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1 Proof of Theorem 1

Statement of Theorem: Define the set ER(Θ∗) = cone{∆ | R(∆ + Θ∗) ≤ R(Θ∗)}. Assume the
following conditions hold for λn and X,

λn ≥ R∗

(
n∑

i=1

ωiXi

)
, (S.1)

n∑
i=1

⟨⟨Xi,∆⟩⟩2/ ∥∆∥2F ≥ α > 0, ∀ ∆ ∈ ER(Θ∗) . (S.2)

The estimation ∥Θ̂−Θ∗∥F error satisfies

∥Θ̂−Θ∗∥F ≤ 2ΨR(Θ
∗) · λn

α
, (S.3)

where ΨR(·) is the restricted compatibility constant defined as

ΨR(Θ
∗) = sup

∆∈ER(Θ∗)

R(∆)

∥∆∥F
(S.4)

Proof: Since λn satisfies the condition (S.1) and ωi = yi − ⟨⟨Xi,Θ
∗⟩⟩, we have

R∗

(
n∑

i=1

(⟨⟨Xi,Θ
∗⟩⟩ − yi)Xi

)
≤ λn ,

which indicates that the constraint set in (3) is feasible, thus

R∗

(
n∑

i=1

(
⟨⟨Xi, Θ̂⟩⟩ − yi

)
Xi

)
≤ λn .

Using triangular inequality, one has

R∗

(
n∑

i=1

⟨⟨Xi, Θ̂−Θ∗⟩⟩ ·Xi

)
≤ 2λn .

Denote Θ̂−Θ∗ by ∆, and by the definition of dual norm, we get

n∑
i=1

⟨⟨Xi,∆⟩⟩2 = ⟨⟨∆,
n∑

i=1

⟨⟨Xi,∆⟩⟩ ·Xi⟩⟩ ≤ R(∆) ·R∗

(
n∑

i=1

⟨⟨Xi, Θ̂−Θ∗⟩⟩ ·Xi

)
≤ 2λnR(∆) .
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On the other hand, the objective function in (3) implies that R(Θ̂) ≤ R(Θ∗). Therefore the error
vector ∆ must belong to the set ER(Θ∗). Using condition (S.2), we obtain

α∥∆∥2F ≤
n∑

i=1

⟨⟨Xi,∆⟩⟩2 ≤ 2λnR(∆) ,

∥∆∥F ≤ 2λn

α

R(∆)

∥∆∥F
≤ 2ΨR(Θ

∗) · λn

α
,

which complete the proof.

2 Proof of Lemma 2

Statement of Lemma: Assume that rank(Θ∗) = r and its compact SVD is given by Θ∗ = UΣV T ,
where U ∈ Rd×r, Σ ∈ Rr×r and V ∈ Rp×r. Let θ∗ be any subgradient of f(σ∗), w =
[θ∗1 , θ

∗
2 , . . . , θ

∗
r , 0, . . . , 0]

T ∈ Rd, z = [θ∗r+1, θ
∗
r+2, . . . , θ

∗
d, 0, . . . , 0]

T ∈ Rd, U = colsp(U) and
V = rowsp(V T ), and define M1, M2 as

M1 = {Θ | colsp(Θ) ⊆ U , rowsp(Θ) ⊆ V} ,
M2 = {Θ | colsp(Θ) ⊆ U⊥, rowsp(Θ) ⊆ V⊥} ,

where U⊥, V⊥ are orthogonal complements of U and V respectively. Then the specified subspace
spectral OWL seminorm ∥ · ∥w,z satisfies

ER(Θ∗) ⊆ E ′ , cone{∆ | ∥∆+Θ∗∥w,z ≤ ∥Θ∗∥w,z}

Proof: Both ER(Θ∗) and E ′ are induced by scaled (semi)norm balls (i.e., ΩR and Ωw,z) centered
at −Θ∗, and note that

Θ∗
M1

= Θ∗ , Θ∗
M2

= 0 .

Thus we obtain

∥Θ∗∥w,z = ∥Θ∗
M1

∥w =
r∑

i=1

σ∗
i θ

∗
i = ⟨σ∗, θ∗⟩ = R(Θ∗) ,

which indicates that the two balls have the same radius. Hence we only need to show that ∥ · ∥w,z ≤
R(·). For any ∆ ∈ Rd×p, assume that the SVD of ∆M1 and ∆M2 are given by ∆M1 = U1Σ1V

T
1

and ∆M2 = U2Σ2V
T
2 . The corresponding vectors of singular values are in the form of σ′ =

[σ′
1, σ

′
2, . . . , σ

′
r, 0, . . . , 0]

T , σ′′ = [σ′′
1 , σ

′′
2 , . . . , σ

′′
d−r, 0, . . . , 0]

