the overall
discussion in our problem settings. Thus for notational convenience, we use the simpler definition.

2In this paper, “stream-based setting” and “stream setting” are distinguished.

2

v1

v2 v3

v4 v5 v6 v7

+1 −1

+1 −1 +1 −1

(a) A policy tree for the pool-based setting

v1

v2

v3

v4

v5

v6

v7

v1 v2 v3 v4v5v6 v7
t

+1

−1

+1

−1

+1

−1

(b) A policy tree for the stream-based setting

Figure 1: Examples of a pool-based policy and a stream-based policy in the case of Y = {+1,−1}.
(a) A pool-based policy can select items in an arbitrary order. (b) A stream-based policy must select
items under memory or timing constraints taking account of only items that arrived so far.

immediately whether or not to select an item at each arrival. In both settings we assume the items
arrive in a random order. The comparison of policies for the pool-based and stream-based settings
is indicated in Figure 1.

2.2 Budgeted Stream-based Active Learning

We consider a problem setting called Bayesian active learning. Here V represents the set of in-
stances, Y1, · · · , Yn the initially unknown labels of the instances, and Y the set of possible labels.

Let H denote the set of candidates for the randomly generated true hypothesis H , and pH denote
a prior probability over H. When observations of the labels are noiseless, every hypothesis h ∈ H
represents a particular realization, i.e., h corresponds to some ϕ ∈ YV . When observations are noisy,
the probability distribution P[Y1, · · · , Yn|H = h] of the labels is not necessarily deterministic for
each h ∈ H. In both cases, we can iteratively select an instance and query its label to the annotation
oracle. The objective is to determine the true hypothesis or one whose prediction error is small. Both
the pool-based and stream-based settings have been extensively studied. The stream-based setting
contains the stream and secretary settings, both of which have a lot of real world applications.

A common approach for devising a pool-based algorithm is designing some utility function that
represents the informativeness of a set of labeled instances, and greedily selecting the instance max-
imizing this utility in terms of the expected value. We introduce the utility into stream-based active
learning, and aim to collect k labeled instances of high utility where k ∈ Z>0 is the budget on
the number of queries. While most of the theoretical results for stream-based active learning are
obtained assuming the data stream is infinite, we assume the length of the total data stream is given
in advance.

2.3 Other Applications

We give a brief sketch of two examples that can be formalized as the adaptive stochastic maximiza-
tion problem in the secretary setting. Both are variations for streaming data of the problems first
proposed by Golovin and Krause [19].

One is adaptive viral marketing whose aim is spreading information about a new product through
social networks. In this problem we adaptively select k people to whom a free promotional sample
of the product is offered so as to let them recommend the product to their friends. We cannot know if
he recommends the product before actually offering a sample to each. The objective is maximizing
the number of people that information of the product reaches. There arise some situations where
people come sequentially, and at each arrival we must decide whether or not to offer a sample to
them.

Another is adaptive sensor placement. We want to adaptively place k unreliable sensors to cover the
information obtained by them. The informativeness of each sensor is unknown before its deploy-

3

ment. We can consider the cases where the timing of placing sensors at each location is restricted
for some reasons such as transportation cost.

3 Policy-Adaptive Submodularity

In this section, we discuss conditions satisfied by the utility functions of adaptive stochastic maxi-
mization problems.

Submodularity [17] is known as a natural diminishing return condition satisfied by various set func-
tions appearing in a lot of applications, and adaptive submodularity was proposed by Golovin and
Krause [19] as an adaptive extension of submodularity. Adaptive submodularity is defined as the
diminishing return property about the expected marginal gain of a single item, i.e., ∆(s|ψA) ≥
∆(s|ψB) for any partial realization ψA ⊆ ψB and item s ∈ V \B, where

∆(s|ψ) = EΦ[f(ψ ∪ {(s,Φ(s))})− f(ψ) | Φ ∼ p(Φ|ψ)].

Similarly, adaptive monotonicity, an adaptive analog of monotonicity, is defined to be ∆(s|ψA) ≥ 0
for any partial realization ψA and item s ∈ V . It is known that many utility functions used in the
above applications satisfy the adaptive submodularity and the adaptive monotonicity. In the pool-
based setting, greedily selecting the item of the maximal expected marginal gain yields (1 − 1/e)-
approximation if the objective function is adaptive submodular and adaptive monotone [19].

