Learning with Relaxed Supervision

Jacob Steinhardt Percy Liang
Stanford University Stanford University
jsteinhardt@cs.stanford.edu pliang@cs.stanford.edu
Abstract

For weakly-supervised problems with deterministic constraints between the latent
variables and observed output, learning necessitates performing inference over la-
tent variables conditioned on the output, which can be intractable no matter how
simple the model family is. Even finding a single latent variable setting that sat-
isfies the constraints could be difficult; for instance, the observed output may be
the result of a latent database query or graphics program which must be inferred.
Here, the difficulty lies in not the model but the supervision, and poor approxi-
mations at this stage could lead to following the wrong learning signal entirely.
In this paper, we develop a rigorous approach to relaxing the supervision, which
yields asymptotically consistent parameter estimates despite altering the supervi-
sion. Our approach parameterizes a family of increasingly accurate relaxations,
and jointly optimizes both the model and relaxation parameters, while formu-
lating constraints between these parameters to ensure efficient inference. These
efficiency constraints allow us to learn in otherwise intractable settings, while
asymptotic consistency ensures that we always follow a valid learning signal.

1 Introduction

We are interested in the problem of learning from intractable supervision. For example, for a
question answering application, we might want to learn a semantic parser that maps a question
x (e.g., “Which president is from Arkansas?”) to a logical form z (e.g., USPresident(e) A
Place0fBirth(e, Arkansas)) that executes to the answer y (e.g., BillClinton). If we are only
given (z,y) pairs as training data [1, 2, 3], then even if the model py(z | x) is tractable, it is still
intractable to incorporate the hard supervision constraint [S(z,y) = 1] since z and y live in a large
space and S(z, y) can be complex (e.g., S(z,y) = 1 iff z executes to y on a database). In addition to
semantic parsing, intractable supervision also shows up in inverse graphics [4, 5, 6], relation extrac-
tion [7, 8], program induction [9], and planning tasks with complex, long-term goals [10]. As we
scale to weaker supervision and richer output spaces, such intractabilities will become the norm.

One can handle the intractable constraints in various ways: by relaxing them [11], by applying them
in expectation [12], or by using approximate inference [8]. However, as these constraints are part of
the supervision rather than the model, altering them can fundamentally change the learning process;
this raises the question of when such approximations are faithful enough to learn a good model.

In this paper, we propose a framework that addresses these questions formally, by constructing a
relaxed supervision function with well-characterized statistical and computational properties. Our
approach is sketched in Figure 1: we start with an intractable supervision function g (y | z) (given
by the constraint S), together with a model family py(z | z). We then replace g, by a family of
functions gg(y | z) which contains ¢, giving rise to a joint model pg 5(y,z | x). We ensure
tractability of inference by constraining pg(z |) and pg g(z | z,y) to stay close together, so that
the supervision y is never too surprising to the model. Finally, we optimize 6 and /3 subject to this
tractability constraint; when gg(y | 2) is properly normalized, there is always pressure to use the true

intractable region Figure 1: Sketch of our approach; we define
a family of relaxations gg of the supervision,
and then jointly optimize both 6 and (5. If the
supervision ¢g is too harsh relative to the ac-
curacy of the current model py, inference be-
comes intractable. In Section 4, we formulate
@ constraints to avoid this intractable region and
tractable region | learn within the tractable region.

more exact

™
2.
o)

less exact

less accurate [more accurate

supervision ¢, and we can prove that the global optimum of pg g is an asymptotically consistent
estimate of the true model.

Section 2 introduces the relaxed supervision model g5 (y | 2) o< exp(8 T ¥ (2,y)), where (z,y) = 0
iff the constraint S(z, y) is satisfied (the original supervision is then obtained when 5 = co). Sec-
tion 3 studies the statistical properties of this relaxation, establishing asymptotic consistency as well
as characterizing the properties for any fixed 3: we show roughly that both the loss and statistical
efficiency degrade by a factor of 3. , the inverse of the smallest coordinate of 3. In Section 4, we
introduce novel tractability constraints, show that inference is efficient if the constraints are satis-
fied, and present an EM-like algorithm for constrained optimization of the likelihood. Finally, in

Section 5, we explore the empirical properties of this algorithm on two illustrative examples.