T ∈ Rd, as rank(∆M1) ≤ r and
rank(∆M2) ≤ d− r. Then we have

∥∆∥w,z = ∥∆M1
∥w + ∥∆M2

∥z = ⟨σ′, w⟩+ ⟨σ′′, z⟩ =
⟨
θ∗,

[
σ′
1:r

σ′′
1:d−r

]⟩
= ⟨⟨Θ,∆⟩⟩ ,

where Θ = U1 Diag(θ∗1:r)V1 + U2 Diag(θ∗r+1:n)V2. From this construction, we can see that θ∗ are
the singular values of Θ, thus R∗(Θ) ≤ 1. It follows that

⟨⟨Θ,∆⟩⟩ ≤ max
R∗(Z)≤1

⟨⟨Z,∆⟩⟩ = R(∆) ,

which completes the proof.

3 Proof of Theorem 3

Statement of Theorem: Assume there exist η1 and η2 such that the symmetric gauge f associated
with R(·) satisfies

f(δ) ≤ max {η1∥δ∥1, η2∥δ∥2} (S.5)
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for any δ ∈ Rd. Then given a rank-r Θ∗, the restricted compatibility constant ΨR(Θ
∗) can be upper

bounded by
ΨR(Θ

∗) ≤ 2Φf (r) + max
{
η2, η1(1 + ρ)

√
r
}
, (S.6)

where Φf (r) = sup∥δ∥0≤r
f(δ)
∥δ∥2

is called sparse compatibility constant.

Proof: Under the setting of Lemma 2, as Θ∗ ∈ M1, we have

∥∆+Θ∗∥w,z ≤ ∥Θ∗∥w,z =⇒ ∥∆M1 +Θ∗∥w + ∥∆M2∥z ≤ ∥Θ∗∥w =⇒
−∥∆M1∥w + ∥Θ∗∥w + ∥∆M2∥z ≤ ∥Θ∗∥w =⇒ ∥∆M2∥z ≤ ∥∆M1∥w .

As the set {∆ | ∥∆M2∥z ≤ ∥∆M1∥w} itself is a cone, we obtain

E ′ ⊆ {∆ | ∥∆M2∥z ≤ ∥∆M1∥w}

Define M⊥ as the orthogonal complement of M1 ⊕M2. By the definition and Lemma 2, we have

ΨR(Θ
∗) = sup

∆∈ER(Θ∗)

R(∆)

∥∆∥F
≤ sup

∆∈E′

R(∆)

∥∆∥F
≤ sup

∥∆M2
∥z≤∥∆M1

∥w

R(∆)

∥∆∥F

≤ sup
∥∆M2∥z≤∥∆M1∥w

R(∆M⊥) +R(∆M1 +∆M2)

∥∆∥F

≤ sup
∆∈M⊥

R(∆)

∥∆∥F
+ sup

∥∆M2
∥tr

∥∆M1
∥tr

≤ρ

R(∆M1 +∆M2)

∥∆∥F

It is not difficult to see that any ∆ ∈ M⊥ has rank at most 2r, thus

sup
∆∈M⊥

R(∆)

∥∆∥F
= sup

∆∈M⊥

f(σ(∆))

∥σ(∆)∥2
≤ sup

∥δ∥0≤2r

f(δ)

∥δ∥2
≤ 2 sup

∥δ∥0≤r

f(δ)

∥δ∥2
= 2Φf (r) .

Using (S.5) and ∥∆M1 +∆M2∥F ≤ ∥∆∥F , we have

sup
∥∆M2

∥tr
∥∆M1

∥tr
≤ρ

R(∆M1 +∆M2)

∥∆∥F
≤ sup

∥∆M2
∥tr

∥∆M1
∥tr

≤ρ

max {η2∥∆∥F , η1∥∆M1 +∆M2∥tr}
∥∆∥F

≤ max

{
η2, sup

∆∈M1

η1(1 + ρ)∥∆∥tr
∥∆∥F

}
≤ max

{
η2, η1(1 + ρ)

√
r
}
,

where the last inequality uses the fact that any ∆ ∈ M1 is at most rank-r, and ∥δ∥1 ≤
√
r∥δ∥2 for

any r-sparse vector δ. Combining all the inequalities, we complete the proof.

4 Properties of Gaussian Random Matrix

To facilitate the computation of Gaussian width, especially the proof of Theorem 6, we will use some
properties specific to the Gaussian random matrix G ∈ Rd×p, which are summarized as follows. The
symbol “∼” means “has the same distribution as”.

