Accelerated Proximal Gradient Methods for
Nonconvex Programming

Anonymous Author(s)
Affiliation
Address

email

We consider a general problem:

min F(x) = f(x) + g(x), 1)

We mainly consider nonconvex f and nonconvex nonsmooth g.

1 Preliminaries

1.1 Basic Assumptions
Definition 1 A function g : R" — (—o0,+00] is said to be proper if dom g # (), where dom
g=1{x € R:g(x) < +o0}. g is lower semicontinuous at point X if
liminf g(x) > g(x0). (2)
T—Xq
In problem (1), we assume that f is a proper function with Lipschitz continuous gradients and g is
proper and lower semicontinuous. We assume that F'(x) is coercive, i.e., F' is bounded from below

and
F(x) - oo when x| — oo, 3)

where || - || is the l3-norm.
1.2 Subdifferentials of Nonconvex and Nonsmooth Functions

Definition 2 [1, 2] Let g be a proper and lower semicontinuous function.

1. For a given x €dom g, the Frechet subdifferential of g at X, written as 3g(x), is the set of
all vectors u € R™ which satisfy

Y#XY % ly — x|l

> 0. “4)

2. The limiting-subdifferential, or simply the subdifferential, of g at x € R™, written as 0g(x),
is defined through the following closure process

Af(x) :={ueR": Ix; = x,9(xx) = g(x),u; € 5g(xk) — u,k — oo} 5)
Proposition1 [/, 2]

1. In the nonsmooth context, the Fermat’s rule remains unchanged: If x € R" is a local
minimizer of g, then 0 € 0g(x).

2. Let (xi,uy) be a sequence such that xj, — x, u, — u, g(X) = g(x) and uy € dg(xy),
then u € 9g(x).

3. If f is a continuously differentiable function, then O(f + g)(x) = V f(x) + 9g(x).

Recall that points whose subdifferential contains 0 are called critical points.

1.3 Proximal Mapping

Let g : R" — (—00,400| be a proper and lower semicontinuous function (it can be nonconvex).
Given x € R™ and o > 0, define the proximal mapping [1] as:

1
prox,,,(x) = argining(u) + %Hx —u?. (6)

When g := dx, the indicator function of a nonempty and closed set X, defined as:

] 0, ifxelX,
0x (x) = { oo, otherwise, @

the proximal mapping reduces to the projection operator onto X, defined by

Px(x) ={u€ X :u=argmin|u— x|} (8)

1.4 KL Inequality

Definition 3 /3, 2] A function f : R™ — (—o00,400] is said to have the KL property at U €
domdf = {x € R™ : df(u) # 0} if there exists n € (0,+0cc|, a neighborhood U of @ and a
Sunction ¢ € ®,, such that for all

ueU[{ueR": f(u) < f(u) < f(@) +n}, ©)
the following inequality holds
¢'(f(u) = f(1))dist(0,0f (a)) > 1, (10)

where ®,, stands for a class of function ¢ : [0,n) — R satisfying: (1) ¢ is concave and C' on
(0,7m); (2) ¢ is continuous at 0, p(0) = 0; and (3) ¢’ (x) > 0, ¥x € (0,n).

Lemma 1 [2] Let Q2 be a compact set and let f : R" — (—o0,+00] be a proper and lower
semicontinuous function. Assume that f is constant on) and satisfies the KL property at each point
of Q. Then there exists ¢ > 0, n > 0 and ¢ € Py, such that for all U in Q and all u in the following
intersection

{u e R" : dist(u, Q) < e} {u € R": f(W) < f(u) < (W) + n}, (11)
the following inequality holds
¢’ (f(w) — f())dist(0,0f () > 1, (12)

All semi-algebraic functions and subanalytic functions satisfy the KL property [3, 2]. So KL prop-
erty is general enough. Typical examples include: real polynomial functions, logistic loss function
log(1+ e, ||Ix|l, (p > 0), [|x/|» indicator function of the positive semidefinite (PSD) cone, the
Stiefel manifolds and the set of constant rank matrices.

2 Monotone APG

We summarize the monotone APG in Algorithm 1.

Theorem 1 Let f be a proper function with Lipschitz continuous gradients and g be proper and
lower semicontinuous. For nonconvex f and nonconvex nonsmooth g, assume that (3) holds. Then
{x1} and {vy} generated by Algorithm I are bounded. Let x* be any accumulation point of {x}.},
we have 0 € OF (x*).

