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1 Pseudocode of Stochastic Gradient Richardson-Romberg Langevin
Dynamics

In this section, we provide a pseudocode of SGRRLD with fixed step size in Algorithm 1 and a
pseudocode of SGRRLD with decreasing step size in Algorithm 2.

Algorithm 1: Stochastic Gradient Richardson-Romberg Langevin Dynamics with fixed step size.

Input :Random number seed S, Step size γ, Initial state θ(γ/2)
0 = θ

(γ)
0 = θ0, Test function f(·),

Number of iterations K, a probability distribution L of an unbiased estimators ∇Ũ for∇U
Output : π̂R

K(f) ≈
∫
f(θ)π(dθ)

// Run two chains in parallel with consistent Brownian increments
Chain 1:
for k = 1, · · · ,K do

Set random number generator seed to S
Draw Z

(γ/2)
2k−1 ∼ N (0, Id), Z(γ/2)

2k ∼ N (0, Id)

Set Z(γ)
k = (Z

(γ/2)
2k−1 + Z

(γ/2)
2k )/

√
2

Draw∇Ũ (γ)
k from L

θ
(γ)
k = θ

(γ)
k−1 − γ∇Ũ

(γ)
k (θ

(γ)
k−1) +

√
2γZ

(γ)
k

Compute π̂(γ)
K (f) = 1

K

∑K
k=1 f(θ

(γ)
k )

Chain 2:
for k = 1, · · · , 2K do

Set random number generator seed to S
Draw Z

(γ/2)
k ∼ N (0, Id)

Draw∇Ũ (γ/2)
k from L

θ
(γ/2)
k = θ

(γ/2)
k−1 −

γ
2∇Ũ

(γ/2)
k (θ

(γ/2)
k−1 )

+
√
γZ

(γ/2)
k

Compute π̂(γ/2)
K (f) = 1

2K

∑2K
k=1 f(θ

(γ/2)
k )

// RR extrapolation.

π̂R
K(f) = 2π̂

(γ/2)
K (f)− π̂(γ)

K (f)
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Algorithm 2: Stochastic Gradient Richardson-Romberg Langevin Dynamics with a sequence of step
sizes.

Input :Random number seed S, Sequence of step sizes (γk)k≥1, Initial state θ(γ/2)
0 = θ

(γ)
0 = θ0,

Test function f(·), Number of iterations K, a probability distribution L of an unbiased
estimators∇Ũ for ∇U

Output : π̂R
K(f) ≈

∫
f(θ)π(dθ)

// Run two chains in parallel with consistent Brownian increments
Chain 1:
for k = 1, · · · ,K do

Set random number generator seed to S
Draw Z

(γ/2)
2k−1 ∼ N (0, Id), Z(γ/2)

2k ∼ N (0, Id)

Set Z(γ)
k = (Z

(γ/2)
2k−1 + Z

(γ/2)
2k )/

√
2

Draw∇Ũ (γ)
k from L

θ
(γ)
k = θ

(γ)
k−1 − γk∇Ũ

(γ)
k (θ

(γ)
k−1) +

√
2γkZ

(γ)
k

π̂
(γ)
K (f) = 1

ΓK

∑K
k=1 γk+1f(θ

(γ)
k )

Chain 2:
for k = 1, · · · , 2K do

Set random number generator seed to S
Draw Z

(γ/2)
k ∼ N (0, Id)

Draw∇Ũ (γ/2)
k from L

θ
(γ/2)
k = θ

(γ/2)
k−1 −

γdk/2e
2 ∇Ũ (γ/2)

k (θ
(γ/2)
k−1 )

+√γdk/2eZ
(γ/2)
k

π̂
(γ/2)
K (f) = 1

2ΓK

∑2K
k=1 γdk/2ef(θ

(γ/2)
k )

// RR extrapolation.

π̂R
K(f) = 2π̂

(γ/2)
K (f)− π̂(γ)

K (f)

2 Assumptions for the Theoretical Analysis

Notations: For M ∈ Rd×d, denote by M � 0 if and only if M is a positive definite matrix, and
M � 0 if and only if M is a nonnegative definite matrix. Let E and F be two vector spaces, denote by
E ⊗F the tensor product of E and F . For all x ∈ E and y ∈ F denote by x⊗ y ∈ E ⊗F the tensor
product of x and y. Let n ∈ N∗, denote by Cn(Rd) the set of n times continuously differentiable
functions from Rd to R. Let f ∈ Cn(Rd), denote by Dnf the nth differential of f . Let f ∈ C1(Rd),
denote by ∇f the gradient of f . Let f ∈ C2(Rd), denote by ∆f the Laplacian of f . Denote by
b·c and d·e the floor and ceiling function respectively. For a, b ∈ R, denote by a ∨ b and a ∧ b the
maximum and the minimum of a and b respectively.

In this section, we give the full statement of Theorem 1 and Theorem 2, the appropriate conditions
which imply these results, and their proof. We begin with two conditions which are common to both
Theorems. The first following assumption ensures the stability of the Markov chain produced by
SGLD (2) and the diffusion process (1).
A1. There exists a Lyapunov function V ∈ C2(Rd), V ≥ 1 with bounded second derivative such
that lim‖θ‖→+∞ V (θ) = +∞ and satisfying:

(i) Let ∇Ũ be drawn from L, almost surely θ 7→ ∇Ũ(θ) ∈ C5(Rd,Rd) and
∥∥∥∇Ũ∥∥∥2

≤ V .

(ii) There exist a ≥ 0 and b > 0 such that for all θ ∈ Rd, ‖∇V (θ)‖2 + ‖∇U(θ)‖2 ≤ bV (θ) and
〈∇V (θ),∇U(θ)〉 ≥ aV (θ)− b.

