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A Experiment on Ising grid
Our GDD directly optimizes a primal bound, and is thus guaranteed to be an upper bound of the
partition function even before the algorithm converges, enabling a desirable “any-time” property.
In contrast, typical implementations of tree reweighted (TRW) belief propagation optimize the dual
free energy function [4], and are not guaranteed to be a bound before convergence. We illustrate this
point using an experiment on a toy 5×5 Ising grid, with parameters generated by normal ditribution
N(0, 2) and half nodes selected as max-nodes for marginal MAP. Figure 1(a)-(b) shows the TRW
free energy objective and GDD, WMB upper bounds across iterations; we can see that TRW does
violate the upper bound property before convergence, while GDD and WMB always give valid upper
bounds.
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Figure 1: Sum-inference and marginal MAP results on a toy Ising model (5×5 grid). Each iteration
of the different algorithms corresponds to a full sweep over the graph. Note that the dual formulation
(TRW) is not a bound until convergence; for example, at iteration 1, its objective function is below
the true Φ.

B More Results on Diagnostic Bayesian Networks
In addtion to the marginal MAP results on BN-1 and BN-2 in main text, we vary the percentage of
max-nodes when generating the marginal MAP problems; the reported results in Figure 2(a)-(b) are
the best bound obtained by the different algorithms with the first 20 iterations. In all cases, GDD’s
results are as good or better than WMB. WMB-0.5 (WMB with damping ratio 0.5) appears to work
well on sum-only and max-only (MAP) problems, i.e., when the percentage of max-nodes equals
0% and 100% respectively, but performs very poorly on intermediate settings. The far more heavily
damped WMB-0.04 or WMB-0.02 work better on average, but have much slower convergence.

C More Results on Pedigree Linkage Analysis

We test our algorithm on additional 6 models of pedigree linkage analysis from the UAI08 inference
challenge. We construct marginal MAP problems by randomly selected 50% of nodes to be max-
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Figure 2: More marginal MAP results (including sum-inference and MAP) on two diagnostic
Bayesian networks. We report the best results obtained by GDD and WMB with 20 iterations in
marginal MAP problems constructed by randomly selecting different percentages of max-nodes.
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(a) pedigree13 (1077 nodes) (b) pedigree18 (1184 nodes) (c) pedigree19 (793 nodes)
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Figure 3: Marginal MAP inference on additional pedigree linkage analysis models. We randomly
selected 50% of nodes as max-nodes in these models. We tune the damping rate of WMB from 0.01
to 0.06, but we omit WMB-0.06 in the plot if WMB-0.05 is already diverged.

nodes, and report all the results in Figure 3. We find that our algorithm consistently outperforms
WMB with the best possible damping ratio.

D Extensions to Junction Graph

Our bound (5) in main text uses a standard “factor graph” representation in which the cost-shifts
{δαi } are defined for each variable-factor pair (i, α), and are functions of single variables xi. We
can extend our bound to use more general shifting parameters using a junction graph representation;
this allows us to exploit higher order clique structures, leading to better performance.

Let (C,S) be a junction graph of p(x; θ) where C = {c | c ⊂ V } is the set of clusters, and S = {s =
ck ∩ cl | ck, cl ∈ C} is the set of separators. Assume p(x; θ) can be reparameterized into the form,

p(x; θ) = exp
[∑
c∈C

θc(xc)− Φ(θ)
]
, (1)
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and the weighted log partition function is rewritten as Φτ (θ) = log
∑τ
x exp

[∑
c∈C θc(xc)

]
. Sim-

ilar to the derivation of bound (5) in main text, we can apply Theorem 4.1, but with a set of more
general cost-shifting variables δcs, defined on each adjacent separator-cluster pair (s, c); this gives
the more general upper bound,

Φτ (θ) ≤
∑
s∈S

log

ws∑
xs

exp
[∑
c⊇s

δcs(xs)
]

+
∑
c∈C

log

wc∑
xc

exp
[
θc(xc)−

∑
s⊆c

δcs(xs)
]
, (2)

where we introduce the set of non-negative weights ws = {wsi | i ∈ s} on each separator and
wc = {wci | i ∈ c} on each cluster, which should satisfy

∑
s∈Nsei

wsi +
∑
c∈Nci

wci = τi, where
Nse
i = {s | i ∈ s} are all the separators that include node i, and N c

i = {c | i ∈ c} are all the clusters
that include node i. Obviously, our earlier bound (5) in main text can be viewed as a special case
of (2) with a special junction graph whose separators consist of only single variables, that is, S = V .