Algorithm 1 monotone APG with fixed stepsize

Initialize z; = x; = Xp,t1 = 1,10 =0, oy < %, o, < %
fork=1,2,3,--- do

tr_ tr_1—1
Yo = X = (= Xa) S (k= X)) (13)
Zi1 = Prox, o (yi — oy Vf(yr)), (14)
Vit1 = prox, ,(Xk — oz Vf(xk)), (15)

lk+1 =

VA2 + 141 16)
2)

_ zpqr, it F(2zpq) < F(Vigr),
Xkl = { Vii1, otherwise. a7

end for

Proof (15) in Algorithm 1 can be seen as

1
20,

Vi1 = argmin (V f(xg), x — Xp) + ||X—Xk||2 + g(x). (18)

So we have

(V%K) Vi1 — Xx) + [Vies1 = xkl1? 4+ 9(Vir1) < g(xp). (19)

20,
From the Lipschitz continuous of V f we have

L
F(vir1) < g(Vir) + f(xx) + (Vf(Xk), Vi1 — Xx) + §||Vk+1 — x| (20)

< g(xk) = (VF(xk), Vi1 — Xk) — % Vi1 — %k (1)
L
+f(xk) + (Vf(Xk), Viyr — Xi) + §\|Vk+1 — x|? (22)
1 L
= F(xi)— (M - 2) [Vi+1 — xx . (23)

If F(Zk+1) < F(Vk+1), then
Xit1 = 241, F(Xp41) = F(Zp41) < F(Vig1)- 24

If F(Zk+1> > F(Vk+1), then

X1 = Vi1, F(Xpt1) = F(Viy1)- (25)
From (23), (24) and (25) we have
F(xp41) < F(Vigr) < F(xyg). (26)
So
F(xpy1) < F(x1), F(viy1) < F(x1) 27)

for all k. From the assumption we know that {x;, } and {vy} are bounded. Thus {x;} has accumu-
lation points. As F'(xy) is nonincreasing, F' has the same value at all the accumulation points. Let
it be F'*. From (23) we have

1 L
(5= %) Vs = xl? < F) = Fvicn) < Fx) — Flxn), o8
Summing over k = 1,2, -, 00, we have
1 L = 2 *
5o "3 IVit1 — xi||” < F(x1) — F* < o0, 29)
Az k=1

From o, < 1 we have

Vi1 — x| =0 as &k — o0 (30)

From the optimality condition of (18) we have

0 € Vf(xx)+ O%(VkJrl —Xi) +09(Vit1) (31)
— VH(ka) + VG = Vi) (v = x) + g(vin). 6D
So we have
Vo) + (k1) = o (Vi — 1) € OF (s, (33)
and
V760 = D)+ v x| < (4 +2) sl 20 o9
as k — oo.

Let x* be any accumulation point of {x}, say {xx;} — x* as j — oo. From (30) we have
{Vk,+1} = x* as j — oo. From (18) we have

1
(Vf(Xk,), V41 — Xi,) + gﬂvkﬁl —xp, [|* + 9(Vi;4+1) (35)
T
* 1 * *
= <Vf(ij),X _Xk'j>+2a.||x _ij||2+g(x)- (36)
So
limsup g(vg, +1) < g(x”). 37

Jj—o0

From the definition of lower semicontinuous of g we have

liminf g(vy;4+1) > g(x"). (38)
]*)OO ;

So we have
i 9(Vi;+1) = g(x*). (39)

Because f is continuously differentiable, we have

jlgglo F(vi, 1) = F(x%). (40)

From {vy, 11} — x*, (40), (33), (34) and Proposition 1.2 we have
0 € OF (x*). @1)
]

Theorem 2 Assume that f and g are convex and V f is Lipschitz continuous. Then {x} generated
by algorithm 1 satisfies

2

where X* is a global minimizer of F(x).

This theorem is quite similar to Theorem 5.1 in [4]. The proof is almost the same with [4]. We list
the proof here only for the convenience of reader’s reference.

Proof (14) in Algorithm 1 can be seen as

. 1
z+1 = argmin (V f(yx),X — y&) + ﬂ”x —vil® + 9(x). (43)
X Y

4

From the optimality condition, we have

1
0e Vf(ye)+ OT(Zk—H —Y&) + 09(Zk11)-
Yy

From the convexity of g we have

9(x) — g(zrsr) > <Vf<yk>

From the Lipschitz continuous of V f and convexity of f we have

1
— —(Zr1 — Yr), X — Zk+1> , Vx.
Qy

F(zry1) < 9(zks1) + f(ye) +(VF(YR)s Zhr1 — Yi) + §||Zk+1 —yil?
= 9(zk+1) + [(ye) +(VIYr), x = y&) + (Vf(¥K)s Zkt1 — X)

L
+§||Zk+1 — il

L
< 9(zrr1) + F(X) H(VI(yr), Zur1 — %) + §||Zk+1 - }’k:||2
1
< 960+ (V) + oo~ vahx -z)
Yy
L 2
+f(x) +(Vf(yr), zrs1 — %) + 5sz+1 — il
1 L ,
= F(x)+ — (Zr41 — Vi X — Zpy1) + 5 12k — Yl
Oy 2
1 L ,
= F(x)+ - (Zhs1 — Yo X — Yk + Yk — Ziy1) + §||Zk+1 — ¥l
Yy
1 1 L
(X)+'ay<zk+1 Yk X = Yk) (ay 5)1Zkr1 = il
< P+)= | 2
X — (Z — X — — —||Z — .
= ay k+1 — Yk, Yk 20, k+1 — Yk

Let x = x5, and x*, we have

1 1
— (Zht1 — Vi Xk — V) — 5—|Zhs1 — Yk||27

F —F <
(Zr1) — Fxx) < o 2o,

. 1 . 1
F(zg41) — F(X*) < — (241 — Y6, X — y&) — 5— 1z — yal*.
Qy 20y
Multiplying (56) by 5 — 1 and adding (57) we have

teF (2k41) — (te — DF(xx) — FI(x)