Here we propose a new class of stochastic utility functions, policy-adaptive submodular functions.
Let range(π) denote the set containing all items that π selects for some ϕ, and we define policy-
adaptive submodularity as the diminishing return property about the expected marginal gain of any
policy as follows.
Definition 3.1 (Policy-adaptive submodularity). A set function f : 2V×Y → R≥0 is policy-adaptive
submodular with respect to a prior distribution p(ϕ), or (f, p) is policy-adaptive submodular, if
∆(π|ψA) ≥ ∆(π|ψB) holds for any partial realization ψA, ψB and policy π such that ψA ⊆ ψB

and range(π) ⊆ V \B, where

∆(π|ψ) = EΦ[f(ψ ∪ ψ(π,Φ))− f(ψ) | Φ ∼ p(Φ|ψ)].

Since a single item can be regarded as a policy selecting only one item, policy-adaptive submodu-
larity is a stricter condition than adaptive submodularity.

Policy-adaptive submodularity is also a natural extension of submodularity. The submodularity of a
set function f : 2V → R≥0 is defined as the condition that f(A∪{s})−f(A) ≥ f(B∪{s})−f(B)
for any A ⊆ B ⊆ V and s ∈ V \ B, which is equivalent to the condition that f(A ∪ P)− f(A) ≥
f(B ∪ P) − f(B) for any A ⊆ B ⊆ V and P ⊆ V \ B. Adaptive extensions of these conditions
are adaptive submodularity and policy-adaptive submodularity respectively. Nevertheless there is
a counterexample to the equivalence of adaptive submodularity and policy-adaptive submodularity,
which is given in the supplementary materials.

Surprisingly, many existing adaptive submodular functions in applications also satisfy the policy-
adaptive submodularity. In active learning, the objective function of generalized binary search
[12, 19], EC2 [20], ALuMA [21], and the maximum Gibbs error criterion [9, 8] are not only adaptive
submodular, but policy-adaptive submodular. In other applications including influence maximiza-
tion and sensor placements, it is often assumed that the variables Y1, · · · , Yn are independent, and
the policy-adaptive submodularity always holds in this case. The proofs of these propositions are
given in the supplementary materials.

To give the theoretical guarantees for the algorithms introduced in the next section, we assume
not only the adaptive submodularity and the adaptive monotonicity, but also the policy-adaptive
submodularity. However, our theoretical analyses can still be applied to many applications.

4 Algorithms

In this section we describe our proposed algorithms for each of the stream and secretary settings, and
state the theoretical guarantees on their performance. The full versions of pseudocodes are given in
the supplementary materials.

4

Algorithm 1 AdaptiveStream algorithm & AdaptiveSecretary algorithm
Input: A set function f : 2V×Y → R≥0 and a prior distribution p(ϕ) such that (f, p) is policy-

adaptive submodular and adaptive monotone. The number of items in the entire stream n ∈ Z>0.
A budget k ∈ Z>0. Randomly permuted stream of the items, denoted by (s1, · · · , sn).

Output: Some observations ψk ⊆ V × Y such that |ψk| ≤ k.
1: Let ψ0 := ∅.
2: for each segment Sl = {si | (l − 1)n/k < i ≤ ln/k} do
3: Select an item s out of Sl by{

selecting the item of the largest expected marginal gain (AdaptiveStream)

applying the classical secretary algorithm (AdaptiveSecretary)
4: Observe the state y of item s and let ψl := ψl−1 ∪ {(s, y)}.
5: return ψk as the solution

4.1 Algorithm for the Stream Setting

The main idea of our proposed method is simple: divide the entire stream into k segments and select
the best item from each one. For simplicity, we consider the case where n is a multiple integer of
k. If n is not, we can add k⌈n

k ⌉ − n dummy items with no benefit and prove the same guarantee.
Our algorithm first divides the item sequence s1, · · · , sn into Sl = {si | (l − 1)n/k < i ≤ ln/k}
for l = 1, · · · , k. In each segment, the algorithm selects the item of the largest expected marginal
gain, that is, argmax{∆(s|ψl−1) | s ∈ Sl} where ψl−1 is the partial realization obtained before
the lth segment. This can be implemented with only O(1) space by storing only the item of the
maximal expected marginal gain so far in the current segment. We provide the theoretical guarantee
on the performance of this algorithm by utilizing the policy-adaptive submodularity of the objective
function.