In a Bayesian inference context where U is the opposite log density of a posterior distribution and
is of the form U(θ) = −(

∑N
n=1 log p(xi|θ) + log p(θ)), note that A1 holds with the Lyapunov

function V (θ) = ‖θ‖β + 1 for β ∈ (1, 2], if there exist C1 ≥ 0, C2 > 0 such that for all θ ∈ Rd,
〈∇U(θ), θ〉 ≥ C1 ‖x‖β − C2,

sup
i∈{1,··· ,N}

{‖∇θU1(xi, θ)‖2}+ ‖∇U2(θ)‖2 ≤ C1(‖θ‖β + 1) ,

and ∇Ũ is defined by (3).

Under A1-(ii), [1, Theorem 2.2] implies that the process (ϑt)t≥0 is exp(cV )-uniformly ergodic, for a
small constant c > 0. Therefore, we have that for all function f : Rd → R, supx∈Rd |f/V s| <∞,
for s ≥ 0, π(f) < +∞.
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We now make some assumptions on the regularity of the solution of the Poisson equation associated
with (1). Define the generator associated with (1) by for all function h ∈ C2(Rd) and all θ ∈ Rd,

Ah(θ) = −〈∇U(θ),∇h(θ)〉+ ∆h(θ) . (S1)

A2 (q). Let q ∈ N and s ≥ 0. For all f ∈ Cq(Rd) such that for all θ ∈ Rd and i ∈ {0, · · · , q},∥∥Dif(θ)
∥∥ ≤ CfV

s(θ), for Cf ≥ 0, there exists a unique solution g ∈ Cq(Rd) to the Poisson
equation Ag = f − π(f) satisfying for all θ ∈ Rd, i ∈ {0, · · · , q},

∥∥Dig(θ)
∥∥ ≤ CgV

r(θ) for
Cg, r ≥ 0.

Let q ∈ N. [2, Theorem 2] shows that if U ∈ Cq+2(Rd) and there exist β ∈ (1, 2], C ≥ 0 such that
〈∇U(x), x〉 ≥ C(‖x‖β − 1), then A2(q) holds with V = 1 + ‖·‖.

3 Asymptotic Analysis of SGRRLD

3.1 Proof of Theorem 1

We give in this section, the full statement and the proof of Theorem 1. Before that, we make some
preliminary observations. Let (γk)k≥1 be a sequence of step sizes. Recall that for all K ≥ 1 and
n ∈ N

Γ
(n)
K =

K∑
k=1

γnk+1 , ΓK = Γ
(1)
K .

We are interested here in the convergence of π̂R
K(f) for a function f : Rd → R and with a sequence

of step sizes which satisfies the following assumption.
A 3. The sequence of step sizes (γk)k≥1 is nonincreasing and satisfies limk→+∞ γk = 0,
limk→+∞ Γk = +∞.

Then under A1-A3, a straightforward application of [3, Theorem 7] implies that almost surely
limK→+∞ π̂R

K(f) = π(f) as soon as f : Rd → R is a continuous function and |f/V s| is upper
bounded for some exponent s ≥ 0. under A1, [3, Lemma 5] shows that for all s > 0, if E[V s(θ0)] <
+∞, then supk≥0 E[V s(θk)] < +∞. This upper bound will be used many times in the proofs.

To show Theorem 1, the duplicated diffusion associated with (1) needs to be considered. It is the
SDE on R2d defined by: {

dXt = −∇U(Xt)dt+
√

2dB
(1)
t

dYt = −∇U(Yt)dt+
√

2dB
(2)
t ,

(S2)

where (B
(1)
t , B

(2)
t )t≥0 is a 2d dimensional Brownian motion, (B

(1)
t )t≥0 and (B

(2)
t )t≥0 are d-

dimensional standard Brownian motion and there exists a d-dimensional standard Brownian motion
(B̃t)t≥0 independent of (B

(1)
t )t≥0 such that

B
(2)
t = Σ>B

(1)
t +

(
Id−Σ>Σ

)1/2
B̃t , (S3)

where Σ ∈ Rd×d is such that Id−Σ>Σ is a positive definite matrix. Under A1, ∇U is Lipschitz,
therefore (S2) has a unique strong solution (Xt, Yt)t≥0. Note that if a probability measure of (S2) is
invariant for (Xt, Yt)t≥0 then each of its marginal distributions has to be equal to π. A significant
point in the analysis of π̂R

K is the following assumption.
A4. (Xt, Yt)t≥0 has a unique invariant measure Π.

When Σ is invertible, the generator associated with the SDE (S2) is uniformly elliptic and A4 is a
direct consequence of A1, see [4]. In the general case, the generator of (S2) can be hypoelliptic and
A4 can be more intricate. However, weak assumptions on U which guarantee that A4 holds can be
found in [5], a particular case being when U is strictly convex [5, Corollary 3.2 (a)].

A 4 is necessary in the proof because we use that the two sequences (θ
(γ/2)
2k , θ

(γ)
k )k≥0 and

(θ
(γ/2)
2k−1 , θ

(γ)
k )k≥0 can be viewed as two chains produced by SGLD1, started at (θ0, θ0) and (θ

(γ/2)
1 , θ0)

1Note that they are not produced by a standard SGLD but the analysis is the same.
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respectively, applied to the SDE (S2). Therefore if A1-A3-A4 hold, adaptations of the proof of [6,
Theorem 1] implies that for every continuous function h : Rd × Rd → R, |h| ≤ CV s for some
C, s ≥ 0, almost surely we have

lim
K→+∞

Γ−1
K

K∑
k=0

γk+1h(θ
(γ/2)
2k , θ

(γ)
k ) =

∫
Rd×Rd

h(x, y)Π(dx, dy) , (S4)

and the same statement holds for the chain (θ
(γ/2)
2k−1 , θ

(γ)
k )k≥1.