1 . t
< (a1 — Ve (b — D)k — 1) + X5 = yi) — o [z — vl
Oy 20y
So we have
t (F(zpt1) — F(x) — (tx — 1) (F(xy) — F(x*))
1 . t
<zt — Ve (b — D)% — 1) + X5 = yi) — o |z — vl
Oy 20y

Multiplying both sides by t; and using (t;)? — t;, = (tx—1)? from (16) we have
(te)? (F(2r11) — F(x*) = (te—1)* (F(xx) — F(x))

1 . 1
— (tr(Zht1 — Vi), (te — 1) (xx — y&) + X" —yi) — —|Ite(Z+1 — Y&)
aly 2ay,

IN

1 L1
= — (te(zir1 — yr), (b — Dxp — treyr +X°) — —|tr(zrs1 — y2)|?
o 20ty

Y
1 * |2 * (|2
720! (H(tk — 1)Xk — tkyk +x || — ||(tk — 1)Xk — thk+1 +x ||) .
Y

I

(44)

(45)

(46)
47
(48)

(49)
(50)
(G
(52)
(53)
(54)

(55)

(56)

(57)

(58)
(59)

(60)
(61)

(62)
(63)

(64)

(65)

Define
Ukt1 = trZr41 — (ty — 1)xp — X",

Let
Up = tg—12; — (tp—1 — D)xXp—1 — X" = tpyr — (tk — 1)Xk —x*.
We have
th1Zp — (te—1 — D)Xp_1 + (tp — 1)xp
Y =
tx
tk—1 th—1 — 1
= xp+— (21 — xp) + ——— (X — Xp—1),
125 i

which is the same with (13) in Algorithm 1. So we have
(tr)? (F(2k11) = F(x")) = (tk-1)* (F(xx) = F(x"))
1 2 2
< — - .
S 2, (IOKI* = 1Tk 1)

If F(Zk—i-l) < F(Vk+1), then Xk4+1 = Zk41- So

(tr)? (F(xr41) — F(x)) = (ts—1)* (F(xi) — F(x"))
= (tr)* (Fzi1) — F(x7)) = (tr—1)? (F(xi) = F(x))

1
< — (URII? = ||Uss1]1?) .
< 2ay(H kll? = 10k [1?)

If F(zp41) > F(Vi41), then X1 = Viy1. So
(tr)? (F(xp41) — F(x%)) = (tr-1)* (F(xx) — F(x"))

< (k) (F(2r41) — F(x7)) = (te-1)? (F(xi) = F(x"))
< g (WP = 0).
Summing over k = 1,--- , N, we have
(tn)? (F(xn+41) — F(x7))
= (tn)* (F(xn41) = F(x")) = (t°)% (F(x1) = F(x"))

1
< — (Jta))* - U 2
S 2, (1O = U~ 41 1%)
1
< — U lI?
< g loal
1 * |12
= 5—lxo —x"|I”.

y
From (16) we can easily have that t;, > % So we have

2
3 llxo0 —x"1%.

F(xyi1) — F(x*) < a,(N+ 12

(66)

(67)

(68)

(69)

(70)
(71)

(72)
(73)

(74)

(75)
(76)

(77)

(78)
(79)

(80)

@81)

(82)

(83)

Theorem 3 Let f be a proper function with Lipschitz continuous gradients and g be proper and
lower semicontinuous. For nonconvex f and nonconvex nonsmooth g, assume that (3) holds. If we
further assume that f and g satisfy the KL property, and the desingularising function has the form

of p(t) = $19 for some C > 0, 0 € (0, 1], then

1. If 0 = 1, then there exists ky such that F(xy) = F* for all k > ki and the algorithm

terminates in finite steps.

2. If0 € [%7 1), then there exists ko such that for all k > ko,

dc? \"

(84)

3. If0 € (0, %), then there exists ks such that for all k > ks,

: c =
F(xy,) = F" < ((kkg)d2(129)) : (85)

where F* is the same function value at all the accumulation points of {xy}, 7, = F(vi) —
2 —
F*’ dl = (OzL + L) / <ﬁ B %)’ d2 = min {ﬁa 1_029 (2% - 1) Tge_l}

This theorem is similar to Theorem 4 in [5] and the proof is almost the same with [5]. We will
discuss the difference later.

Proof From (23) and (26) we have

1 L
P < PO = (5o - 5) e - P 6
1 L
< F(ve) - (2% - 2) [RZE A (87)
From (34) we have
. 1
dlst(O,BF(ka)) < (a + L) ||Vk+1 - XkH- (88)

From (30) we know that {x;} and {v;} have the same accumulation points. Let € be the set
that contains all the accumulation points of {xy} (also {vj}). Because F'(vy) is nonincreasing, F’
has the same value at all the accumulation points in 2. Let it be F'*. So we have

F(vi) > F*, F(vy) — F*. (89)
If there exists k such that F(vF) = F*, then F(vF) = F(vFtl) = ... = F*_ So |[vFt! —
x¥|| = |[vk*2 — x¥*1|| = ... = 0. The conclusion holds. If F(v;) > F* for all k, then from

F(vi) — F* we know that there exists k1 such that F(vi) < F* 4+ n whenever k& > k1. On the
other hand, because dist(vy, 2) — 0, there exists k2 such that dist(vy, 2) < € whenever k > k.