A block coordinate descent algorithm similar to Algorithm 1 can be derived to optimize the junction
graph bound. In this case, we sweep through all the separators s and perform block coordinate
update on all {δcs|∀c ⊇ s} at each iteration. Similarly to Algorithm 1, we can derive a close form
update for separators with all-zero weights (that is, τi = 0, ∀i ∈ s, corresponding to s ⊆ B in
marginal MAP), and perform local gradient descent otherwise.

E Proof of Thereom 4.1

Proof. Note the Hölder’s inequality is[∑
x

∏
j

fj(x)1/ξ0
]ξ0 ≤∏

j

[∑
x

fj(x)1/ξj
]ξj
,

where {fj(x)} are arbitrary positive functions, and {ξj} are non-negative numbers that satisfy∑
j ξj = ξ0. Note we extend the inequality by defining power sum with ξj = 0 to equal the

max operator. Our result follows by applying Hölder’s inequality on each xi sequentially along the
elimination order [x1, x2, · · · , xn].

F Dual Representations

F.1 Background

The log-partition function Φ(θ) has the following variational (dual) form

Φ(θ) = log
∑
x

exp(θ(x)) = max
b∈M(G)

{
〈θ, b〉+H(x; b)

}
where M(G) is the marginal polytope [5]. Then, for any scalar ε > 0 (including ε→ 0+), we have

Φε(θ) = ε log
∑
x

exp(
θ(x)

ε
) = εmax

b∈M

{
〈θ
ε
, b〉+H(x; b)

}
= max

b∈M

{
〈θ, b〉+ εH(x; b)

}
.

As stated in [2, 3], we can further generalize the variational form of above scalar-weighted log
partition function to the vector-weighted log partition function (3) in the main text,

Φτ (θ) = log

τn∑
xn

. . .

τ1∑
x1

exp(θ(x)) = max
b∈M(G)

{
〈θ, b〉+

∑
i

τiH(xi|xi+1:n; b)
}
, (3)

where H(xi|xi+1:n; b) is the conditional entropy on b(x), and is defined as H(xi|xi+1:n; b) =
−
∑
x b(x) log(b(xi|xi+1:n)). See more details of its derivation in Theorem 4.1 within [2].

F.2 Proof of Thereom 4.2

We will prove the following dual representation of our bound,

min
δ
L(δ,w) = max

b∈L(G)

{
〈θ, b〉+

∑
i∈V

wiH(xi; bi) +
∑
α∈F

∑
i∈α

wαi H(xi|xpaαi
; bα)

}
, (4)

3



where L(G) = {b | bi(xi) =
∑
xα\i

bα(xα),
∑
xi
bi(xi) = 1} is the local consistency polytope,

and paαi = {j ∈ α|j � i}. Thereom 4.2 follows directly from (4).

Proof. In our primal bound L(δ,w) (5) in main text, we let θ̃i(xi) = θi(xi) +
∑
α∈Ni δ

α
i (xi) (we

add dummy singleton θi(xi) ≡ 0), and θ̃α(xα) = θα(xα) −
∑
i∈α δ

α
i (xi), then the bound can be

rewritten as,

L(θ̃,w) =
∑
i∈V

log

wi∑
xi

exp
[
θ̃i(xi)

]
+
∑
α∈F

log

wα∑
xα

exp
[
θ̃α(xα)

]
.

Note, for any assignment x, we have
∑
i θ̃i(xi) +

∑
α θ̃α(xα) =

∑
α θα(xα).