2 Framework

We assume that we are given a partially supervised problem z — z — y where (z,y) € X x Y
are observed and z € Z is unobserved. We model z given x as an exponential family py(z |) =
exp(07 ¢(z,2) — A(0;z)), and assume that y = f(z) is a known deterministic function of z. Hence:

poly | @) =) S(z.y)exp(8 d(z,2) — A(6;)), (1)

where S(z,y) € {0,1} encodes the constraint [f(z) = y]. In general, f could have complicated
structure, rendering inference (i.e., computing py(z | , y), which is needed for learning) intractable.
To alleviate this, we consider projections 7; mapping) to some smaller set)V;; we then obtain the
(hopefully simpler) constraint that f(z) and y match under 7;: S;(z, y) def [7;(f(2)) = 7(y)]. We
assume mp X --- X T is injective, which implies that S(z, y) equals the conjunction /\f:1 S;(z,y).
We also assume that some part of S (call it T(z, y)) can be imposed tractably. We can always take
T = 1, but it is better to include as much of S as possible because T will be handled exactly while S
will be approximated. We record our assumptions below:

Definition 2.1. Let S(z,y) encode the constraint f(z) = y. We say that (T, m1,...,7) logically
decomposes S if (1) S implies T and (2) w1 X --- X 7 is injective.

Before continuing, we give three examples to illustrate the definitions above.

Example 2.2 (Translation from unordered supervision). Suppose that given an input sentence x,
each word is passed through the same unknown 1-to-1 substitution cipher to obtain an enciphered
sentence z, and then ordering is removed to obtain an output y = multiset(z). For example, we
might have © = abaa, z = dedd, and y = {c : 1,d : 3}. Suppose the vocabulary is {1,...,V}. Our
constraint is S(z, y) = [y = multiset(z)], which logically decomposes as

7(2) 75 (y)
—_— v /—J/‘H
[y = multiset(z)] <= [z; € y forall i| A /\ [count(z, j) = count(y, j)], (2)
S(z.9) T(2.9) = 5(220)

where count(-, j) counts the number of occurrences of the word j. The constraint T is useful because
it lets us restrict attention to words in y (rather than all of {1,...,V}), which dramatically reduces
the search space. If each sentence has length L, then ; = 7;()) = {0,...,L}.

Example 2.3 (Conjunctive semantic parsing). Suppose again that x is an input sentence, and that
each input word x; € {1,...,V} maps to a predicate (set) z; € {Q1,...,Qm}, and the meaning y

of the sentence is the intersection of the predicates. For instance, if the sentence = is “brown dog”,
and Qg is the set of all brown objects and Q17 is the set of all dogs, then z; = Qg, 22 = @11, and

y = Qg N Q11 is the set of all brown dogs. In general, we define y = [z] def z1MN---Ngz. Thisis a
simplified form of learning semantic parsers from denotations [2].

We let) be every set that is obtainable as an intersection of predicates (), and define 7 (y)=1[y C
Qj] for j = 1,...,m (so J; = {0,1}). Note that for all y €), we have y = Nj.x,(y)=1@;, SO
m X .-+ X Ty, is injective. We then have the following logical decomposition:

m ™ (y)
y=[z2] < [z 2 yforalli] /\ [zl € Q] =y CQ;]. 3)
—— i1

S(z,y) T(z,y) S;(z,9)
The first constraint T factors across ¢, so it can be handled tractably.

Example 2.4 (Predicate abstraction). Next, we consider a program induction task; here
the input = might be “smallest square divisible by six larger than 10007, z would be
argmin{il mod(il,6) = 0 and il = i2%i2 and il > 1000}, and y would be
1296; hence S(z,y) = 1 if z evaluates to y. Suppose that we have a collection of predicates 7,
such as m1 (y) = mod(y, 6), m2(y) = isPrime(y), etc. These predicates are useful for giving partial
credit; for instance, it is easier to satisfy mod(y,6) = 0 than y = 1296, but many programs that
satisfy the former will have pieces that are also in the correct z. Using the 7; to decompose S will
therefore provide a more tractable learning signal that still yields useful information.