Let k > ko = max{ky, ko }, we have
vi € {v,dist(v, Q) < e} [(|[F* < F(v) < F* +1). (90)
From the uniform KL property in Lemma 1, there exists a concave function ¢ such that
O (F(vy) — F*)dist(0,0F (vi)) > 1. 1)

Define r, = F'(vy) — F'*. We suppose that r, > 0 for all k. Otherwise F'(vy) = F(vgy1) =+ =
F™* and the algorithm terminates in finite steps. By supposing this (91) holds.

From (88), (91) and (87) we have

1 < [¢/(F(vi) — F*)dist(0, 0F (vy)))” 92)
2

< WOIE (2 +L) Ive=xeal? ©3)
2

< PP (al +L) FVe) = Flve) ©4)

1 _ L
20, 2

= dil¢ (ri) P (re—1 — T)s (95)

2
for all k > ko, where d; = (i + L) / (i - %) Because ¢ has the form of o(t) = $t7, we
have ¢/ (t) = Ct?~1. So (95) becomes

1 S d102’1"]3972(7"k,1 - rk). (96)

1. Case § = 1.

In this case, (96) becomes
1 < diC?(ry, — rhy1). 97)

Because r;, — 0 and d; > 0, C' > 0, this is a contradiction. So there exists k1 such that r, = 0 for
all £ > k;. The algorithm terminates in finite steps.

2.Case§ € [3,1).

In this case, 0 < 2 — 20 < 1. As rp — 0, there exists 12:3 such that ri_w > 1y, for all k& > 1213.
(96) becomes

ri < diC*(rp—1 — k). (98)

So we have

2
e < mm_l, (99)
for all ky > maz{ko, ks} and
dc? \"

e < (W) Thy- (100)

So we have

, , $C? \

F(xy)— F* < F(vi) — F* =1, < (W) Ty - (101)

3. Case § € (0, 3).

In this case, 20 — 2 € (—2,—1),20 — 1 € (—1,0). As rx_1 > 7, we have 72772 < 2972 and

260—1 260—1 260—1
7o <<l <1

Define ¢(t) = 5,201, then ¢/ (t) = —Ct?92.

129

If T,Zf 2 < 27",39 12, then

o(ry) — d(ri—1) = / ¢ (t)dt = C/ +20=2 ¢ (102)
> Clrg1 —rp)ri’ 2 > 5(7% 1 —)2 (103)

1
2d,C" (104)

for all k& > k.

20—2 20—2 20—1 201
If ry > 2r. 7, then r > 229 27";;

C
o) — o) = 755 =i (105)
C
> o —= (237 — 1) (106)
= gt >l (107)
where ¢ = = 29(229 7 1). Letds = mm{Qd C,qroe 1, we have
(i) — P(rr—1) > da, (108)
for all £ > kg and
o(r) > d(ri) — dray) > Z o(ri) — d(ri—1) > (k — ko)do. (109)
i=ko+1

So we have

R)

110
P c ; (110)
and
C 1—20
< . 111
= ((k—ko)d2(1—29)) (b
Let k3 = ky we have
O 1—120
F —-F*<F —F* =, < 112
R O (== (12
which completes the proof. n
Difference with the conditions in [5]:
[5] considered general descent method with the conditions:
F(xpt1) < F(xk) — al[xp41 — i, (113)
and
|0F (xk4-1)[| < Bllxn+1 — x| (114)

Proximal gradient method is a typical example satisfying these conditions. However, to make the
proximal gradient method both accelerate and converge, we introduce the intermediate variables yy,
vy and zj. This makes our algorithm more complex and the conditions satisfied by our algorithm
becomes

F(xg11) < F(xi) — aflvigr = xil|, F(vir1) < F(vi) — af[Vi — x| (115)

and

[0F (vier1) || < Bl Vi1 — x| (116)
The intermediate variable v makes the main difference. As a result, under the conditions of (113)
and (114), a useful conclusion of finite length of {x}: Y2, ||xx+1 — x| < oo can be achieved and
{x1} is a converged sequence. Accordingly, the convergence rate for ||x; — x*|| can be obtained.
By contrast, our algorithm can only get Zfil lVik+1 — Xk || < oo. Neither the convergence rate for
lxx — x*|| nor {x;} is a converged sequence can be obtained.

2.1 Backtracking Line Search with Barzilai-Borwein Initializtion

In order to allow for larger step sizes, and thus faster convergence, we can use line search initialized
with the Barzilai-Borwein (BB) rule to compute the step sizes o, and «,. For a,, we choose the
smallest & > 0, such that vj4; computed by

@y = agop", (117
Vit1 = prox,, ,(Xk — oz Vf(xk)), (118)

satisfies
F(viy1) < F(xi) = 6[lvipr — x|, (119)

where
Sk Tsk Sk Tl‘k

Qg = Esk;Trk 2,0 = Erk;Tl‘k) (120)
Sk =V — Xp—1,Tx = Vf(vi) — Vf(xk—1), (121)

0 < p< landd > 0is asmall constant. Such v satisfying (119) can be found in finite
iterations. In the worst case, a,; will be reduced until o, < % oy can also use this strategy. It is
remarkable that Theorem 1 still holds when line search is used for a, and «,. To make Theorem 2
hold, instead of (119), we should use the following condition for c,:

1
f(Zrg1) < f(ye) +(VF(Yr)s Zbr1 — yi) + ﬂ”zk-&-l —yil?. (122)
Yy

We summarize the monotone APG with line search in Algorithm 2.