Property 1: Given an m-dimensional subspace M ⊆ Rd×p spanned by orthonormal basis
U1, . . . , Um,

GM ∼
m∑
i=1

giUi,

where gi’s are i.i.d. standard Gaussian random variables. Moreover, E
[
∥GM∥2F

]
= m.

Proof: Given the orthonormal basis U1, . . . , Um of subspace M, GM can be written as

GM =
m∑
i=1

⟨⟨G,Ui⟩⟩ · Ui

3



Since ∥U1∥F = . . . = ∥Um∥F = 1, each ⟨⟨G,Ui⟩⟩ is standard Gaussian. Moreover, as U1, . . . , Um

are orthogonal, ⟨⟨G,Ui⟩⟩ are independent of each other.

Property 2: GM1 and GM2 are independent if M1,M2 ⊆ Rd×p are orthogonal subspaces.

Proof: Suppose that the orthonormal bases of M1,M2 are given by U1, . . . , Um1 and V1, . . . , Vm2

respectively. Using Property 1 above, GM1 and GM2 can be written as

GM1 =

m1∑
i=1

⟨⟨G,Ui⟩⟩ · Ui ∼
m1∑
i=1

giUi ,

GM2 =

m2∑
i=1

⟨⟨G,Vi⟩⟩ · Vi ∼
m2∑
i=1

hiVi ,

where g1, . . . , gm1 and h1, . . . , hm2 are all standard Gaussian. As M1,M2 ⊆ Rd×p are orthogonal,
U1, . . . , Um1

and V1, . . . , Vm2
are orthogonal to each other as well, which implies that g1, . . . , gm1

and h1, . . . , hm2 are all independent. Therefore GM1 and GM2 are independent.

Property 3: Given a subspace

M = {Θ ∈ Rd×p | colsp(Θ) ⊆ U , rowsp(Θ) ⊆ V} ,

where U ⊆ Rd, V ⊆ Rp are two subspaces of dimension m1 and m2 respectively, then ∥GM∥op
satisfies

∥GM∥op ∼ ∥G′∥op ,

where G′ is an m1 ×m2 matrix with i.i.d. standard Gaussian entries.

Proof: Suppose that the orthonormal bases for U and V are U = [u1, . . . , um1 ] and V =
[v1, . . . , vm2 ] respectively, and U⊥ and V⊥ denote the orthonormal bases for their orthogonal com-
plement. It is easy to see that the orthonormal basis for M can be given by {uiv

T
j | 1 ≤ i ≤

m1, 1 ≤ j ≤ m2}. Using Property 1, we have

GM ∼
m1∑
i=1

m2∑
j=1

g′ijuiv
T
j = UG′V = [U,U⊥] ·

[
G′ 0m1×(p−m2)

0(d−m1)×m2
0(d−m1)×(p−m2)

]
·
[

V T

V T
⊥

]
where G′ is a m1 × m2 standard Gaussian random matrix. Note that both [U,U⊥] ∈ Rd×d and
[V, V⊥] ∈ Rp×p are unitary matrices, because they form the orthonormal bases for Rd and Rp

respectively. If we denote
[

G′ 0
0 0

]
by W , then ∥GM∥op = ∥W∥op as spectral norm is unitarily

invariant. Further, if the SVD of G′ is G′ = U1Σ1V
T
1 , where U1 ∈ Rm1×m1 , Σ1 ∈ Rm1×m2 and

V1 ∈ Rm2×m2 , then the SVD of W is given by

W =

[
U1 0m1×(d−m1)

0(d−m1)×m1
U2

] [
Σ1 0m1×(p−m2)

0(d−m1)×m2
0(d−m1)×(p−m2)

] [
V T
1 0m2×(p−m2)

0(p−m2)×m2
V T
2

]
,

where U2 ∈ R(d−m1)×(d−m1) and V2 ∈ R(p−m2)×(p−m2) are arbitrary unitary matrices. From
the equation above, we can see that W and G′ share the same singular values, thus ∥GM∥op =
∥W∥op = ∥G′∥op.

Property 4: The operator norm ∥G∥op satisfies

P
(
∥G∥op ≥

√
d+

√
p+ ϵ

)
≤ exp

(
−ϵ2

2

)
, (S.7)

E [∥G∥op] ≤
√
d+

√
p , (S.8)

E
[
∥G∥2op

]
≤
(√

d+
√
p
)2

+ 2 . (S.9)
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(S.7) and (S.8) are the classical results on the extreme singular value of Gaussian random matrix
[4, 5] (see Theorem 5.32 and Corollary 5.35 in [5]). (S.9) is used in [2] (see (82) - (87) in [2]).