Before giving the full statement of Theorem 1, we need to introduce some notations and definitions.
Define for all functions h1 ∈ C4(Rd) and h2 ∈ C6(Rd), G(2)h1 and G(3)h2 for all θ ∈ Rd by

G(2)h1(θ) =
1

2
(∆2(h1)(θ) + E[D2h1(θ){[∇Ũ(θ)]⊗2}])−

d∑
i=1

D3h1(θ)
{
∇U(θ)⊗ e⊗2

i

}
, (S5)

G(3)h2(θ) = (6!)−1E
[
D6(h2)(θ)

{
Z⊗6

}]
− (3!)−1E

[
D5h2(θ)

{
∇U(θ)⊗ Z⊗4

}]
− (1/3)E[D3h1(θ){[∇Ũ(θ)]⊗3}] + 3

d∑
i=1

E[D4h1(θ){[∇Ũ(θ)]⊗2 ⊗ e⊗2
i }] , (S6)

where {ei}di=1 stands for the canonical basis of Rd. Assume that A2(9) holds and let f ∈ C9(Rd)
satisfying for all θ ∈ Rd and i ∈ {0, · · · , q},

∥∥Dif(θ)
∥∥ ≤ CfV

s(θ), for Cf ≥ 0. Let g ∈
C9(Rd) be the solution of the Poisson equation Ag = f − π(f), associated with f . Under A
1, G(2)g ∈ C5(Rd) and there exists C, r > 0 such that for all θ ∈ Rd and i ∈ {0, · · · , 5},
‖Di{G(2)g}(θ)‖ ≤ CV r(θ). Therefore using A2 again, there exists a unique solution to the Poisson
equationAG = G(2)g−π(G(2)g), associated with G(2)g, denoted byG, such that there exist C̃, r̃ > 0,
for all θ ∈ Rd and i ∈ {0, · · · , 5}, ‖DiG(θ)‖ ≤ C̃V r̃(θ).

Theorem S1. Let s ≥ 0 and f ∈ C9(Rd) be a function satisfying for all θ ∈ Rd and i ∈ {0, · · · , q},∥∥Dif(θ)
∥∥ ≤ CfV

s(θ), for Cf ≥ 0. Assume A1-A2(9)-A3-A4. Let (θ
(γ)
k , θ

(γ/2)
k )k≥0 be defined by

(4)- (5), started at θ0 ∈ Rd and assume that the relation (8) holds for Σ ∈ Rd×d.

a) If limK→+∞ Γ
(3)
K /Γ

1/2
K = 0, then Γ

1/2
K (π̂R

K(f)− π(f)) converges in law as K goes to infinity
to a zero-mean Gaussian random variable with variance σ2

R defined by

σ2
R = 10

∫
Rd

‖∇g(x)‖2 π(dx)− 8

∫
Rd×Rd

〈∇g(x),Σ∇g(y)〉Π(dx, dy) . (S7)

b) If limK→+∞ Γ
(3)
K /Γ

1/2
K = κ ∈ (0,+∞), then Γ

1/2
K (π̂R

K(f)− π(f)) converges in law as K goes
to infinity to a Gaussian random variable with variance σ2

R and mean κµR where σR is defined in
(S7),

µR =

∫
Rd

{
G(2)G(θ̃) + G(3)g(θ̃)

}
π(dθ̃) , (S8)

g is the solution of the Poisson equation associated with f , G the one associated with G(2)g, G(2)G
and G(3)g are defined in (S5) and (S6), respectively.

c) If limK→+∞ Γ
(3)
K /
√

ΓK = +∞, then (ΓK/Γ
(3)
k )(π̂R

K(f) − π(f)) converges in probability as
K goes to infinity to µR given in (S8).

Before giving the proof of Theorem S1, we make some remarks on the asymptotic variance σR

defined by (S7). Since necessarily the two marginals of Π are equal to π, the Cauchy-Schwarz
inequality and the condition Id−Σ>Σ is definite positive imply that σ2

R ≥ 2π(‖g‖2). On the other
hand, when Σ = Id, this lower bound is reached, which shows the benefit of choosing consistent
Brownian increments. It is also notable that in this case the asymptotic variance is the same as in the
case of SGLD.
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Proof of Theorem S1. Since under A2(9), g ∈ C9(Rd), by a 7th order Taylor expansion, denoting
by ∆θγk = θ

(γ)
k+1 − θ

(γ)
k we have for all k ≥ 0 there exists s(γ)

k ∈ [0, 1] such that

g(θ
(γ)
k+1) = g(θ

(γ)
k ) +

6∑
i=1

(i!)−1Dig(θ
(γ)
k )

{
∆θ

(γ)
k

}⊗7

+ (6!)−1D7g
(
θ

(γ)
k + s

(γ)
k θ

(γ)
k

){
∆θ

(γ)
k

}⊗7

= g(θ
(γ)
k+1) +

6∑
i=1

(i!)−1
i∑

j=0

(
i

j

)
2(i−j)/2γ

(i+j)/2
k+1 Dig(θ

(γ)
k+1)

{
−[∇Ũ (γ)

k+1(θ
(γ)
k )]⊗j ⊗ [Z

(γ)
k+1]⊗(i−j)

}

+ (6!)−1D7g
(
θ

(γ)
k + s

(γ)
k θ

(γ)
k

){
∆θ

(γ)
k

}⊗7

.