By applying the dual form of the powered sum (3) on each node and clique respectively, we have

L(θ̃,w) =
∑
i∈V

max
bi∈M(Gi)

{
〈θ̃i, bi〉+ wiH(xi; bi)

}
+
∑
α∈F

max
bα∈M(Gα)

{
〈θ̃α, bα〉+

∑
i∈α

wαi H(xi|xpaαi ; bα)
}
,

where paαi is the set of variables in α that are summed out later than i, M(Gi) and M(Gα) are
the marginal polytopes on singleton node i and clique α respectively, which enforce {bi, bα} to be
properly normalized. We denote them jointly as M̃ = {M(Gi),M(Gα) | ∀ i ∈ V, α ∈ F} , then

L(θ̃,w) = max
b∈M̃

{
〈θ̃, b〉+

∑
i∈V

wiH(xi; bi) +
∑
α∈F

∑
i∈α

wαi H(xi|xpaαi
; bα)

}
,

where bi, bα ∈ M̃ are independently optimized.

Then, by tightening reparameterization θ̃ = {θ̃i, θ̃α}, we have

min
θ̃
L(θ̃,w) = max

b∈M̃
min
θ̃

{
〈θ̃, b〉+

∑
i∈V

wiH(xi; bi) +
∑
α∈F

∑
i∈α

wαi H(xi|xpaαi
; bα)

}
where the order of min and max are commuted according to the strong duality (it’s convex with θ̃,
and concave with b).
The inner minimization minθ̃〈θ̃, b〉 is a linear program, and it turns out can be solved analytically.
To see this, given the relationship between θ̃ and θ, we rewrite the linear program as

min
θ̃
〈θ̃, b〉 = min

δ

{
〈θ, b〉+

∑
i∈V

∑
xi

∑
α∈Ni

δαi (xi)bi(xi)−
∑
α∈F

∑
xα

∑
i∈α

δαi (xi)bα(xα)
}
,

= min
δ

{
〈θ, b〉+

∑
(i,α)

∑
xi

δαi (xi)
(
bi(xi)−

∑
xα\i

bα(xα)
)}
.

Then, it is easy to observe that the linear program is either equal to 〈θ, b〉 only if b satisfy the
marginalization constraint

∑
xα\i

bα(xα) = bi(xi) for ∀(i, α), or it will become negative infinity.
Considering the outer maximization, we have

min
θ̃
L(θ̃,w) = max

b∈L(G)

{
〈θ, b〉+

∑
i∈V

wiH(xi; bi) +
∑
α∈F

∑
i∈α

wαi H(xi|xpaαi
; bα)

}
,

where L(G) is the local consistency polytope that is obtained by enforcing both M̃ and the marginal-
ization constraint.

F.3 Connection with Existing Free Energy Forms

Most variational forms are expresssed in the following linear combination of local entropies [6, 1],

〈θ, b〉+
∑
β

cβH(bβ), (5)

where β refers the region, cβ refers the general counting number, bβ(xβ) is the local belief.
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We can rewrite our dual representations (4) as,

〈θ, b〉+
∑
i∈V

wiH(xi; bi) +
∑
α∈F

∑
i∈α

wαi
(
H(xi, xpaαi

; bα)−H(xpaαi
; bα)

)
,

where paαi is the set of variables in α that rank later than i. Without loss of generality, assuming
xα = [x1, · · · , xi, xj , · · ·xc], i.e. xi and xj are adjacent in the order, we can get

〈θ, b〉+
∑
i∈V

wiH(xi; bi) +
∑
α∈F

{
wα1H(xα; bα) +

∑
[i,j]vα

(wαj − wαi )H(xpaαi
; bpaαi

)
}

(6)

where belief bpaαi
is defined by bpaαi

(xpaαi
) =

∑
xα\paα

i

bα(xα).

One can view (6) in terms of (5), by selecting the region β ∈ {i ∈ V }∪{α ∈ F}∪{paαi | ∀(i, α)};
some counting numbers cβ will be the differences of weights wαj − wαi .