Theorem 4.1. Suppose f : 2V×Y → R≥0 is policy-adaptive submodular and adaptive monotone
w.r.t. a prior p(ϕ). Assume the items come sequentially in a random order. For any policy π such
that |ψ(π, ϕ)| ≤ k holds for all ϕ, AdaptiveStream selects k items using O(1) space and achieves
at least 0.16 times the expected total gain of π in expectation.

4.2 Algorithm for the Secretary Setting

Though our proposed algorithm for the secretary setting is similar in its approach to the one for the
stream setting, it is impossible to select the item of the maximal expected marginal gain from each
segment in the secretary setting. Then we use classical secretary algorithm [13] as a subroutine to
obtain the maximal item at least with some constant probability. The classical secretary algorithm
lets the first ⌊n/(ek)⌋ items pass and then selects the first item whose value is larger than all items
so far. The probability that this subroutine selects the item of the largest expected marginal gain is
at least 1/e at each segment. This algorithm can be viewed as an adaptive version of the algorithm
for the monotone submodular secretary problem [3]. We give the guarantee similar to the one for
the stream setting.

Theorem 4.2. Suppose f : 2V×Y → R≥0 is policy-adaptive submodular and adaptive monotone
w.r.t. a prior p(ϕ). Assume the items come sequentially in a random order. For any policy π such
that |ψ(π, ϕ)| ≤ k holds for all ϕ, AdaptiveSecretary selects at most k items and achieves at
least 0.08 times the expected total gain of π in expectation.

5 Overview of Theoretical Analysis

In this section we briefly describe the proofs of Theorem 4.1 and 4.2, and compare our techniques
with the previous work. The full proofs are given in the supplementary materials.

The methods used in the proofs of both theorems are almost the same. They consist of two steps:
in the first step, we bound the expected marginal gain of each item and in the second step, we take
summation of one step marginal gains and derive the overall bound for the algorithms. Though
our techniques used in the second step are taken from the previous work [3], the first step contains
several novel techniques.

5

Let ∆i be the expected marginal gain of an item picked from the ith segment Si. First we bound it
from below with the difference between the optimal pool-based policy π∗

T for selecting k items from
T and the policy πσ

i−1 that encodes the algorithm until i− 1th step under a permutation σ in which
the items arrive. For the non-adaptive setting, the items in the optimal set are distributed among
the segments uniformly at random, then we can evaluate ∆i by considering whether Si contains
an item included in the optimal set [3]. On the other hand, in the adaptive setting, it is difficult to
consider how π∗

T is distributed in the unarrived items because the policy is closely related not only
to the contained items but also to the order of items. Then we compare ∆i and the marginal gain
of π∗

T directly. With the adaptive monotonicity, we obtain ∆i ≥ (1 − exp(− k
k−i+1))(favg(π

∗
T) −

favg(π
σ
i−1))/k where favg(π) = EΦ[f(ψ(π,Φ))].

Next we bound favg(π∗
T) with the optimal pool-based policy π∗

V that selects k items from V . For the
non-adaptive setting, we can apply a widely-used lemma proved by Feige, Mirrokni, and Vondrák
[15]. This lemma provides a bound for the expected value of a randomly deleted subset. To extend
this lemma to the adaptive setting, we define a partially deleted policy tree, grafted policy, and prove
the adaptive version of the lemma with the policy-adaptive submodularity. From this lemma we can
obtain the bound Eσ[favg(π

∗
T)] ≥ (k − i+ 1)favg(π

∗
V)/k. We also provide an example that shows

adaptive submodularity is not enough to prove this lemma.

Summing the bounds for each one-step expected marginal gain until lth step (l is specified in the
full proof for optimizing the resulting guarantees), we can conclude that our proposed algorithms
achieve some constant factor approximation in comparison to the optimal pool-based policy. Though
AdaptiveSecretary is the adaptive version of the existing algorithm, our resulting constant factor
is a little worse than the original (1− 1/e)/7 due to the above new analyses.

6 Experiments

6.1 Experimental Setting

We conducted experiments on budgeted active learning in the following three settings: the pool-
based, stream, and secretary settings. For each setting, we compare two methods: one is based
on the policy-adaptive submodularity and the other is based on uncertainty sampling as baselines.
Uncertainty sampling is the most widely-used approach in applications. Selecting random instances,
which we call random, is also implemented as another baseline that can be used in every setting.