After a change of variables and rearranging the terms, we get

g(θ
(γ)
k+1) = g(θ

(γ)
k ) +

12∑
i=1

γ
i/2
k+1D

(i)
k +D7g(θ

(γ)
k + s

(γ)
k ∆θ

(γ)
k )

{
∆θ

(γ)
k

}⊗7

,

where

D(i)
k =

bi/2c∑
j=0

(
i− j
j

)
2(i−2j)/2Di−jg(θ

(γ)
k )

{
[−∇Ũ (γ)

k+1(θ
(γ)
k )]⊗j ⊗ [Z

(γ)
k+1]⊗(i−2j)

}
.

Let (F (γ)
i )i≥1 be the filtration generated by the sequence

(Z
(γ/2)
2i−1 , Z

(γ/2)
2i , Z

(γ)
i ,∇Ũ (γ/2)

2i−1 ,∇Ũ
(γ/2)
2i ,∇Ũ (γ)

i )i≥1 and θ
(γ/2)
0 . Introducing the conditional

expectation of D(i)
k for all i ∈ {1, · · · , 12}, we have

g(θ
(γ)
k+1) = g(θ

(γ)
k ) + 21/2γ

1/2
k+1Dg(θ

(γ)
k )[Z

(γ)
k+1] + γk+1Ag(θ

(γ)
k ) + γ2

k+1G(2)g(θ
(γ)
k )

+ γ3
k+1G(3)g(θ

(γ)
k ) +

12∑
i=2

γ
i/2
k+1E

(i)
k + (6!)−1D7g

(
θ

(γ)
k + s

(γ)
k θ

(γ)
k

){
∆θ

(γ)
k

}⊗7

,

where Ag, G(2)g, G(3)g are defined in (S1), (S5), (S6) respectively and E(i)
k = D(i)

k − E[D(i)
k |Fk].

Therefore since Ag = f − π(f), we have for all K ≥ 1,

K∑
k=1

γk+1

{
f(θ

(γ)
k )− π(f)

}
= g(θ

(γ)
k+1)−g(θ

(γ)
1 )−

K∑
k=1

21/2γ
1/2
k+1Dg(θ

(γ)
k )Z

(γ)
k+1−

K∑
k=1

γ2
k+1G(2)g(θ

(γ)
k )

−
K∑
k=1

γ3
k+1G(3)g(θ

(γ)
k )−

K∑
k=1

12∑
i=2

γ
i/2
k+1E

(i)
k − (6!)−1D7g

(
θ

(γ)
k + s

(γ)
k θ

(γ)
k

){
∆θ

(γ)
k

}⊗7

. (S9)

Similarly for (θ(γ/2))k≥0, but conditioning this time by the filtration (F (γ/2)
i )i≥0 generated by the

sequence (Z
(γ/2)
i ,∇Ũ (γ/2)

i )i≥1 and θ(γ/2)
0 , we have for all k ≥ 1,

g(θ
(γ/2)
k+1 ) = g(θ

(γ/2)
k ) +γ

1/2
k+1Dg(θ

(γ/2)
k )Z

(γ/2)
k+1 + (γk+1)(Ag(θ

(γ/2)
k )) + (γ2

k+1/4)G(2)g(θ
(γ/2)
k )

+(γ3
k+1/8)G(3)g(θ

(γ/2)
k )+

12∑
i=1

(γk+1/2)i/2K(i)
k +(6!)−1D7g

(
θ

(γ/2)
k + s

(γ/2)
k ∆θ

(γ/2)
k+1

){
∆θ

(γ/2)
k+1

}⊗7

.

where s(γ/2)
k ∈ [0, 1], K(i)

k = H(i)
k − E[H(i)

k |F
(γ/2)
i ] and

H(i)
k =

bi/2c∑
j=0

(
i− j
j

)
2(i−2j)/2Di−jg(θ

(γ)
k )

{
−[∇Ũ (γ)

k+1(θ
(γ)
k )]⊗j ⊗ [Z

(γ)
k+1]⊗(i−2j)

}
.
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This equality implies that for all K ≥ 1,

2K∑
k=1

γk+1

{
f(θ

(γ/2)
k )− π(f)

}
= g(θ

(γ/2)
2K+1)− g(θ

(γ/2)
1 )−

2K∑
k=1

γ
1/2
k+1Dg(θ

(γ/2)
k )Z

(γ/2)
k+1 (S10)

−
2K∑
k=1

{
(γ2
k+1/4)G(2)g(θ

(γ/2)
k ) + (γ3

k+1/8)G(3)g(θ
(γ/2)
k ) +

12∑
i=2

(γk+1/2)i/2E(i)
k

}

− (6!)−1D7g
(
θ

(γ/2)
k + s

(γ/2)
k ∆θ

(γ/2)
k

){
∆θ

(γ/2)
k

}⊗7

.

Combining (S9) and (S10), we get

ΓK
{
π̂R
K(f)− π(f)

}
= 2(g(θ

(γ/2)
2K+1)− g(θ

(γ/2)
1 ))− g(θ

(γ)
K+1)− g(θ

(γ)
1 )

−
K∑
k=1

{
γ

1/2
k+1Mk + γ2

k+1B
(2)
k + γ3

k+1B
(3)
k +Nk +Rk

}
, (S11)

where

Mk = 2
{
Dg(θ

(γ/2)
2k−1)[Z

(γ/2)
2k ] +Dg(θ

(γ/2)
2k )[Z

(γ/2)
2k+1 ]

}
− 21/2Dg(θ

(γ)
k )[Z

(γ)
k+1] (S12)

B(i)
k = 21−i

{
G(i)g(θ

(γ/2)
2k−1) + G(i)g(θ

(γ/2)
2k )

}
− G(i)g(θ

(γ)
k ) for i = 2, 3 (S13)

Nk =

6∑
i=2

{
2(γk+1/2)i/2(K(i)