F.4 Matching Our Bound to WMB

After the weights are optimized, our GDD bound matches to WMB bound with optimum weights.
A simple weight initialization method matches our bound to WMB with uniform weights on each
mini-bucket, which often gives satisfactory result; a similar procedure can be used to match the
bound with more general weights as in Section D. We first set wi = 0 for all nodes i. We then
visit the nodes xi along the elimination order o = [x1, x2, · · · , xn], and divide xi’s neighborhood
cliques Ni = {α|α 3 i} into two groups: (1) the children cliques in which all xα\i have already
been eliminated, that is, N ch

i = {α | ∀j ∈ α\i, j ≺ i in o}; (2) the other, parent cliques Npa
i =

{α | ∃j ∈ α\i, j � i in o}. We set wαi = 0 for all the children cliques (α ∈ N ch
i ), and uniformly

split the weights, that is, wαi = τi/|Npa
i |, across the parent cliques.

G Proof of Therom 5.1

Proof. For each δαi (xi), the involved terms in L(δ,w) are Lαi (δ) = Φwi(δ) + Φwα(δ), where

Φwi(δ) = log

wi∑
xi

exp
[ ∑
α∈Ni

δαi (xi)
]
, Φwα(δ) = log

wα∑
xα

exp
[
θα(xα)−

∑
i∈α

δαi (xi)
]
.

Our result follows by showing that

∂Φwi(δ)

∂δαi (xi)
= µi(xi) and

∂Φwi(δ)

wi
= H(xi;µi),

∂Φwα(δ)

∂δαi (xi)
= −

∑
xα\i

µα(xα) and
∂Φwα(δ)

∂wαi
= H(xi|xi+1:c;µα).

The gradient of Φwi(δ) is straightforward to calculate,

∂Φwi
∂δαi (xi)

=
∂

∂δαi (xi)

(
wi log

∑
xi

exp
[∑

α∈Ni δ
α
i (xi)

wi

])
=

exp
[∑

α∈Ni
δαi (xi)

wi

]
Zwi

= µi(xi),

where Zwi =
∑
xi

exp
[∑

α∈Ni
δαi (xi)

wi

]
, and

∂Φwi
∂wi

= logZwi + wi ·
1

Zwi
·
∑
xi

{
exp

[∑
α∈Ni δ

α
i (xi)

wi

]
·
∑
α∈Ni δ

α
i (xi)

−w2
i

}
= logZwi −

∑
xi

{
µi(xi) ·

∑
α∈Ni δ

α
i (xi)

wi

}
= −

∑
xi

{
µi(xi) ·

[∑
α∈Ni δ

α
i (xi)

wi
− logZwi

]}
= H(xi;µi).

The gradient of Φwα(δ) is more involved; see Proposition I.1 for a detailed derivation.
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H Derivations of Closed-form Update

We first derive the closed-form update rule for δαi (xi) in Proposition H.1. We derive the closed-form
update rule for the block δNi = {δαi (xi) | ∀α ∈ Ni} in Proposition H.2.

Proposition H.1. Given max node i in marginal MAP (i.e., τi = 0 ) and one clique α 3 i (i.e.
i ∈ α), keeping all δ fixed except δαi (xi), there is a closed-form update rule,

δαi (xi)←
1

2
log

wα\i∑
xα\i

exp
[
θα(xα)−

∑
j∈α\i

δαj (xj)
]
− 1

2

∑
β∈Ni\α

δβi (xi), (7)

where xα\i = {xj : j ∈ α, j 6= i}, wα\i = {wαj : j ∈ α, j 6= i}, and Ni = {α|α 3 i} is the set of all
clique factors in the neighborhood of node i. Futhermore, this update will monotonically decrease
the upper bound.