We select ALuMA [21] out of several pool-based methods based on adaptive submodularity, and
convert it to the stream and secretary settings with AdaptiveStream and AdaptiveSecretary,
which we call stream submodular and secretary submodular respectively. For comparison, we
also implement the original pool-based method, which we call pool submodular. Though ALuMA
is designed for the noiseless case, there is a modification method that makes its hypotheses sampling
more noise-tolerant [7], which we employ. The number of hypotheses sampled at each time is set
N = 1000 in all settings.

For the pool-based setting, uncertainty sampling is widely-known as a generic and easy-to-
implement heuristic in many applications. This selects the most uncertain instance, i.e., the instance
that is closest to the current linear separator. In contrast, there is no standard heuristic for the stream
and secretary settings. We apply the same conversion to the pool-based uncertain sampling method
as AdaptiveStream and AdaptiveSecretary, i.e., in the stream setting, selecting the most un-
certain instance from the segment at each step, and in the secretary setting, running the classical
secretary algorithm to select the most uncertain instance at least with probability 1/e. A similar one
to this approach in the stream setting is used in some applications [26]. In every setting, we first
randomly select 10 instances for the initial training of a classifier and after that, select k − 10 in-
stances with each method. We use the linear SVM trained with instances labeled so far to judge the
uncertainty. We call these methods pool uncertainty, stream uncertainty, secretary uncertainty
respectively, and use them as baselines.

We conducted experiments on two benchmark datasets, WDBC3 and MNIST4. The WDBC dataset
contains 569 instances, each of which consists of 32-dimensional features of cells and their diagnosis

3
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)

4
http://yann.lecun.com/exdb/mnist/

6

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
http://yann.lecun.com/exdb/mnist/

k = 30 k = 40 k = 50
Budget on the number of queries

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

E
rr

o
r

ra
te

(a) WDBC dataset, error

10 15 20 25 30 35 40 45 50
Number of labels obtained

0.00

0.02

0.04

0.06

0.08

0.10

0.12

E
rr

or
ra

te

(c) WDBC dataset, convergence

k = 30 k = 40 k = 50
Budget on the number of queries

0.000

0.005

0.010

0.015

0.020

0.025

0.030

E
rr

o
r

ra
te

(b) MNIST dataset, error

10 15 20 25 30 35 40 45 50
Number of labels obtained

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

E
rr

or
ra

te

(d) MNIST dataset, convergence

random

pool uncertainty

pool submodular

stream uncertainty

stream submodular

secretary uncertainty

secretary submodular

random

pool uncertainty

pool submodular

stream uncertainty

stream submodular

secretary uncertainty

secretary submodular

Figure 2: Experimental results

results. From the MNIST dataset, the dataset of handwritten digits, we extract 14780 images of the
two classes, 0 and 1, so as to consider the binary classification problem, and apply PCA to reduce
its dimensions from 784 to 10. We standardize both datasets so that the values of each feature have
zero mean and unit variance.

We evaluate the performance through 100 trials, where at each time an order in which the instances
arrive is generated randomly. For all the methods, we calculate the error rate by training linear SVM
with the obtained labeled instances and testing with the entire dataset.

6.2 Experimental Results

Figure 2(a)(b) illustrate the average error rate achieved by each method with budget k = 30, 40, 50.
Our methods stream submodular and secretary submodular outperform not only random, but
also stream uncertainty and secretary uncertainty respectively, i.e., the methods based on policy-
adaptive submodularity perform better than the methods based on uncertainty sampling in each of
the stream and secretary settings. Moreover, we can observe our methods are stabler than the other
methods from the error bars representing the standard deviation.

Figure 2(c)(d) show how the error rate decreases as labels are queried in the case of k = 50. In
both datasets, we can observe the performance of stream submodular is competitive with pool
submodular.

7 Related Work

Stream-based active learning. Much amount of work has been dedicated to devising algorithms
for stream-based active learning (also known as selective sampling) from both the theoretical and
practical aspects. From the theoretical aspects, several bounds on the label complexity have been
provided [16, 2, 4], but their interest lies in the guarantees compared to the passive learning, not the
optimal algorithm. From the practical aspects, it has been applied to many real world problems such
as sentiment analysis of web stream data [26], spam filtering [25], part-of-speech tagging [10], and
video surveillance [23], but there is no definitive widely-used heuristic.