2k−1 +K(i)
2k )− γi/2k+1E

(i)
k

}
(S14)

Rk =

12∑
i=7

{
2(γk+1/2)i/2(K(i)

2k−1 +K(i)
2k )− γi/2k+1E

(i)
k

}
−D7g(θ

(γ)
k + s

(γ)
k ∆θ

(γ)
k )

{
∆θ

(γ)
k

}⊗7

+ 2(6!)−1D7g(θ
(γ/2)
2k−1 + s

(γ/2)
2k−1∆θ

(γ/2)
2k−1)

{
∆θ

(γ/2)
2k−1

}⊗7

+ 2(6!)−1D7g(θ
(γ/2)
2k + s

(γ/2)
2k ∆θ

(γ/2)
2k )

{
∆θ

(γ/2)
2k

}⊗7

. (S15)

First under A2(9), g ≤ CgV r, therefore using A1 and A3 and [3, Theorem 7] we get

lim
K→+∞

Γ
−1/2
K E

[∣∣∣g(θ
(γ/2)
2K+1)− g(θ

(γ/2)
1 )

∣∣∣] = 0 ,

which implies that Γ
−1/2
K (g(θ

(γ/2)
2K+1)− g(θ

(γ/2)
1 )) goes to 0 in probability. Using the same reasoning,

we have that Γ
−1/2
K (g(θ

(γ)
K+1)− g(θ

(γ)
1 )) goes to 0 as well. The proof then consists in controlling the

weighted sums of each term appearing in (S11). The two leading contributions are:

1.
∑K
k=1 γk+1Mk is the fluctuation term, which converges in law to a zero-mean Gaussian

random variable if it is scaled by Γ
1/2
K . It is the content of Lemma S2.

2.
∑K
k=1 γ

2
k+1B

(2)
k + γ3

k+1B
(3)
k is the bias term. It is shown in Lemma S3 and b) below that,

divided by Γ
(3)
K , this term converges in probability to a constant. Note that this is the main

difference between the convergence of SGLD and SGRRLD. Indeed, in the case of SGLD
the bias term converges at the rate Γ

(2)
K , see [3, Theorem 8].

As regards to the other terms in (S11), it is shown in Lemma S5 that they are negligible.

Lemma S2. Under the assumptions of Theorem 1, Γ
−1/2
K

∑K
k=1 γ

1/2
k+1Mk converges in law to a

zero-mean Gaussian random variable with variance σ2
R where (Mk)k≥1 and σ2

R are defined in (S12)
and (S7) respectively.
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Proof. Denote by ξk,K = (γk+1/ΓK)1/2Mk for K ≥ 1 and k ∈ {1, · · · ,K}. The proof consists
in applying a CLT for the arrays of (F (γ)

k )k≥0-martingale increments (ξ1,K , · · · , ξk,K)K≥1. By [7,
Corollary 3.1], it is sufficient to show that almost surely

lim
K→+∞

K∑
k=1

E
[
ξ2
k,K

∣∣F (γ)
k−1

]
= σ2

R (S16)

lim
K→+∞

K∑
k=1

E
[
|ξk,K |3

∣∣∣F (γ)
k−1

]
= 0 . (S17)

Let us first show (S16). By definition (S12) of (Mk)k≥1 and (8), for all K ≥ 1, k ∈ {1, · · · ,K},
we have

E
[
ξ2
k,K

∣∣F (γ)
k

]
=
γk+1

ΓK

{
4
∥∥∥Dg(θ

(γ/2)
2k−1)

∥∥∥2

+ 4
∥∥∥Dg(θ

(γ/2)
2k )

∥∥∥2

+ 2
∥∥∥Dg(θ

(γ)
k )
∥∥∥2

4
〈
Dg(θ

(γ/2)
2k−1),ΣDg(θ

(γ)
k )
〉

+ 4
〈
Dg(θ

(γ/2)
2k ),ΣDg(θ

(γ)
k )
〉}

. (S18)

Since (θ
(γ/2)
k )k≥0 is a Markov chain produced by the SGLD applied to (1) with the sequence of

step sizes (ηk)k≥1 defined by η2k−1 = γk/2 and η2k = γk/2, and A1-A2(9)-A3 are assumed, [3,
Theorem 7] can be applied and almost surely

lim
K→+∞

K∑
k=1

(γk+1/ΓK)

{∥∥∥Dg(θ
(γ/2)
2k−1)

∥∥∥2

+
∥∥∥Dg(θ

(γ/2)
2k )

∥∥∥2
}

= 2

∫
Rd

‖Dg(x)‖2 π(dx) . (S19)

The same result can be applied to the sequence (θ
(γ)
k )k≥0 which implies that

lim
K→+∞

K∑
k=1

(γk+1/ΓK)
∥∥∥Dg(θ

(γ)
k )
∥∥∥2

=

∫
Rd

‖Dg(x)‖2 π(dx) . (S20)

For the other terms, by A1-A2(9)-A3 and (S4), we have for i = 0, 1

lim
K→+∞

K∑
k=1

(γk+1/ΓK)
〈
Dg(θ

(γ/2)
2k−i ),ΣDg(θ

(γ)
k )
〉

=

∫
Rd

〈Dg(x),ΣDg(y)〉Π(dx, dy) . (S21)

Combining (S19)-(S20)- (S21) in (S18) shows (S16). We now deal with showing (S17). By Hölder’s
inequality, A2, we have

E
[
|ξk,K |3

∣∣∣F (γ)
k

]
≤ C(γk+1/ΓK)3/2

{∥∥∥Dg(θ
(γ/2)
2k−1)

∥∥∥3

+
∥∥∥Dg(θ

(γ/2)
2k )

∥∥∥3

+
∥∥∥Dg(θ

(γ)
k )
∥∥∥3
}

≤ C(γk+1/ΓK)3/2
{
V 3r(θ

(γ/2)
2k−1) + V 3r(θ

(γ/2)
2k ) + V 3r(θ

(γ)
k )
}
.