Relaxing the supervision. Returning to the general framework, let us now use S; and T to relax
S, and thus also py(y | «). First, define penalty features ;(z,y) = S;(2,y) — 1, and also define
q8(y |) < T(z,y) exp (BTw(z, y)) for any vector 5 > 0. Then, — log ¢3(y | z) measures how far
S(z,y) is from being satisfied: for each violated S;, we incur a penalty ; (or infinite penalty if T is
violated). Note that the original goo (y | 2) = S(z,y) corresponds to 51 = -+ = B = +o0.

Normalization constant. The log-normalization constant A(f3;z) for ¢g is equal to
log(3>_, ey T(2,9) exp(BT1)(z,y))); this is in general difficult to compute, since 1) could have arbi-
trary structure. Fortunately, we can uniformly upper-bound A(f3; z) by a tractable quantity A(S):

Proposition 2.5. For any z, we have the following bound:
- def
Z (1+ (1Y =1 exp(=5;)) = A(B). “

See the supplement for proof; the intuition is that, by injectivity of w1 X - - X 7, we can bound)
by the product set H§:1 Y;. We now define our joint model, which is a relaxation of (1):

as(y | 2) = T(z,y) exp (BT ¥(z,9) — A(B)) , (5)
pos(y|z) = T(z,y)exp(0 d(z,2) + B 9(2,y) — Al0;x) — A(B)), 6)
L(0,8) = Ey yp[—logpe. sy |)], where p™ is the true distribution. 7

The relaxation parameter 3 provides a trade-off between faithfulness to the original objective (large
B) and tractability (small /). Importantly, pg s(y |) produces valid probabilities which can be
meaningfully compared across different 3; this will be important later in allowing us to optimize 5.
(Note that while Zy po.s(y |) < 1if the bound (4) is not tight, this gap vanishes as 8 — c0.)

3 Analysis
We now analyze the effects of relaxing supervision (i.e., taking 8 < c0); proofs may be found in the
supplement. We will analyze the following properties:

1. Effect on loss: How does the value of the relaxation parameter (affect the (unrelaxed) loss of
the learned parameters # (assuming we had infinite data and perfect optimization)?

2. Amount of data needed to learn: How does (3 affect the amount of data needed in order to
identify the optimal parameters?

3. Optimizing 5 and consistency: What happens if we optimize 3 jointly with 6? Is there natural
pressure to increase [and do we eventually recover the unrelaxed solution?

Notation. Let E,- denote the expectation under z,y ~ p*, and let L(f, co) denote the unrelaxed
loss (see (5)—(7)). Let L* = infy L(6, c0) be the optimal unrelaxed loss and 6* be the minimizing
argument. Finally, let Ey and Covy denote the expectation and covariance, respectively, under
po(z | z). To simplify expressions, we will often omit the arguments from ¢(x, z) and ¥ (z, y), and
use S and —S for the events [S(z, y) = 1] and [S(z, y) = 0]. For simplicity, assume that T(z,y) = 1.

Effect on loss. Suppose we set 3 to some fixed value (f1,. .., 5x) and let 9; be the minimizer of
L(6,). Since 0} is optimized for L(-, B) rather than L(-, 00), it is possible that L(@;;, 00) is very
large; indeed, if py; (y | z) is zero for even a single outlier (,y), then L(6}, o0) will be infinite.
However, we can bound 9; under an alternative loss that is less sensitive to outliers:

Proposition 3.1. Let Bpin = min;?:1 Bj. Then, Ep-[1 = pos (y | 2)] < m

The key idea in the proof is that replacing S with exp(374)) in pp g does not change the loss too
much, in the sense that S < exp(37¢) < exp(—Bmin) + (1 — exp(—Bmin))S.