Algorithm 2 monotone APG with line search

Initialize z; = x; = Xg,t1 = 1,40 =0, >0, p < 1.
fork=1,2,3,--- do

th_ ti_1—1
Vi =Xi +]z Lz — Xp) + 2 (xp, — Xp_1), (123)
k 172
Sk =2k — Yi-1,Tk = Vf(zx) = Vf(yr-1), (124)
(sk)"sk (se)"rk
Qy = or Qu = , (125)
Y (sk) Ty, ()T,
Sk = Vi — Xp—1,Tx = V[(Vi) = Vf(xk-1), (126)
T T
. (Sk)Tsk or a, = (Sk)Trk. (127)
(sk)Trk ()T
Repeat
Zi+1 = proxayg(yk - ayvf(yk))a (128)
Qy = ay X p, (129)
until F(zpi1) < Fyr) — 6|zre1 — vyl
Repeat
Vi1 = prox, ,(Xk — oz Vf(xk)), (130)
ap = oy X p, (131)
until F(Vk+1) < F(Xk) — 5||Vk+1 - XkH2-
VAte)?2 +1+1
lht1 = B (132)
_ Zgpt1, if F(Zk+1) < F(Vk+1)a
Xkt = { Vit1, Otherwise. (33)
end for

Corollary 1 Let f be a proper function with Lipschitz continuous gradients and g be proper and
lower semicontinuous. For nonconvex f and nonconvex nonsmooth g, assume that (3) holds, then
{x1} and {vy.} generated by Algorithm 2 are bounded. Let x* be any accumulation point of {x}.},
we have 0 € OF (x*).

Proof From (23) and similar deduction we know that such «,, and o, satisfying

Vi1 = prox,, ,(Xk — oz V f(xk)), (134)
F(Vi1) < F(xp) = 8]|virr —xi 1%, (135)
Zi+1 = Prox, o(yx — oy Vf(yr)), (136)
F(zg41) < Fyx) = 0llzae1 — yil?, (137)
exist, e.g., when they are reduced until a, < % and oy < % So the line search can be terminated
in finite iterations. Similar to Theorem 1 we can have the conclusion.]

3 Nonmonotone APG

We summarize the nonmonotone APG in Algorithm 3 and nonmonotone APG with line search in
Algorithm 4.

Different from (121), we use the following s;, and ry, to initialize c, o when line search is used:

Sk =Xk — Yi—1,Tk = Vf(xr) = VI (Ye-1)s (138)

10

Algorithm 3 nonmonotone APG with fixed stepsize
Initialize z; = x1 = %0, t1 = 1,90 = 0,7 € [0,1),6 > 0,¢1 = F(x1), 1 = 1, a, < %,
oy < 1.
fork=1,2,3,--- do

t— th—1 —1
Vi =Xi + %(Zk —xi) + = ;k (XK — Xp-1), (140)
Zr1 = prox, o (yr — oy V f(yr)), (141)

if F(zg11) < c — 6)|Zry1 — y||? then

Xkl = Zht1- (142)
else
Vi1 = prox,, ,(xx — @z V f(xx)), (143)
_ zkv1, i F(zg41) < F(Viga),
Xkt1 = { Vi1, otherwise. (144)
end if
4(t)2 +1+1
thop1 = % (145)
Qk+1 = Nqk + 1, (146)
F
cpyy = Mk FXit1) (147)
qk+1
end for

This is because in nonmonotone APG, v}, is not computed in every iteration. So «; ¢ should be ini-
tialized only by the recent and existing information and we should also avoid additional calculations
of V f. Similarly, «, ¢ is initialized by the following s;, and r}:

Sk=Yk — Yi—1,Tk = Vf(y&) = VI (¥r-1) (139)

In practice, the line search for «y, is terminated when F(zj41) < F(yg) — 6||Zk+1 — yxl/? or
F(zp41) < ¢ — 8||zer1 — yi||? holds. Theoretically, we should use (122) as the stopping criteria
to make Theorem 2 hold. However, it needs more line searches.

Lemma 2 In Algorithms 3 and 4, we have

F(xg) <cp < Ag, A = W, (162)
and there exists o, such that

Vit = proxamg(xk —a,Vf(xg)) (163)
satisfies

F(vit1) < ¢ — 0| virr — xi|%, (164)

where 0 is any small positive constant.

The proof of (162) is similar to lemma 1.1 in [6]. Here we list the proof only for the sake of
completeness.