By [3, Theorem 7], almost surely,

sup
K≥1

(Γ
(3/2)
K )−1

K+1∑
k=1

γ
3/2
k+1

{
V 3r(θ

(γ/2)
2k−1) + V 3r(θ

(γ/2)
2k ) + V 3r(θ

(γ)
k )
}
< +∞ .

Therefore, using that (γk)k≥1 is nonincreasing, we have almost surely, for all K ≥ 2,

K∑
k=1

E
[
|ξk,K |3

∣∣∣F (γ)
k

]
≤ CΓ

(3/2)
K /Γ

3/2
K ≤ CΓ

−1/2
K ,

which concludes the proof of (S17) since limK→+∞ ΓK = +∞.

Lemma S3. Under the assumptions of Theorem 1, the following statements hold:
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a) If limK→+∞ Γ
(3)
K = +∞. Then in probability,

lim
K→+∞

(Γ
(3)
K+1)−1

K∑
k=1

γ2
k+1B

(2)
k = −(1/2)µ

(2)
R ,

where µ(2)
R = π(G(2)G), and G is the solution of the Poisson equation associated with

G(2)g, AG = G(2)g − π(G(2)g).

b) If limK→+∞ Γ
(3)
K < +∞. Then in probability,

lim
K→+∞

(ΓK)−1/2
K∑
k=1

γ2
k+1B

(2)
k = 0 .

Proof. a) Under A1 and A2, G(2)g is integrable w.r.t. π. Introducing π(G(2)g), we have

(Γ
(3)
K )−1

K∑
k=1

γ2
k+1B

(2)
k = (Γ

(3)
K )−1(A

(1)
K +A

(2)
K ) , (S22)

where

A
(1)
K = 2−1

2K∑
k=1

η2
k+1

{
G(2)g(θ

(γ/2)
k )− π(G(2)g)

}
A

(2)
K =

K∑
k=1

γ2
k+1

{
G(2)g(θ

(γ)
k )− π(G(2)g)

}
,

the sequence (ηk)k≥1 is defined by η2k−1 = γk/2 and η2k = γk/2. As mentioned before the
statement of Theorem S1, using again Under A1 and A2, we verify that G(2)g satisfies A2(5).
Therefore the solution φ(2) of the Poisson equation AG = G(2) − π(G(2)) belongs to C5(Rd)
and there exists r̃ ≥ 0 such that for all i ∈ {1, · · · , 5}, x ∈ Rd,

∥∥DiG(x)
∥∥ ≤ CV r̃(x). There-

fore by an adaptation of the proof of [8, Theorem V.3] for SGLD, we have that in probability
limK→+∞(Γ

(2)
K /Γ

(3)
K )A

(1)
K = µ

(2)
R /2 and limK→+∞(Γ

(2)
K /Γ

(3)
K )A

(2)
K = −µ(2)

R , which concludes
the proof of the first point.

b) The proof of the second point follows the same line and is omitted.

Lemma S4. Under the assumptions of Theorem 1, the following statements hold:

a) If limK→+∞ Γ
(3)
K = +∞. Then almost surely,

lim
K→+∞

(Γ
(3)
K )−1

K∑
k=1

γ3
k+1B

(3)
k = π(G(3)g) .

.

b) If limK→+∞ Γ
(3)
K < +∞. Then almost surely,

lim
K→+∞

(ΓK)−1/2
K∑
k=1

γ3
k+1B

(3)
k = 0 .

Proof. The proof is a straightforward application of [3, Theorem 7] to the sequence of weights
(γ3
k)k≥1, see [3, Remark 3].

Lemma S5. Under the assumption of Theorem 1, the following limit holds in probability

lim
K→+∞

Ξ−1
K

K∑
k=1

{Nk +Rk} = 0 ,

where ΞK = ΓK ∨ Γ
1/2
K .
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Proof. We consider each term appearing in the definition (S14) and (S15) of (Nk)k≥1 and (Rk)k≥0.
Let us deal with the first term of(Nk)k≥1, the proof for the other terms follows the same line and is
omitted. By A1-A2, there exist C, p ≥ 0 such that

Γ−1
K

K+1∑
k=1

γ2
k+1E

[∣∣∣E(2)
k

∣∣∣2] ≤ CΓ−1
K

K+1∑
k=1

γ2
k+1E

[
V p(θ

(γ/2)
k )

]
≤ CΓ−1

K

(
1 +

K∑
k=1

Γ−1
k+1 {γk+1 − γk+2}

)
.

By Kronecker’s lemma, we get

lim
K→+∞

Γ−1
K

K+1∑
k=1

γ2
k+1E

[∣∣∣E(2)
k

∣∣∣2] = 0 .

Since (E(2)
k )k≥1 is a sequence of (F (γ/2)

k+1 )k≥0-martingale increment, it holds that in probability,

lim
K→+∞

Γ
−1/2
K

K+1∑
k=1

γk+1E(2)
k = 0 .

It can be proved in a similar manner that the term involving (K(2)
k )k≥1 converges to 0 as well.

3.2 Discussion on Theorem 1

If (γk)k≥1 is of the form γk = γ1k
−α for α ∈ (0, 1] then for K ≥ 1 large enough, Γ

1/2
K =

O(K(1−α)/2) and Γ
(3)
K = O(K1−3α). By Theorem S1, π̂R(f) converges to π(f) at a rate of

convergence of order Γ
1/2
K ∧ (ΓK/Γ

(3)
K ), which corresponds in this case to O(K−((1−α)/2)∧(2α)).