Property 5: For a subset of unit sphere A ⊆ Sdp−1, A useful inequality [2, 1] is given by the
Gaussian width satisfies

w2(A) ≤ EG[ inf
Z∈N

∥G− Z∥2F ] , (S.10)

in which N = {Z | ⟨⟨Z,∆⟩⟩ ≤ 0 for all ∆ ∈ A} is the polar cone of cone(A).

This property is essentially Proposition 10.2 in [1], and the right-hand side is often called statistical
dimension.

5 Proof of Theorem 6

Statement of Theorem: Under the setting of Lemma 2, let ρ = θ∗max/θ
∗
min and rank(Θ∗) = r. The

Gaussian width w(AR(Θ
∗)) satisfies

w(AR(Θ
∗)) ≤ min

{√
dp,
√
(2ρ2 + 1) (d+ p− r) r

}
. (S.11)

Proof: For simplicity, we use A as shorthand for AR(Θ
∗). Let θ∗ be any subgradient of f(·) at

σ∗, i.e., θ∗ ∈ ∂f(σ∗), and Γ = U Diag(θ∗1:r)V . We define

D = {W | W ∈ M2, σ(W ) ≼ z} , K = {Γ +W | W ∈ D} ,

where the symbol “≼” means “elementwise less than or equal”. It is not difficult to see that K is
a subset of ∂R(Θ∗), as any Z ∈ K satisfies R∗(Z) = f∗(σ(Z)) ≤ f∗(θ∗) = 1 and ⟨⟨Z,Θ∗⟩⟩ =
⟨σ(Z), σ∗⟩ = ⟨θ∗1:r, σ∗

1:r⟩ = f(σ∗) = R(Θ∗). Hence we have

cone(K) ⊂ cone{∂R(Θ∗)} = N ,

where N is the polar cone of ER(Θ∗), and the equality follows from the Theorem 23.7 of [3]. We de-
fine the subspace M⊥ as the orthogonal complement of M1⊕M2. For the sake of convenience, we
denote by G1 (G2, G⊥) the orthogonal projection of G onto M1 (M2, M⊥), and denote cone(K)
by C. Using (S.10), we obtain

w(A)2 ≤ E
[
inf
Z∈N

∥G− Z∥2F
]
≤ E

[
inf
Z∈C

∥G1 − Z1∥2F + ∥G2 − Z2∥2F + ∥G⊥ − Z⊥∥2F
]

= E
[

inf
t≥0, W∈tD

∥G1 − tΓ∥2F + ∥G2 −W∥2F
]
+ E

[
∥G⊥∥2F

]
.

(S.12)

To further bound the expectations, we let t0 = ∥G2∥op/θ∗min, which is a random quantity depending
on G. Therefore, we have

E
[

inf
t≥0, W∈tD

∥G1 − tΓ∥2F + ∥G2 −W∥2F
]
≤ E

[
∥G1 − t0Γ∥2F

]
+ E

[
inf

W∈t0D
∥G2 −W∥2F

]
= E

[
∥G1∥2F

]
+ 2E [⟨⟨G1, t0Γ⟩⟩] + ∥θ∗1:r∥22 · E

[
t20
]
+ 0

= r2 + 0 + E
[
∥G2∥2op

]
· ∥θ∗1:r∥22/θ∗2min

≤ r2 + ((
√
d− r +

√
p− r)2 + 2) · ∥θ∗1:r∥22/θ∗2min

≤ r2 + 2ρ2r (d+ p− 2r) ,
(S.13)

where the second equality uses Property 1 and 2 in Section 4, and the second inequality fol-
lows from Property 3 and 4. Since M⊥ is a r(d + p − 2r)-dimensional subspace, by Prop-
erty 1 we have E

[
∥G⊥∥2F

]
= r(d + p − 2r). Combining it with (S.12) and (S.13), we have

w(A) ≤
√
(2ρ2 + 1) (d+ p− r) r. On the other hand, as A ⊆ Sdp−1, we always have w(A) ≤

E [∥G∥F ] ≤
√
E [∥G∥2F ] =

√
dp. We finish the proof by combining the two bounds for w(A).
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6 Proof of Theorem 8

Statement of Theorem: Suppose that the symmetric gauge f associated with R(·) satisfies f(·) ≥
ν∥ · ∥1. Then the Gaussian width w(ΩR) is upper bounded by

w(ΩR) ≤
√
d+

√
p

ν
(S.14)

Proof: As f(·) ≥ ν∥ · ∥1, we have

R(·) ≥ ν∥ · ∥tr =⇒ ΩR ⊆ Ων∥·∥tr
.

Hence it follows that

w (ΩR) ≤ w
(
Ων∥·∥tr

)
=

w
(
Ω∥·∥tr

)
ν

=
E∥G∥op

ν
≤

√
d+

√
p

ν
,

where the last inequality follows from the Property 4 of Gaussian random matrix.
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