When Bpin < 1, W ~ ;jﬂ—n Hence, the error increases roughly linearly with B;iln. If

Bmin 1s large and the original loss L* is small, then L(-, 5) is a good surrogate. Of particular interest
is the case L* = 0 (perfect predictions); in this case, the relaxed loss L(-, 8) also yields a perfect
predictor for any 8 > 0. Note conversely that Proposition 3.1 is vacuous when L* > 1.

We show in the supplement that Proposition 3.1 is essentially tight:

Lemma 3.2. Forany 0 < Bunin < L*, there exists a model with loss L* and a relaxation parameter
B = (Bmin, 00, . . ., 00), such that E,- [pg; (y |)] =0.

Amount of data needed to learn. To estimate how much data is needed to learn, we compute the

Fisher information Ig ef VgL(@E, B), which measures the statistical efficiency of the maximum
likelihood estimator [13]. All of the equations below follow from standard properties of exponential
families [14], with calculations in the supplement. For the unrelaxed loss, the Fisher information is:

Zoo = Ep- [Po+[=S] (Ep- [¢ @ ¢ | =S| = Eg- [p @ ¢ | §])] - (®)

Hence 6™ is easy to estimate if the features have high variance when S = 0 and low variance when
S = 1. This should be true if all z with S(z,y) = 1 have similar feature values while the z with
S(z,y) = 0 have varying feature values.

In the relaxed case, the Fisher information can be written to first order as
Is = E,- {Coveg [p(z,2) ® (z,2), —B (2, y)ﬂ +0(B?). 9)

In other words, Zg, to first order, is the covariance of the penalty —ﬁTd) with the second-order
statistics of ¢. To interpret this, we will make the simplifying assumptions that (1) 3; = Buin for all
j, and (2) the events —S; are all disjoint. In this case, — BT1) = Bmin—S, and the covariance in (9)
simplifies to

Coves [¢® ¢, —B" %] = BuinPos [S|Po; [-S] (Eeg [0©¢|—S]—Eg;[0® 9| S]) - (10)

Relative to (8), we pick up a BPQE [S] factor. If we further assume that Po- [S] &~ 1, we see that the
-1

min*

amount of data required to learn under the relaxation increases by a factor of roughly 3

Optimizing 5. We now study the effects of optimizing both # and (3 jointly. Importantly, joint
optimization recovers the true distribution pg~ in the infinite data limit:

Proposition 3.3. Suppose the model is well-specified: p*(y |) = pe~(y | ©) for all z,y. Then, all
global optima of L(8, B) satisfy pe.s(y |) = p*(y |); one such optimum is 6 = 6*, 5 = oo.

There is thus always pressure to send 3 to co and 6 to 8*. The key fact in the proof is that the log-loss
L(0, 5) is never smaller than the conditional entropy H,«(y | =), with equality iff pg g = p*.

Summary. Based on our analyses above, we can conclude that relaxation has the following impact:

e Loss: The loss increases by a factor of 51 in the worst case.

min

o Amount of data: In at least one regime, the amount of data needed to learn is 5. times larger.

min

The general theme is that the larger 3 is, the better the statistical properties of the maximum-
likelihood estimator. However, larger 3 also makes the distribution pg g less tractable, as gg(y | z)
becomes concentrated on a smaller set of y’s. This creates a trade-off between computational effi-
ciency (small 3) and statistical accuracy (large). We explore this trade-off in more detail in the
next section, and show that in some cases we can get the best of both worlds.

4 Constraints for Efficient Inference

In light of the previous section, we would like to make /3 as large as possible; on the other hand,
if B is too large, we are back to imposing S exactly and inference becomes intractable. We would
therefore like to optimize (8 subject to a tractability constraint ensuring that we can still perform
efficient inference, as sketched earlier in Figure 1. We will use rejection sampling as the inference
procedure, with the acceptance rate as a measure of tractability.