In the case α = 1/5, then Γ
1/2
K ∼ (5γ1/4)1/2K2/5, Γ

(3)
K ∼ (5γ3

1/2)K2/5, as K goes to infinity.
Therefore, limK→+∞ Γ

(3)
K /Γ

1/2
K = 51/2γ

5/2
1 . By Theorem S1-b), we get that n2/5(π̂R(f) − π)

converges in law to a Gaussian distribution with mean 2γ2
1µR and variance (4/(5γ1))σ2

R. The second
moment of this distribution is 4γ4

1µ
2
R + (4/(5γ1))σ2

R. An easy computation shows that this quantity
is minimal when γ1 = (σ2

R/(20µ2
R))1/5.

4 Non-asymptotic Analysis of SGRRLD

In this section, we give the full statement of Theorem 2 and the conditions which imply this result.
Under the assumption that γk is small enough for large k and A1 we could adapt the proof [3, Lemma
5] to show that for all r > 0, supk≥0 E[V r(θk)] < +∞, but to clarify the presentation we make the
following assumption.

A5. The sequence (γk)k≥1 is nonincreasing, limK→+∞ ΓK = +∞, for some K1 ≥ 1, γK1
≤ 1

and for all r > 0, supk≥0 E[V r(θ
(γ)
k )] < +∞, supk≥0 E[V r(θ

(γ/2)
k )] < +∞.

Theorem S6. Let s ≥ 0 and f ∈ C9(Rd) be a function satisfying for all θ ∈ Rd and i ∈ {0, · · · , q},∥∥Dif(θ)
∥∥ ≤ CfV s(θ), for Cf ≥ 0. Let (θ

(γ)
k , θ

(γ/2)
k )k≥0 be defined by (4)- (5), started at θ0 ∈ Rd.

Assume A1-A2 and A5. Then there exists C ≥ 0 such that for all K ∈ N, K ≥ 1:

BIAS:
∣∣E [π̂R

K(f)− π(f)
]∣∣ ≤ (C/ΓK)

{
m3 Γ

(3)
K + 1

}
MSE: E

[{
π̂R
K(f)− π(f)

}2
]
≤ C{(m3Γ

(3)
K /ΓK)2 + 1/ΓK} ,

where m3 = E[‖∇Ũ1‖3].
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Proof. Proof for the Bias: We use the decomposition given in (S11), which implies that taking the
expectation

ΓK
∣∣E [π̂R

K(f)− π(f)
]∣∣ = E

[
2(g(θ

(γ/2)
2K+1)− g(θ

(γ/2)
1 ))− g(θ

(γ)
K+1)− g(θ

(γ)
1 )
]

−
K∑
k=1

E
[
γ2
k+1B

(2)
k + γ3

k+1B
(3)
k +Rk

]
, (S23)

Using A2(9), A5 we get there exists C ≥ 0,

sup
K≥1

E
[∣∣∣g(θ

(γ/2)
2K+1)− g(θ

(γ/2)
1 ) + g(θ

(γ)
K+1)− g(θ

(γ)
1 )
∣∣∣] < C (S24)

K∑
k=1

γ3
k+1E

[∣∣∣B(3)
k

∣∣∣] ≤ Cm3Γ
(3)
K

K∑
k=1

E [|Rk|] ≤ CΓ
(7/2)
K . (S25)

It remains to bound the terms involving B(2)
k . Introducing the integral of G(2)g w.r.t. π, as it is done

in Lemma S4, the solution of the Poisson equation G associated with G(2)g and using a 5-th order
Taylor expansion of G(θ

(γ)
k+1) at (θ

(γ)
k )k≥0, as done for (S11), we get

K+1∑
k=1

γ2
k+1E

[
G(2)g(θ

(γ)
k )− π(G(2)g)

]
=

K+1∑
k=1

γk+1E
[
G(θ

(γ)
k+1)−G(θ

(γ)
k ) + γ2

k+1A(θ
(γ)
k ) +Rk

]
,

where almost surely A(θ) ≤ CV p(θ) and Rk ≤ Cγ5/2
k+1V

p(θ
(γ)
k ), for C, p ≥ 0. Using again A2(9),

A5 and a summation by parts, we have∣∣∣∣∣
K+1∑
k=1

γ2
k+1E

[
G(2)g(θ

(γ)
k )− π(G(2)g)

]∣∣∣∣∣ ≤ C(1 + Γ
(3)
K ) . (S26)

Similarly, we show that∣∣∣∣∣
K+1∑
k=1

γ2
k+1E

[
G(2)g(θ

(γ)
k )− π(G(2)g)

]∣∣∣∣∣ ≤ C(1 + Γ
(3)
K ) . (S27)

Combining (S24)-(S25)-(S26)-(S27) in (S23) concludes the proof.

Proof for the MSE: Using (S11), we have there exists C ≥ 0 such that

Γ2
KE

[(
π̂R
K(f)− π(f)

)2] ≤ C (E [(2(g(θ
(γ/2)
2K+1)− g(θ

(γ/2)
1 ))− g(θ

(γ)
K+1)− g(θ

(γ)
1 )
)2
]

+ E

[(
K∑
k=1

{
γ

1/2
k+1Mk

}2
)]

+ E

( K∑
k=1

γ2
k+1B

(2)
k

)2
+ E

( K∑
k=1

γ3
k+1B

(3)
k

)2


+E

( K∑
k=1

Nk

)2
+ E

( K∑
k=1

Rk

)2
 .