Proof. The terms within the bound L(δ,w) that depend on δαi (xi) are,

max
xi

[ ∑
α∈Ni

δαi (xi)
]

+ max
xi

log

wα\i∑
xα\i

exp
[
θα(xα)−

∑
i∈α

δαi (xi)
]

(8)

The sub-gradient of (8) w.r.t. δαi (xi) equal to zero if and only if,

x∗i = argmax
xi

[ ∑
α∈Ni

δαi (xi)
]

= argmax
xi

log

wα\i∑
xα\i

exp
[
θα(xα)−

∑
i∈α

δαi (xi)
]
,

which is “argmax” matching. One sufficient condition of this matching is,

∑
α∈Ni

δαi (xi) = log

wα\i∑
xα\i

exp
[
θα(xα)−

∑
i∈α

δαi (xi)
]

which impllies matching of “pseudo marginals”. Then, one can pull δαi (xi) outside from the operator
log
∑wα\i
xα\i

exp, and get the closed-form equation

δαi (xi) =
1

2
log

wα\i∑
xα\i

exp
[
θα(xα)−

∑
j∈α\i

δαj (xj)
]
− 1

2

∑
β∈Ni\α

δβi (xi).

To prove monotonicity, we substitute above update equation of δαi (xi) into (8); then we get,

max
xi

{ ∑
β∈Ni\α

δβi (xi) + log

wα\i∑
xα\i

exp
[
θα(xα)−

∑
j∈α\i

δαj (xj)
]}
. (9)

Clearly, (9) ≤ (8) by using the fact that maxx[f(x) + g(x)] ≤ maxx f(x) + maxx g(x).

Proposition H.2. Given node i ∈ B (i.e., a max node) and all neighborhood cliques Ni = {α|α 3
i}, we can jointly optimize δNi = {δαi (xi) | ∀α ∈ Ni} in closed-form by keeping the other {δαj | j 6=
i,∀α ∈ Ni} fixed. The update rule is,

δαi (xi)←
|Ni|
|Ni|+ 1

γαi (xi)−
1

|Ni|+ 1

∑
β∈Ni\α

γβi (xi), (10)

where |Ni| is the number of neighborhood cliques, and {γαi (xi) | ∀α ∈ Ni} are defined by

γαi (xi) = log

wα\i∑
xα\i

exp
[
θα(xα)−

∑
j∈α\i

δαj (xj)
]
. (11)

Futhermore, this upate will monotonically decrease the upper bound.

6



Proof. For ∀α ∈ Ni, we have closed-form solutions for δαi (xi) as Proposition H.1. We rewrite it as,

∀α ∈ Ni, 2δαi (xi) +
∑

β∈Ni\α

δβi (xi) = log

wα\i∑
xα\i

exp
[
θα(xα)−

∑
j∈α\i

δαj (xj)
]
. (12)

Note, for ∀α, β ∈ Ni, there is a linear relationship between δαi (xi) and δβi (xi).

We denote column vector γi(xi) filled α-th element with

γαi (xi) = log

wα\i∑
xα\i

exp
[
θα(xα)−

∑
j∈α\i

δαj (xj)
]
.

We also frame all {δαi (xi) | α ∈ Ni} into a column vector δNi(xi), and denote |Ni|× |Ni|matrix A

A =


2 1 · · · 1
1 2 · · · 1
...

...
. . .

...
1 1 · · · 2

 , and note A−1 =


|Ni|
|Ni|+1 − 1

|Ni|+1 · · · − 1
|Ni|+1

− 1
|Ni|+1

|Ni|
|Ni|+1 · · · − 1

|Ni|+1

...
...

. . .
...

− 1
|Ni|+1 − 1

|Ni|+1 · · · |Ni|
|Ni|+1 .


It is easy to verify AδNi(xi) = γi(xi). from (12). Since A is invertable, one can solve

δNi(xi) = A−1γi(xi).

Then, one can read out the closed-form update rule (10). The monotonicity holds directly by noticing
that the update rule (10) are solutions which jointly satisfy equation (7).