To formalize our approach, we assume that the model py(z |) and the constraint T(z, y) are jointly
tractable, so that we can efficiently draw exact samples from

por(z | z,y) & T(z,y)exp (07 d(, 2) — Ar(6; 2,9)) , (1)

where Ar(0;z,y) = log(>_, T(z,y) exp(67 é(z, 2))). Most learning algorithms require the condi-
tional expectations of ¢ and ¢ given x and y; we therefore need to sample the distribution

pos(z | z,y) =T(z,y)exp (07 ¢(z,2) + BT (2, y) — A0, B;z,y)) , where (12)

A0, B;2,y) < log <Z T(z,y) exp(0” ¢(x, 2) + /M(z,y))) : (13)

z

Since 371 < 0, we can draw exact samples from pg. g using rejection sampling: (1) sample z from
por(- | @,y), and (2) accept with probability exp(3 ' (z,y)). If the acceptance rate is high, this
algorithm lets us tractably sample from (12). Intuitively, when @ is far from the optimum, the model
pe and constraints S; will clash, necessitating a small value of 3 to stay tractable. As 6 improves,
more of the constraints S; will be satisfied automatically under py, allowing us to increase 3.

Formally, the expected number of samples is the inverse of the acceptance probability and can be
expressed as (see the supplement for details)

(S pone | 2)exp(BTo(=0) = exp (Ar(B:w.) — A@.Bizy) . (14

z

We can then minimize the loss L(6, 8) = A(0;z) + A(B) — A0, B;x,y) (see (6)—(7) and (13))
subject to the tractability constraint E, ,[exp (Ar(0;z,y) — A(0, B;x,y))] < 7, where 7 is our
computational budget. While one might have initially worried that rejection sampling will perform
poorly, this constraint guarantees that it will perform well by bounding the number of rejections.

Implementation details. To minimize L subject to a constraint on (14), we will develop an EM-like
algorithm; the algorithm maintains an inner approximation to the constraint set as well as an upper
bound on the loss, both of which will be updated with each iteration of the algorithm. These bounds

are obtained by linearizing A(6, 3; z,); more precisely, for any (6, 3) we have by convexity:

Ao ﬂ;zy)>z‘1(Bix,y) A0, Bra,y)+ (0 -0)Td+ (8- 54, (15)
where ¢ < Zp (2| 2, y)o(x, 2), wdEpr (= | ,9)¢(2,y)-

We thus obtain a bound L on the loss L, as well as a tractability constraint C;, which are both convex:
minimize E,- [A(H;x) + A(B) — A(Q,ﬁ;x,y)} (L)
subject to E,- [exp (AT(Q; x,y) — A6, B; y))] < (Cy)

We will iteratively solve the above minimization, and then update L and C using the minimizing
(6, B) from the previous step. Note that the minimization itself can be done without inference; we
only need to do inference when updating 6 and 1/; Since inference is tractable at (5, B) by design,
we can obtain unbiased estimates of ¢ and v using the rejection sampler described earlier. We can
also estimate A(9~, B, y) at the same time by using samples from PgT and the relation (14).

A practical issue is that C; becomes overly stringent when (6,) is far away from (6, 3). It is
therefore difficult to make large moves in parameter space, which is especially bad for getting started
initially. We can solve this using the trivial constraint

exp (iﬁj) <, (Co)
=1

which will also ensure tractability. We use (Cy) for several initial iterations, then optimize the rest
of the way using (C;). To avoid degeneracies at 3 = 0, we also constrain 5 > ¢ in all iterations. We
will typically take € = 1/k, which is feasible for (Cy) assuming 7 > exp(1).!

To summarize, we have obtained an iterative algorithm for jointly minimizing L(6, 3), such that
po,a(z | x,y) always admits efficient rejection sampling. Pseudocode is provided in Algorithm 1;
note that all population expectations [E,,- should now be replaced with sample averages.

Algorithm 1 Minimizing L(6, 8) while guaranteeing tractable inference.

Input training data (29, y(")7_ .

Initialize 6 = 0, Bj =eforj=1,... k.

while not converged do
Estimate ¢(¥), /(") and A(0, 5; 2, y@) fori = 1,...,n by sampling 52| 2@),
Estimate the functions 121(9, B;), y(i)) using the output from the preceding step.
Let (0, 3) be the solution to

n

1 , ~ L
inimize — () _ cp (D) ()
m1n€171/1311ze - ; (A(H,)+ A(B) — AO, B; 2y))

subjectto (Cp), [>eforj=1,...,k

Update (6, 8) « (8, 3).
end while
Repeat the same loop as above, with the constraint (Cy) replaced by (Cy).