Proof We prove by induction. For k = 1, ¢; = F(x1). From (18)-(23) we know that o, < %
satisfies

F(v2) <1 —6l[va — x4, (165)

11

Algorithm 4 nonmonotone APG with line search

Initialize zy = x3 = x0,t1 = 1,60 =0,7€[0,1),6 >0,p<1,¢1 = F(x1),q1 = 1.
fork=1,2,3,--- do

tr_ tr—1— 1
Yk :ch“"%(zk —xp) + 2 (xp — X)) (148)
k 123
Sk =Yt —Yi-1,Tx = VI (¥x) = VI(yr-1), (149)
(sk)"sk (se) 'k
= or Q= , (150)
Y (sk) Ty (o) Ty,
Repeat
Zi1 = Prox, o (yi — oy V(i) (151)
Oy = Oy X, (152)
until F(Zk+1) < F(yk) — (5||Zk+1 — kaQ or F(Zk+1) <cp — 5||Zk+1 — yk||2-
if F(zg11) < cr — 6||Zry1 — y||? then
Xk+1 = Zf+1- (153)
else
Sk =Xt — Y1,k = Vf(Xx) = Vf(yr-1), (154)
(sk)"sk (se) "k
e = or g = , (155)
(si)Try, (r) Ty,
Repeat
Vitl = prox%g(xk —a, Vfxg)), (156)
Qg = Qg X P, (157)
until F(Vk+1) <cp — 5||Vk+1 — Xk||2.
_ | Zkr1, ifF(Zk41) < F(Vit),
Xk+1 = { Vii1, otherwise. (158)
end if
4(tp)2+1+1
ti1 = % (159)
Qr+1 = Nqk + 1, (160)
F
Chrt = nqrcr + (X/c+1). (161)
qk+1
end for
where
Vo = prox, ,(x1 — a, Vf(x1)). (166)
Ifforall k =1,--- 7, the conclusions hold, then we consider £k = j + 1. Define
tC‘ + F(X+1)
Diq(t)= 2L —917 167
then
d ¢j — F(xj41)
D (t) = 2 2\t 168
a P = =) (168)

12

If (142) in Algorithm 3 (or (153) in Algorithm 4) is executed, then
F(Xj+1) = F(Zj+1) S Cj. (169)

If (144) in Algorithm 3 (or (158) in Algorithm 4) is executed, by the induction step, we have that
F(vjt1) < ¢j = 6llvjr1 — x| So

F(Xj+1) < F(Vj+1) < Cj. (170)
So we have d
&Dj_,_l(t) >0, (171)
which means that D, (¢) is nondecreasing. So
F(xj11) = Dj1+1(0) < Dj11(ng;) = cjt. (172)
From the definition of g; we have
k
G =1+ 0 <k+1, (173)
i=1
due to n € [0,1). So we have
cj+1 = Dj11(ng;) = Dj41(gj+1 — 1) (174)
L g+ F(xj1) _ JA + F(x)41)
<D; = < =A._. 175
< Dj+1()) 1 < 1 41 (175)
From (18)-(23) and using F'(x;41) < ¢j+1 we have
1 L)
F(vip2) < Fxjp1) = (5 — 5) IVis2 = x4l (176)
20, 2
1 L
< Gip1— (2% - 2) V42 — x5 (177)
Soa, < % such that
Vit2 = prox, o(xj+1 — @z Vf(xj41)) (178)
satisfies
F(Vjya) < ¢j1 = 0|Vipe — x5 1% (179)

Theorem 4 Let f be a proper function with Lipschitz continuous gradients and g be proper and
lower semicontinuous. Let O = {k1,ko, - ,kj,---} and Qo = {mq1,mg,--- ,mj,---} such
that (142) in Algorithm 3 (or (153) in Algorithm 4) is executed for all k = k; € 0y and (144)
in Algorithm 3 (or (158) in Algorithm 4) is executed for all k = m; € Qa. For nonconvex f
and nonconvex nonsmooth g, assume that (3) holds, then {xy}, {vi} and {yy,} where k; € Q,
generated by Algorithms 3 and 4, are bounded and

1. if Q or Qq is finite, then for any accumulation point {x*} of {xx}, we have 0 € OF (x*).

2. if Qy and Qs are both infinite, then for any accumulation point X* of {Xy, 11}, y* of {y, }
where k; € 1, and any accumulation point X* of {Xpm, }, v* of{vmﬁl} where m; € (o,
we have 0 € OF (x*), 0 € OF (y*) and 0 € OF (v*).

Proof From Algorithm 3 we know that if (142) (or (153) in Algorithm 4) is executed, then

F(xr11) < ek = 0lxpr1 — vl (180)
and
F
o1 = nqxcr + (Xk+1) (181)
qk+1
- _ 2
< NqkCr + Ck 5||Xk+1 ka (182)
qk+1
5 _ 2
= = O — il (183)
dk+1

13

If (144) (or (153) in Algorithm 4) is executed, then
F(xp41) < F(Vis1) < ek — 0] vigr — xil|?, (184)
and

Ol Vi1 — x?

Cri1 < o — (185)

gk+1

k ,

From F(xp41) < ¢ < A = W we can have that F'(x;41) and ¢, are bounded by
induction. By assumption (3) we know that {x, } is bounded. From F'(vj41) < ¢ we know vyq
is bounded if v 1 is computed.