I Derivations of Gradient

Proposition I.1. Given a weight vector wα = [wα1 , · · · , wαi , · · · , wαc ] associated with variables
xα = {x1, · · · , xi, · · · , xc} on clique α, where c = |α| the power sum over clique α is,

Φwα(δ) = log

wα∑
xα

exp
[
θα(xα)−

∑
i∈α

δαi (xi)
]

= log

wαc∑
xc

· · ·
wαi∑
xi

· · ·
wα1∑
x1

exp
[
θα(xα)−

∑
i∈α

δαi (xi)
]
.

We recursively denote Zi as the partial power sum up to x1:i,

Z0(xα) = exp
[
θα(xα)−

∑
i∈α

δαi (xi)
]

and Zi(xi+1:c) =

wαi∑
xi

Zi−1(xi:c), (13)

thus logZc = Φwα . We also denote the “pseudo marginal” (or, belief) on xα,

µα(xα) =

c∏
i=1

µα(xi|xi+1:c); µα(xi|xi+1:c) =
(Zi−1(xi:c)

Zi(xi+1:c)

)1/wαi
,

and it is easy to verify that µα(xi|xi+1:c) and µα(xα) are normalized.

Then, the derivative of Φwα w.r.t. δαi (xi) can be written by beliefs,

∂Φwα

∂δαi (xi)
= −µα(xi) = −

∑
xα\i

µα(xα) = −
∑
xc

· · ·
∑
xi+1

c∏
j=i

µα(xj |xj+1:c) (14)

In addition, the derivative of Φwα w.r.t. wαi is the conditional entropy,

∂Φwα

∂wαi
= H(xi|xi+1:c;µα(xα)) = −

∑
xα

µα(xα) logµα(xi|xi+1:c) (15)
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Proof.
Denote the reparameterization on clique α as θ̃α(xα) = θα(xα)−

∑
i∈α δ

α
i (xi).

From the recursive definition of Zi(xi+1:c) (13), we have the following recursive rule for gradient,

∂ logZi(xi+1:c)

∂θ̃α(xα)
=

∂

∂θ̃α(xα)

(
wαi log

∑
xi

[
Zi−1(xi:c)

]1/wαi )

= wαi ·
1
wαi
· Zi−1(xi:c)

1
wα
i∑

xi

[
Zi−1(xi:c)

] 1
wαc

· Zi−1(xi:c)
−1 · ∂Zi−1(xi:c)

∂θ̃α(xα)

=
Zi−1(xi:c)

1
wα
i∑

xi

[
Zi−1(xi:c)

] 1
wαc

· ∂ logZi−1(xi:c)

∂θ̃α(xα)

= µα(xi|xi+1:c) ·
∂ logZi−1(xi:c)

∂θ̃α(xα)
. (16)

It should be noted, implicitly, xi+1:c within θ̃α(xα) should take the same value as xi+1:c in
logZi(xi+1:c), otherwise, the derivative will equal 0.

As a result, we can calculate the derivatives of Φwα(θ̃α) w.r.t. θ̃α(xα) recursively as,

∂Φwα

∂θ̃α(xα)
=
∂ logZc

∂θ̃α(xα)
= µα(xc) ·

∂ logZc−1(xc)

∂θ̃α(xα)
= · · · =

c∏
i=1

µα(xi|xi+1:c) = µα(xα). (17)

By the chain rule,

∂Φwα

∂δαi (xi)
=
∑
xα\i

∂Φwα

∂θ̃α(xi, xα\i)
·
∂θ̃α(xi, xα\i)

∂δαi (xi)
= −

∑
xα\i

µα(xα),

then (14) has been proved.

Applying the variational form of powered-sum (3) to Φwα , we have

Φwα(θ̃α) = max
bα∈Mα(G)

{
〈θ̃α, bα〉+

∑
i

wαi H(xi|xi+1:n; bα)
}
.

According to Danskin’s theorem, the derivative ∂Φwα

∂θ̃α(xα)
= b∗α(xα), which is the optimum of RHS.

Combined with (17), we have b∗α = µα immediately, and the derivative w.r.t. wαi is,

∂Φwα

∂wαi
= H(xi|xi+1:c;µα(xα)),

then (15) has been proved.
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