Output (6, 5).

5 Experiments

We now empirically explore our method’s behavior. All of our code, data, and experiments may be
found on the Codalab worksheet for this paper at https://www.codalab.org/worksheets/
0xc9db508bb80446d2b66cbc8e2c74c052/, which also contains more detailed plots beyond
those shown here. We would like to answer the following questions:

e Fixed [3: For a fixed 3, how does the relaxation parameter [affect the learned parameters?
What is the trade-off between accuracy and computation as we vary 3?

'If only some of the constraints S; are active for each y (e.g. for translation we only have to worry about
the words that actually appear in the output sentence), then we need only include those 3; in the sum for (Co).
This can lead to substantial gains, since now k is effectively the sentence length rather than the vocabulary size.

https://www.codalab.org/worksheets/0xc9db508bb80446d2b66cbc8e2c74c052/
https://www.codalab.org/worksheets/0xc9db508bb80446d2b66cbc8e2c74c052/

1.0 - o 1.0
e~ AdaptFull(50) e AdaptFull(200)
e~ AdaptTied(50) e AdaptTied(200)
0.8} = Fixed(0.8) 0.81| = AdaptFull(100)
e~ Fixed(0.5) o~ AdaptFull(50)
Fixed(0.2) — Fixed(0.5)
> Fixed(0.1) > || = Fixed(0.3)
g 0.6 3 0.6 Fred(0.2)
© o
3 3
O (.4 ’ © 0.4
@ @
0.2 0.2
0.0 - . . 0.0 . i _ ’
10 10° 100 107 108 10t 10° 10° 107 108 10°
number of samples number of samples
(@) (b)

Figure 2: (a) Accuracy versus computation (measured by number of samples drawn by the rejection
sampler) for the unordered translation task. (b) Corresponding plot for the conjunctive semantic
parsing task. For both tasks, the FIXED method needs an order of magnitude more samples to
achieve comparable accuracy to either adaptive method.

e Adapting 5: Does optimizing [affect performance? Is the per-coordinate adaptivity of our
relaxation advantageous, or can we set all coordinates of 3 to be equal? How does the compu-
tational budget T (from Cy and C;) impact the optimization?

To answer these questions, we considered using a fixed 5 (FIXED(()), optimizing 8 with a computa-
tional constraint 7 (ADAPTFULL(7)), and performing the same optimization with all coordinates of
B constrained to be equal (ADAPTTIED(7)). For optimization, we used Algorithm 1, using S = 50

samples to approximate each # and 1)V, and using the solver SNOPT [15] for the inner optimiza-
tion. We ran Algorithm 1 for 50 iterations; when /3 is not fixed, we apply the constraint (Cy) for
the first 10 iterations and (C;) for the remaining 40 iterations; when it is fixed, we do not apply any
constraint.

Unordered translation. We first consider the translation task from Example 2.2. Recall that we

are given a vocabulary [V] 2 {1,...,V}, and wish to recover an unknown 1-1 substitution cipher
¢ : [V] — [V]. Given an input sentence 1.7, the latent z is the result of applying ¢, where z; is
c¢(x;) with probability 1 — § and uniform over [V] with probability 6. To model this, we define a
feature ¢, ,(z, z) that counts the number of times that x; = w and z; = v; hence, pp(z |) x

exp(ZiL:1 0z, ;) Recall also that the output y = multiset(z).

In our experiments, we generated n = 100 sentences of length L = 20 with vocabulary size V =
102. For each pair of adjacent words (z;_1, Z2;), we set x2;,—1 = 3j + 1 with j drawn from a power
law distribution on {0, ...,V /3 — 1} with exponent r > 0; we then set z2; to 35 + 2 or 3j + 3 with
equal probability. This ensures that there are pairs of words that co-occur often (without which the
constraint T would already solve the problem).