7

Of particular relevance to our work is the one presented by Sabato and Hess [24]. They devised
general methods for constructing stream-based algorithms satisfying a budget based on pool-based
algorithms, but their theoretical guarantees are bounding the length of the stream needed to emulate
the pool-based algorithm, which is a large difference from our work. Das et al. [11] designed the
algorithm for adaptively collecting water samples, referring to the submodular secretary problem,
but they focused on applications to marine ecosystem monitoring, and did not give any theoretical
analysis about its performance.

Adaptive submodular maximization. The framework of adaptive submodularity, which is an adap-
tive counterpart of submodularity, is established by Golovin and Krause [19]. It provides the simple
greedy algorithm with the near-optimal guarantees in several adaptive real world problems. Specifi-
cally it achieves remarkable success in pool-based active learning. For the noiseless cases, Golovin
and Krause [19] described the generalized binary search algorithm [12] as the greedy algorithm
for some adaptive submodular function, and improved its approximation factor. Golovin et al. [20]
provided an algorithm for Bayesian active learning with noisy observations by reducing it to the
equivalence class determination problem. On the other hand, there have been several studies on
adaptive submodular maximization in other settings, for example, selecting multiple instances at the
same time before observing their states [7], guessing an unknown prior distribution in the bandit
setting [18], and maximizing non-monotone adaptive submodular functions [22].

Submodular maximization in the stream and secretary settings. Submodular maximization in
the stream setting, called streaming submodular maximization, has been studied under several con-
straints. Badanidiyuru et al. [1] provided a (1/2− ϵ)-approximation algorithm that can be executed
in O(k log k) space for the cardinality constraint. For more general constraints including matching
and multiple matroids constraints, Chakrabarti and Kale [5] proposed constant factor approximation
algorithms. Chekuri et al. [6] devised algorithms for non-monotone submodular functions.

On the other hand, much effort is also devoted to submodular maximization in the secretary set-
ting, called submodular secretary problem, under various constraints. Bateni et al. [3] specified the
problem first and provided algorithms for both monotone and non-monotone submodular secretary
problems under several constraints, one of which our methods are based on. Feldman et al. [14]
improved constant factors of the theoretical guarantees for monotone cases.

8 Concluding Remarks

In this paper, we investigated stream-based active learning with a budget constraint in the view of
adaptive submodular maximization. To tackle this problem, we introduced the adaptive stochastic
maximization problem in the stream and secretary settings, which can formalize stream-based active
learning. We provided a new class of objective functions, policy-adaptive submodular functions, and
showed this class contains many utility functions that have been used in pool-based active learning
and other applications. AdaptiveStream and AdaptiveSecretary, which we proposed in this pa-
per, are simple algorithms guaranteed to be constant factor competitive with the optimal pool-based
policy. We empirically demonstrated their performance by applying our algorithms to the budgeted
stream-based active learning problem, and our experimental results indicate their effectiveness com-
pared to the existing methods.

There are two natural directions for future work. One is exploring the possibility of the concept,
policy-adaptive submodularity. By studying the nature of this class, we can probably yield theoreti-
cal insight for other problems. Another is further developing the practical aspects of our results. In
real world problems sometimes it happens that the items arrive not in a random order. For example,
in sequential adaptive sensor placement [11], an order of items is restricted to some transportation
constraint. In this setting our guarantees do not hold and another algorithm is needed. In contrast to
the non-adaptive setting, even in the stream setting, it seems much more difficult to design a constant
factor approximation algorithm because the full information of each item is totally revealed when
its state is observed and memory is not so powerful as in the non-adaptive setting.

Acknowledgments

The second author is supported by Grant-in-Aid for Scientific Research on Innovative Areas, Explo-
ration of nanostructure-property relationships for materials innovation.

8

References
[1] A. Badanidiyuru, B. Mirzasoleiman, A. Karbasi, and A. Krause. Streaming submodular maximization:

Massive data summarization on the fly. Proceedings of the 20th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD), pp. 671–680, 2014.

[2] M.-F. Balcan, A. Beygelzimer, and J. Langford. Agnostic active learning. Proceedings of the 23rd Inter-
national Conference on Machine Learning (ICML), pp. 65–72, 2006.

[3] M. Bateni, M. Hajiaghayi, and M. Zadimoghaddam. Submodular secretary problem and extensions. ACM
Transactions on Algorithms (TALG), 9(4):32, 2013.

[4] A. Beygelzimer, S. Dasgupta, and J. Langford. Importance-weighted active learning. Proceedings of the
26th International Conference on Machine Learning (ICML), pp. 49–56, 2009.

