
A Supplementary Material

A.1 Notation

Symbol Space Description

N N input dimensionality
K N total number of groups
H N input and output dimension of the parametric mapping
i N iteration index
j {1, . . . , N} input element index
k {1, . . . ,K} group index

x RN input vector with elements xj
x̃ RN corrupted input
zk RN the predicted mean of input for group k
mk RN probabilities for each input to be assigned to group k
δzk RN modeling error for group k

L(mk) RN group assignment likelihood ratio
C(x) R the training loss for input x

v R variance of the input estimate. Only used in the continuous case
Wh RH×4N Projection weights from tagger inputs to ladder inputs h
Wu R2N×H Projection weights from ladder output to z andm
Θ Contains all parameters of the ladder

f() rectified linear activation function
g() logistic sigmoid activation function

softmax() elementwise softmax over the groups

Gj Latent random variable that encodes which group xj belongs to.
gk,j Shorthand for Gj = k. Mostly used for p(gk,j) = p(Gj = k).
g a vector of all gj .

p(x | x̃) posterior of the data given the corrupted data
q(x) learnt approximation of p(x | x̃)

q(xj | gk,j) Shorthand for q(xj | Gj = k)

A.2 Input

In its basic form (without supervision) Tagger receives as input only a datapoint x. It corresponds
to either a binary vector or a real-valued vector and is then corrupted with either bitflip or Gaussian
noise. The training objective is the removal of this noise.

Bitflip Noise In the case of binary inputs we use bitflip noise for corruption:

x̃ = x⊕ B(β),

where ⊕ denotes componentwise XOR, and B(β) is Bernoulli distributed noise with probability β.
In our experiments on the Shapes dataset we use β = 0.2.

Gaussian Noise If the inputs are real-valued, we corrupt it using Gaussian noise:

x̃ = x+N (0, σ2),

where σ is the standard deviation of the input noise. We used σinput = 0.2.

10

PA
RA

M
ETRIC M

A
PPIN

G

PARAMETRICMAPPING

PARAMETRICMAPPING

PARAMETRICMAPPING

q1(x)

iteration 1 iteration 2 iteration 3

q1(x)q1(x|g)

q2(x) q3(x)

x̃

x̃
x

x

z0

m1

z1

m2m0

z2

m3

z3

L(m0)

δz0 δz1

δz i-1 m
i

m
i-1

zi
-1 zi

δz2

L(mi-1)

L(m1) L(m2)

Figure 5: Illustration of the TAG framework used for training. Left: The system learns by denoising
its input over iterations using several groups to distribute the representation. Each group, represented
by several panels of the same color, maintains its own estimate of reconstructions zi of the input,
and corresponding masksmi, which encode the parts of the input that this group is responsible for
representing. These estimates are updated over iterations by the same network, that is, each group
and iteration share the weights of the network and only the inputs to the network differ. In the case of
images, z contains pixel-values. Right: In each iteration zi−1 andmi−1 from the previous iteration,
are used to compute a likelihood term L(mi−1) and modeling error δzi−1. These four quantities are
fed to the parametric mapping to produce zi andmi for the next iteration. During learning, all inputs
to the network are derived from the corrupted input as shown here. The unsupervised task for the
network is to learn to denoise, i.e. output an estimate q(x) of the original clean input.

A.3 Group Assignments

Within the TAG framework the group assignment is represented by the K vectorsmk which contain
one entry for each input element or pixel. These entries mk,j = q(gk,j) ofmk represent the discreet
probability distribution over K groups for each input xj . They therefore sum up to one:

K∑
k=1

mk,j = 1 for all j = 1 . . . N (2)

Initialization Similar to expectation maximization, the group assignment is initialized randomly,
but such that Equation 2 holds. So we first sample an auxiliary m′k,j from a standard Gaussian
distribution and then normalize it using a softmax:

m′k,j ∼ N (0, 1) (3)

mk,j =
em
′
k,j∑K

h=1 e
m′h,j

(4)

(5)

A.4 Predicted Inputs

Tagger maintains an input reconstruction zk for each group k.

Binary Case In the binary case we use a sigmoid activation function on zk and interpret it directly
as the probability

sigmoid(zk) = q(x = 1|gk). (6)

11

We can use it to compute z̃k = q(x̃|gk) which will be used for the modeling error (Section A.5) and
the group likelihood:

q(x̃ = 1|gk) =
∑
x

q(x̃|x, gk)q(x|gk) (7)

=
∑
x

q(x̃|x)q(x|gk) (8)

=
∑
x

(x(1− β) + (1− x)β) q(x|gk) (9)

=
∑
x

(x(1− 2β) + β) zk (10)

= β(1− zk) + (1− β)zk (11)
= zk(1− 2β) + β (12)

Therefore we have:
z̃k = x̃(zk(1− 2β) + β) + (1− x̃)(1− zk(1− 2β)− β) (13)

Continuous Case For the continuous case we interpret zk as the means of an isotropic Gaussian
with learned variance v:

q(x|gk) = N (x; zk, vI) =
1√
2πv

e
(x−zk)2

2v (14)

Using the additivity of Gaussian distributions we directly get:
z̃k = q(x̃|gk) = N (x̃; zk, (v + σ2)I) (15)

Initialization For simplicity we initialize all zk to the expectation of the data for all k. In our
experiments these values are 0.5 for the TextureMNIST datasets and 0.26 for the Shapes dataset.