We set 7 = 1.2 and § = 0.1, which produces a moderate range of word frequencies as well as
a moderate noise level (we also considered setting either r or ¢ to 0, but omitted these results be-
cause essentially all methods achieved ceiling accuracy; the interested reader may find them in our
Codalab worksheet). We set the computational budget 7 = 50 for the constraints Cy and C;, and
€= % as the lower bound on 3. To measure accuracy, we look at the fraction of words whose modal
prediction under the model corresponds to the correct mapping.

We plot accuracy versus computation (i.e., cuamulative number of samples drawn by the rejection
sampler up through the current iteration) in Figure 2a; note that the number of samples is plotted on a
log-scale. For the FIXED methods, there is a clear trade-off between computation and accuracy, with
multiplicative increases in computation needed to obtain additive increases in accuracy. The adaptive
methods completely surpass this trade-off curve, achieving higher accuracy than FIXED(0.8) while
using an order of magnitude less computation. The ADAPTFULL and ADAPTTIED methods achieve
similar results to each other; in both cases, all coordinates of 3 eventually obtained their maximum
value of 5.0, which we set as a cap for numerical reasons, and which corresponds closely to imposing
the exact supervision signal.

Conjunctive semantic parsing. We also ran experiments on the semantic parsing task from Exam-
ple 2.3. We used vocabulary size V' = 150, and represented each predicate Q as a subset of [U],
where U = 300. The five most common words in [V] mapped to the empty predicate Q = [U], and
the remaining words mapped to a random subset of 85% of [U]. We used n = 100 and sentence
length I = 25. Each word in the input was drawn independently from a power law with r = 0.8. A
word was mapped to its correct predicate with probability 1 — § and to a uniformly random predicate
with probability &, with 6 = 0.1. We constrained the denotation y = [z] to have non-zero size by
re-generating each examples until this constraint held. We used the same model pg(z |) as before,
and again measured accuracy based on the fraction of the vocabulary for which the modal prediction
was correct. We set 7 = 50, 100, 200 to compare the effect of different computational budgets.

Results are shown in Figure 2b. Once again, the adaptive methods substantially outperform the
FIXED methods. We also see that the accuracy of the algorithm is relatively invariant to the compu-
tational budget 7 — indeed, for all of the adaptive methods, all coordinates of 3 eventually obtained
their maximum value, meaning that we were always using the exact supervision signal by the end
of the optimization. These results are broadly similar to the translation task, suggesting that our
method generalizes across tasks.

6 Related Work and Discussion

For a fixed relaxation 3, our loss L(6,) is similar to the Jensen risk bound defined by Gimpel and
Smith [16]. For varying 3, our framework is similar in spirit to annealing, where the entire objective
is relaxed by exponentiation, and the relaxation is reduced over time. An advantage of our method
is that we do not have to pick a fixed annealing schedule; it falls out of learning, and moreover, each
constraint can be annealed at its own pace.

Under model well-specification, optimizing the relaxed likelihood recovers the same distribution as
optimizing the original likelihood. In this sense, our approach is similar in spirit to approaches such
as pseudolikelihood [17, 18] and, more distantly, reward shaping in reinforcement learning [19].

There has in the past been considerable interest in specifying and learning under constraints on
model predictions, leading to a family of ideas including constraint-driven learning [11], generalized
expectation criteria [20, 21], Bayesian measurements [22], and posterior regularization [23]. These
ideas are nicely summarized in Section 4 of [23], and involve relaxing the constraint either by using
a variational approximation or by applying the constraint in expectation rather than pointwise (e.g.,
replacing the constraint h(x, z,y) > 1 with E[h(z, z,y)] > 1). This leads to tractable inference
when the function / can be tractably incorporated as a factor in the model, which is the case for many
problems of interest (including the translation task in this paper). In general, however, inference will
be intractable even under the relaxation, or the relaxation could lead to different learned parameters;
this motivates our framework, which handles a more general class of problems and has asymptotic
consistency of the learned parameters.