As for the bias, we need to control each term. The main difference is the terms involving the
martingales incrementsMk and Nk, which can be easily bounded using A2(9)-A5 by

E

[(
K∑
k=1

{
γ

1/2
k+1Mk

}2
)]

+ E

( K∑
k=1

Nk

)2
 ≤ CΓK

For the others, the proof follows from a straightforward modification of the proof for the bias.
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Figure S1: Bias and MSE of SGRRLD for decreasing step size γk ∝ k−α, with α ∈
{0.1, 0.2, 0.33, 0.5}.

5 Stochastic Gradient Hamiltonian Monte Carlo

We present here two algorithms based on the second order Langevin dynamics associated with π,
defined as the SDE on R2d:{

dϑt = ρtdt

dρt = −ωρt −∇U(ϑt)dt+
√

2ρdBt ,
(S28)

where ω ∈ R∗+ is the friction parameter. It can be shown, see [9], that this dynamics has a stationary
distribution with density w.r.t. the Lebesgue measure proportional to (θ, r) 7→ e−U(θ)−‖r‖2/2.

It has been proposed in [9] to use an Euler discretization for (S28), where similarly to SGLD, the
gradient is replaced by a noisy estimate. The full algorithm is given in Algorithm 3 and its RR
extrapolation in Algorithm 4.

It has been shown in [10] that the SGHMC with the Euler integrator is a first order integrator. They
also proposed a symmetric splitting integrator for (S28) and proved that it is a second order integrator.
The full algorithm is presented in Algorithm 5.

6 Additional experiments

We present an experiment which shows the optimal rates of convergence that we have derived in
Theorem 2 for a decreasing sequence of step sizes of the form γk ∝ k−α for all k ≥ 1, with
α ∈ (0, 1). From the bounds given in Theorem 2, the optimal sequence for the bias is of the form
γk = γ?bk

−1/3 and γk = γ?Mk
−1/5 for the MSE. We run a first experiment to determine the constants

γ?b and γ?M with 20000 iterations. Then we find that γ?b ≈ 2 · 10−3 and γ?M ≈ 0.5 · 10−3. Then,
to confirm our results, we change the number of iterations to K = 106 and monitor the bias with
the sequences of step sizes γk = γ?bk

−α and the MSE with γk = γ?Mk
−α for several values of α in

Figure S1. It can be observed that the optimal convergence rate is obtained for α = 1/3 for the bias
and α = 0.2 for the MSE, which confirms the results of Theorem 2.

Algorithm 3: Stochastic Gradient Hamiltonian Monte Carlo with the Euler integrator.
Input : Initial state θ0, Step size γ, Parameter ω, a probability distribution L of an unbiased

estimators∇Ũ for ∇U
Output :Samples (θk)k≥0

Initialize r0 ∼ N (0, Id),
for k = 1, · · · do

Draw Zk+1 ∼ N (0, Id)

Draw∇Ũk from L
rk = (1− ωγ)rk−1 − γ∇Ũk(θk−1) +

√
2ωγZk

θk = θk−1 + γrk
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Algorithm 4: Stochastic Gradient Richardson-Romberg Hamiltonian Monte Carlo with the Euler
integrator.

Input :Random number seed S, Step size γ, Parameter ω, Initial state θ(γ/2)
0 = θ

(γ)
0 = θ0,

Test function f(·), Number of iterations K, a probability distribution L of an unbiased
estimators∇Ũ for ∇U
Output : π̂R

K(f) ≈
∫
f(θ)π(dθ)

Initialize r0 ∼ N (0, Id), and set r(γ)
0 = r

(γ/2)
0 = r0

// Run two chains in parallel with consistent Brownian increments
Chain 1:
for k = 1, · · · ,K do

Set random number generator seed to S
Draw Z

(γ/2)
2k−1 ∼ N (0, Id), Z(γ/2)

2k ∼ N (0, Id)

Set Z(γ)
k = (Z

(γ/2)
2k−1 + Z

(γ/2)
2k )/

√
2

Draw∇Ũ (γ)
k from L

r
(γ)
k =

(1−ωγ)r
(γ)
k−1−γ∇Ũ

(γ)
k (θ

(γ)
k−1) +

√
2ωγZ

(γ)
k

θ
(γ)
k = θ

(γ)
k−1 + γr

(γ)
k

Compute π̂(γ)
K (f) = 1

K

∑K
k=1 f(θ

(γ)
k )

Chain 2:
for k = 1, · · · , 2K do

Set random number generator seed to S
Draw Z

(γ/2)
k ∼ N (0, Id)

Draw∇Ũ (γ/2)
k from L

r
(γ/2)
k = (1− ωγ

2 )r
(γ/2)
k−1

−γ2∇Ũ
(γ/2)
k (θ

(γ/2)
k−1 ) +

√
ωγZ

(γ/2)
k

θ
(γ/2)
k = θ

(γ/2)
k−1 + (γ/2)r

(γ/2)
k

Compute π̂(γ/2)
K (f) = 1

2K

∑2K
k=1 f(θ

(γ/2)
k )

// RR extrapolation.

π̂R
K(f) = 2π̂

(γ/2)
K (f)− π̂(γ)

K (f)

Algorithm 5: Stochastic Gradient Hamiltonian Monte Carlo with a symmetric splitting integrator.
Input : Initial state θ0, Step size γ, Parameter ω, a probability distribution L of an unbiased

estimators∇Ũ for ∇U
Output :Samples (θk)k≥0

Initialize r0 ∼ N (0, Id),
for k = 1, · · · do
θ

(1)
k = θk−1 + (γ/2)rk

r
(1)
k = e−ωγ/2rk

Draw Zk+1 ∼ N (0, Id)

Draw∇Ũk from L
r

(2)
k = r

(1)
k − γ∇Ũk(θ

(1)
k ) +

√
2ωγZk

rk = e−ωγ/2r
(2)
k

θk = θ
(1)
k + (γ/2)rk
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