A.5 Modeling Error

As explained in Section 2, δz carries information about the remaining modeling error. During training
as a denoiser, we can only allow information about the corrupted x̃ as inputs but not about the original
clean x. Therefore, we use the derivative of the cost on the corrupted input as helpful information for
the parametric mapping. Since we work with the input elements individually we skip the index j in
the following:

δzk ∝ −∂C(x̃)/∂zk. (16)
More precisely for a single iteration (omitting the index i) we have::

δzk = −∂C(x̃)

∂zk
(17)

=
∂

∂zk
log

(∑
h

q(x̃|gh)q(gh)

)
(18)

=
1∑

h q(x̃|zh)q(gh)

∂
∑

h q(x̃|zh)q(gh)

∂zk
(19)

=
1∑

h z̃hmh

∂z̃k
∂zk

mk (20)

(21)

Continuous Case For the continuous case this gives us:

δzk =
1∑

h z̃hmh

∂z̃k
∂zk

mk (22)

=
1∑

h z̃hmh

x̃− zk
σ2 + v

z̃kmk (23)

∝ (x̃− zk)mkz̃k (24)
Note that since the network will multiply its inputs with weights, we can always omit any constant
multipliers.

12

Binary Case Let us denote the corruption bit-flip probability by β and define

ξk := q(x̃ = 1|gk) = (1− 2β)zg + β .

Then we get:
z̃k = x̃ξk + (1− x̃)(1− ξk)

and thus:

δzk =
1∑

h z̃hmh

∂z̃k
∂zk

mk (25)

=
(x̃(1− 2β)− (1− x̃)(1− 2β))mk∑

h(x̃ξh + (1− x̃)(1− ξh))mh
(26)

which simplifies for x̃ = 1 as

=
(1− 2β)mk∑

h ξhmh
≈ − mk∑

h ξhmh

and for x̃ = 0 as

=
(1− 2β)mk

1−
∑

h ξhmh
≈ mk

1−
∑

h ξhmh
=

mk∑
h ξhmh − 1

Putting it back together:
δzk =

mk∑
h ξhmh − 1 + x̃

A.6 Ladder Modifications

We mostly used the specifications of the Ladder network as described by Rasmus et al. [19], but there
are some minor modifications we made to fit it to the TAG framework. We found that the model
becomes more stable during iterations when we added a sigmoid function to the gating variable v [19,
Equation 2] used in all the decoder layers with continuous outputs. None of the noise sources or
denoising costs were in use (i.e., λl = 0 for all l in Eq. 3 of Ref. [19]), but Ladder’s classification
cost (Cc in Ref. [19]) was added to the Tagger’s cost for the semi-supervised tasks.

All four inputs (zik,mi
k, δzik, and L(mi

k)) were concatenated and projected to a hidden representation
that served as the input layer of the Ladder Network. Subsequently, the values for the next iteration
were simply read from the reconstruction (x̂ in Ref. [19]) and projected linearly into zi+1

k and via
softmax to mi+1

k to enforce the conditions in Equation 2. For the binary case, we used a logistic
sigmoid activation for zi+1

k .

13

A.7 Pseudocode

In this section we put it all together and provide the pseudocode for running Tagger both on binary
(Algorithm 3) and real-valued inputs (Algorithm 2). The provided code shows the steps needed to run
for T iterations on a single example x usingG groups. Here we use three activation functions: f(x) =
max(x, 0) is the rectified linear function, g(x) = 1

1+e−x is the logistic sigmoid, and softmax(x)g =
exg∑G

h=1 exh
is a softmax operation over the groups. All three include a batch-normalization operation,

which we omitted for clarity. Only the forward pass for a single example is shown, but derivatives of
the cost C wrt. parameters v, Wh, Wu and Θ are computed using regular backpropagation through
time. For training we use ADAM with a batch-size of 100.

Data: x,K, T, σ, v,Wh,WuΘ
Result: zT ,mT , C
begin Initialization:

x̃← x+N (0, σ2I);
m0 ← softmax(N (0, I));
z0 ← E[x];

end
for i = 0 . . . T − 1 do

for k = 1 . . .K do
z̃k ← N (x̃; zik, (v + σ2)I);
δzik ← (x̃− zik)mi

kz̃k;
L(mi

k)← z̃k∑
h z̃h

;

hk ← f(Wh

[
zik,m

i
k, δz

i
k, L(mi

k)
]
);

[zi+1
k ,mi+1

k]←WuLadder(hk,Θ);
end
mi+1 ← softmax(mi+1);
qi+1(x)←

∑K
k=1N (x; zi+1

k , vI)mi+1;
end
C ← −

∑T
i=1 log qi(x);

Algorithm 2: Pseudocode for running Tagger on a single real-valued example x.

Data: x,K, T, β,Wh,Wu,Θ
Result: zT ,mT , C
begin Initialization:

x̃← x⊕ B(β);
m0 ← softmax(N (0, I));
z0 ← E[x];

end
for i = 0 . . . T − 1 do

for k = 1 . . .K do
ξk ← zi(1− 2β) + β;

δzik ←
mi

k∑
h ξhm

i
h−1+x̃

;

L(mi)← x̃ξk+(1−x̃)(1−ξk)∑
h x̃ξh+(1−x̃)(1−ξh) ;

hk ← f(Wh

[
zik,m

i
k, δz

i
k, L(mi

k)
]
);

[zi+1
k ,mi+1

k]←WuLadder(hk,Θ);
end
mi+1 ← softmax(mi+1);
qi+1(x)←

∑K
k=1N (x; zi+1

k , vI)mi+1;
end
C ← −

∑T
i=1 log qi(x);

Algorithm 3: Pseudocode for running Tagger on a single binary example x.

14