From the definitions of 2; and {25, we have
2
6|1 %k,+1 — ¥, |l
dk;+1

6vaj+l — Xmy; H2

Chj+1 < Cky — ki e (186)

ij+1 < Cm; —) M € QQ (187)
2 =1{1,2,3,-}, 2 (=0 (188)
From the definition of g we have
k k 00 1
=1 = P < = 189
Qr+1 +i22177 ;77 _ETZ = (189)
So we have
o _ Olxk 1 =y, P
6(L = m)lIxk;+1 — yilI° < —————— < ek, — 41, (190)
dk;+1
6| Vm.,4+1 — Xm,| 2
6(1 - 77)vaj+1 - ijH2 S | ths . | S ij - Cm7+1- (191)
QMjJrl ’
where k; € €1, m; € (2. Summing over j = 1,--- , 0o, we have
oo
6(1 - 77) Z(kaj-i-l — Yk, ||2 =+ ||ij+1 — Xm; ||2) <c —Fr. (192)
j=1

where k; € Q1,m; € Qo, F'* is the same function value at all the accumulation points and remark
that F'(x;) < ¢, inLemma 2, Q; Qs = {1,2,3,--- }, Q1 [Q2 = 0 and for a fixed £, either (183)
or (185) holds. So we have

> 2 2 C1 — F*
Z(kajﬂ = Vi 17+ (Vi1 — xm, [|7) < S(—n) < oo. (193)

j=1
We consider three cases one by one.

(1) Q5 is finite. In this case, there exists K such that (142) (or (153) in Algorithm 4) is executed
for all £ > Kj. So

oo
D lxkar = yrll® < 00, [Ixkr1 — yill> — 0. (194)
k=K

From the boundness of {x;} we have that {y}} is bounded because ||xx1+1 — y&||> — 0. Let y* be
any accumulation point of {yy}, say {yx, } — y* as | — oo. From ||xx1+1 — yx||> — 0 we have
{Xp, 41} = y*asl — oo.

From the optimality condition of (141) and x4 = Zx+1 we have

1
0 € Vf(ykz) + ;(Xkl+1 - ykl) + ag(XkLJrl) (195)
Yy
1
= vf(xkz+1) + vf(yk?l) - vf(XkLJrl) + ;(Xkl+1 - ykz) + ag(xk1+1)7 (196)
Yy

14

So we have

1
7vf(yk’l) + vf(xk’z-i-l) - ;(sz+1 - ykz) € aF(Xk’H-l)v (197)
Yy
and
1 1
9700 = Vst + e =3 | < () B =yl >0 o9
Y Y
as | — oo.

From (141) and X341 = Zr+1 we have

1
(VEYk)s Xhit1 — Yr) + Yo 1%k, 41 = Yoo lI” + 9%k 1) (199)
Y

* 1 * *

< (VIR Y =ym) + 5=y =yl +907). (200)
Y
So
1ifﬂ8upg(xkl+1) <g(y") (201)
—00

From the definition of lower semicontinuous of g we have

liminf g(xg,+1) > 9(y™). (202)
=00
So we have
Jim g(xk,+1) = 9(y7)- (203)
Because f is continuously differentiable, we have
ll;r& F(xp41) = F(y"). (204)
Similar to Theorem 1 we have
0 € dF(y"). (205)

From ||xj41 — y&||> — 0 we know that {x;} and {y} have the same accumulation point. So for
any accumulation point x* of {x;} we have

0 € OF (x*). (206)

(2) 21 is finite. In this case, there exists K such that (144) (or (158) in Algorithm 4) is executed
for all kK > Kgy. So

oo

> Vet = xkl|* < 00, Vi1 — Xk = 0. (207)
k=Ko

Similar to Theorem 1, for any accumulation point x* of {x;,} we have

0 € OF(x%). (208)

(3) €21 and €25 are both infinite. In this case
kajJrl — Yk, ||2 — 0, ||ij+1 — Xm; ”2 — 0. (209)

where k; € 1, m; € Q. From the boundness of {x}} we know y} is bounded where k; € €2;.
From cases 1 and 2, we know that for any accumulation point y* of {y,}, k; € Q1 and any
accumulation point x* of {X,,; }, m; € Qz, we have 0 € OF(y*) and 0 € OF(x*). Because
{Xk;+1} and {y#, } have the same accumulation point for k; € €1, {Vp,, 41} and {X,,, } have the
same accumulation point for m; € €25. So for any accumulation point x* of {ij+1}, k; € Oy, and
any accumulation point v* of {v,,,; 11}, m; € Q2,0 € OF(x*),0 € OF (v*). []

15

Table 1: Comparisons of APG, PG, GPower and CurveLS on the Sparse PCA problem. The quan-
tities include number of iterations, computing time (in seconds), sparsity (percentage of zeros) and
adjusted variance. We pursuit high sparsity and variance. They are averaged over 10 runs.
m [Method [#lter. [Time [sparsity [var

GPower || 1557 | 697 | 0.5341 | 0.5532

PG 1554 | 695 | 0.5341 | 0.5532
40 | CurviLS || 647 318 | 0.5343 | 0.5541
mAPG 275 268 | 0.5342 | 0.5536
nmAPG | 385 202 | 0.5341 | 0.5539
GPower || 1315 | 711 | 0.5992 | 0.6048