[5] A. Chakrabarti and S. Kale. Submodular maximization meets streaming: Matchings, matroids, and more.
Mathematical Programming Series B, 154(1), pp. 225–247, 2015.

[6] C. Chekuri, S. Gupta, and K. Quanrud. Streaming algorithms for submodular function maximization.
Automata, Languages, and Programming (ICALP), pp. 318–330, 2015.

[7] Y. Chen and A. Krause. Near-optimal batch mode active learning and adaptive submodular optimization.
Proceedings of the 30th International Conference on Machine Learning (ICML), pp. 160–168, 2013.

[8] N. V. Cuong, W. S. Lee, and N. Ye. Near-optimal adaptive pool-based active learning with general loss.
Uncertainty in Artificial Intelligence (UAI), 2014.

[9] N. V. Cuong, W. S. Lee, N. Ye, K. M. A. Chai, and H. L. Chieu. Active learning for probabilistic hy-
potheses using the maximum Gibbs error criterion. Advances in Neural Information Processing Systems
(NIPS), pp. 1457–1465, 2013.

[10] I. Dagan and S. Engelson. Committee-based sampling for training probabilistic classifiers. Proceedings
of the 12th International Conference on Machine Learning (ICML), pp. 150–157, 1995.

[11] J. Das, F. Py, J. B. J. Harvey, J. P. Ryan, A. Gellene, R. Graham, D. A. Caron, K. Rajan, and G. S.
Sukhatme. Data-driven robotic sampling for marine ecosystem monitoring. The International Journal of
Robotics Research, 34(12), pp. 1435–1452, 2015.

[12] S. Dasgupta. Analysis of a greedy active learning strategy. Advances in Neural Information Processing
Systems (NIPS), pp. 337–344, 2004.

[13] E. B. Dynkin. The optimum choice of the instant for stopping a Markov process. Soviet Math. Dokl, 4,
pp. 627–629, 1963.

[14] M. Feldman, J. S. Naor, and R. Schwartz. Improved competitive ratios for submodular secretary prob-
lems. Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX-RANDOM), pp. 218–229, 2011.

[15] U. Feige, V. Mirrokni, and J. Vondrák. Maximizing non-monotone submodular functions. SIAM Journal
on Computing, 40(4), pp. 1133–1153, 2011.

[16] Y. Freund, H. S. Seung, E. Shamir, and N. Tishby. Selective sampling using the query by committee
algorithm. Machine Learning, 28, pp. 133–168, 1997.

[17] S. Fujishige. Submodular Functions and Optimization, Second Edition. Annals of Discrete Mathematics,
Vol. 58, Elsevier, 2005.

[18] V. Gabillon, B. Kveton, Z. Wen, B. Eriksson, and S. Muthukrishnan. Adaptive submodular maximization
in bandit setting. Advances in Neural Information Processing Systems (NIPS), pp. 2697–2705, 2013.

[19] D. Golovin and A. Krause. Adaptive submodularity: Theory and applications in active learning and
stochastic optimization. Journal of Artificial Intelligence Research (JAIR), 42, pp. 427–486, 2011.

[20] D. Golovin, A. Krause, and D. Ray. Near-optimal Bayesian active learning with noisy observations.
Advances in Neural Information Processing Systems (NIPS), pp. 766–774, 2010.

[21] A. Gonen, S. Sabato, and S. Shalev-Shwartz. Efficient active learning of halfspaces: An aggressive ap-
proach. The Journal of Machine Learning Research (JMLR), 14(1), pp. 2583–2615, 2013.

[22] A. Gotovos, A. Karbasi, and A. Krause. Non-monotone adaptive submodular maximization. Proceedings
of the 24th International Joint Conference on Artificial Intelligence (IJCAI), pp. 1996–2003, 2015.

[23] C. C. Loy, T. M. Hospedales, T. Xiang, and S. Gong. Stream-based joint exploration-exploitation active
learning. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2012.

[24] S. Sabato and T. Hess. Interactive algorithms: From pool to stream. In Proceedings of the 29th Annual
Conference on Learning Theory (COLT), pp. 1419–1439, 2016.

[25] D. Sculley. Online active learning methods for fast label-efficient spam filtering. Proceedings of Fourth
Conference on Email and Anti-Spam (CEAS), 2007.

[26] J. Smailović, M. Grčar, N. Lavrač, and M. Žnidaršič. Stream-based active learning for sentiment analysis
in the financial domain. Information Sciences, 285, pp. 181–203, 2014.

9