PG 1316 | 716 | 0.5992 | 0.6048
60 | CurviLS || 790 | 474 | 0.5991 | 0.6047
mAPG 268 | 322 | 0.5994 | 0.6049
nmAPG | 364 | 225 | 0.5994 | 0.6049
GPower || 1574 | 1012 | 0.6457 | 0.6367

PG 1575 | 1009 | 0.6457 | 0.6367
80 | CurviLS || 941 662 | 0.6455 | 0.6366
mAPG 262 | 371 | 0.6457 | 0.6370
nmAPG | 391 282 | 0.6459 | 0.6373

4 Numerical Results: Sparse PCA

Principal Component Analysis (PCA) is a basic technique for finding low-dimensional representa-
tions. But it has a drawback of lack of interpretability. Sparse PCA is a common approach to find
interpretable principal components and has been applied successfully in areas such as bioinformatics
[7]. One of the most popular approaches for solving Sparse PCA is the Generalized Power Method
(GPower) [8]. It first solves the following problem (210), then adds a post-processing step. We
focus here on the time consuming problem (210), which is an optimization problem on the Stiefel
manifold:

i f(X) = -

D

14

sl x| — ;)3 (210)
1

m

d

N =

J

where X € R"*™_ n is the sample size, m is the desired number of PCA component, A € R™*d g
the data matrix, d is the sample dimension and +y controls the sparsity. [z]; = max{z,0}. We set
i =1,v; =0.2forall 1 < j < m,and test with different m’s.

We compare monotone APG (mAPG) and nonmonotone APG (nmAPG) with Proximal Gradient
Method (PG), GPower and the Curvilinear search method (CurviLS) [9], the state-of-art algorithm
on the Stiefel manifold. The performance of PG and Inertial Forward-Backward (IFB) is similar. So
we omit to list the result of IFB here. We test the performance on the breast cancer data set!, which
contains 295 samples of 8241 dimensions. All the algorithms are terminated when || D f(X)|lo <
0.1 or the number of iterations exceeds 3000, where Df(X) := Vf(X) — X(Vf(X))TX is the
projected gradient onto the tangent planes. We test the machine learning performance by the sparsity
and the adjusted variance [10]. In PG and APG, we set the stepsize & = 100. f(X) in (210) is a
concave function and any stepsize can ensure that F'(vyy1) < F(xy)— 6| Vi1 —Xg||* holds. So we
choose a large stepsize to make it close to that of GPower, which can be viewed as using a stepsize
of oco.

Table 1 shows the related result. We can note that APG-type algorithms are much faster than PG
and GPower. mAPG needs fewer iterations while nmAPG needs less time. On the one hand, this
indicates that the monitor-corrector step in mAPG takes effect. On the other hand, the cost of each
iteration in mAPG is almost twice than that of nmAPG. This means that in nmAPG F(zj41) <
¢k — 6||Zr+1 — y&||* holds almost in all iterations and accordingly vy, is not computed in most of the
time. We can also see that APG-type algorithms are faster than CurviLLS, demonstrating that APG is
a competitive method for optimization on the Stiefel manifold.

'Data available at http://cbio.ensmp.fr/ ljacob/documents/overlasso-package.tgz

16

References

[1] R.T. Rockafellar & R. Wets, Variational Analysis. Springer, 1998.

[2] J. Bolte, S. Sabach & M. Teboulle. Proximal alternating linearized minimization for non-
convex and nonsmooth problems. Mathematical Programming, 146(1-2):459-494, 2014.

[3] H. Attouch, J. Bolte, P. Redont & A. Soubeyran. Proximal alternating minimization and pro-
jection methods for nonconvex problems: an approach based on the Kurdyka-F.ojasiewicz
inequality. Mathematics of Operations Research, 35:438-457, 2010.

[4] A.Beck & M. Teboulle. Fast gradient-based algorithms for constrained total variation image
denoising and deblurring problems. IEEE Transactions on Image Processing, 18(11):2419-
2434, 2009.

[5] P. Frankel, G. Garrigos & J. Peypouquet. Splitting methods with variable metric for kur-
dykaojasiewicz functions and general convergence rates. Journal of Optimization Theory
and Applications, 165:874-900, 2014.

[6] H. Zhang & W.W. Hager, A nonmonotone line search technique and its application to un-
constrained optimization. STAM J. Optimization, 14:1043-1056, 2004

[7]1 D. Lee, W. Lee, Y. Lee & Y. Pawitan. Super-sparse principal component analyses for high-
throughput genomic data. BMC Bioinformatics, 11(1):296, 2010.

[8] M. Journee, Y. Nesterov, P. Richtarik & R. Sepulchre. Generalized power method for sparse
pricipal component analysis. The Journal of Machine Learning Rearch, 11:517-553, 2010.

[9] Z. Wen & W. Yin. A feasible method for optimization with orthogonality constraints. Math-
ematical Programming, 142:397-434, 2013.

[10] H. Zou, T. Hastie & R. Tibshirani. Sparse principal component analysis. Journal of compu-
tational and graphical ststistics, 15(2):265-286, 2006.

17