The idea of learning with explicit constraints on computation appears in the context of prioritized
search [24], MCMC [25, 26], and dynamic feature selection [27, 28, 29]. These methods focus on
keeping the model tractable; in contrast, we assume a tractable model and focus on the supervision.
While the parameters of the model can be informed by the supervision, relaxing the supervision as
we do could fundamentally alter the learning process, and requires careful analysis to ensure that
we stay grounded to the data. As an analogy, consider driving a car with a damaged steering wheel
(approximate model) versus not being able to see the road (approximate supervision); intuitively,
the latter appears to pose a more fundamental challenge.

Intractable supervision is a key bottleneck in many applications, and will only become more so as
we incorporate more sophisticated logical constraints into our statistical models. While we have
laid down a framework that grapples with this issue, there is much to be explored—e.g., deriving
stochastic updates for optimization, as well as tractability constraints for more sophisticated infer-
ence methods.

Acknowledgments. The first author was supported by a Fannie & John Hertz Fellowship and an
NSF Graduate Research Fellowship. The second author was supported by a Microsoft Research
Faculty Fellowship. We are also grateful to the referees for their valuable comments.

References

(1]
(2]
(3]
(4]

(3]

(6]
(7]
(8]
(9]

(10]

(1]

[12]
(13]
(14]

(15]

(16]

[17]
(18]

(19]
[20]
(21]
(22]
(23]
[24]

[25]
(26]
(27]

(28]
[29]

J. Clarke, D. Goldwasser, M. Chang, and D. Roth. Driving semantic parsing from the world’s response.
In Computational Natural Language Learning (CoNLL), pages 18-27, 2010.

P. Liang, M. I. Jordan, and D. Klein. Learning dependency-based compositional semantics. In Association
for Computational Linguistics (ACL), pages 590-599, 2011.

Y. Artzi and L. Zettlemoyer. Weakly supervised learning of semantic parsers for mapping instructions to
actions. Transactions of the Association for Computational Linguistics (TACL), 1:49-62, 2013.

M. Fisher, D. Ritchie, M. Savva, T. Funkhouser, and P. Hanrahan. Example-based synthesis of 3D object
arrangements. ACM SIGGRAPH Asia, 12, 2012.

V. Mansinghka, T. D. Kulkarni, Y. N. Perov, and J. Tenenbaum. Approximate Bayesian image interpre-
tation using generative probabilistic graphics programs. In Advances in Neural Information Processing
Systems (NIPS), pages 1520-1528, 2013.

A. X. Chang, M. Savva, and C. D. Manning. Learning spatial knowledge for text to 3D scene generation.
In Empirical Methods in Natural Language Processing (EMNLP), 2014.

M. Mintz, S. Bills, R. Snow, and D. Jurafsky. Distant supervision for relation extraction without labeled
data. In Association for Computational Linguistics (ACL), pages 1003-1011, 2009.

S. Riedel, L. Yao, and A. McCallum. Modeling relations and their mentions without labeled text. In
Machine Learning and Knowledge Discovery in Databases (ECML PKDD), pages 148-163, 2010.

S. Gulwani. Automating string processing in spreadsheets using input-output examples. ACM SIGPLAN
Notices, 46(1):317-330, 2011.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller,
A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep reinforcement learning. Nature,
518(7540):529-533, 2015.

M. Chang, L. Ratinov, and D. Roth. Guiding semi-supervision with constraint-driven learning. In Asso-
ciation for Computational Linguistics (ACL), pages 280-287, 2007.

J. Graga, K. Gancheyv, and B. Taskar. Expectation maximization and posterior constraints. In NIPS, 2008.
A. W. van der Vaart. Asymptotic statistics. Cambridge University Press, 1998.

F. Nielsen and V. Garcia. Statistical exponential families: A digest with flash cards. arXiv preprint
arXiv:0911.4863, 20009.

P. E. Gill, W. Murray, and M. A. Saunders. SNOPT: An SQP algorithm for large-scale constrained
optimization. SIAM Journal on Optimization, 12(4):979-1006, 2002.

K. Gimpel and N. A. Smith. Softmax-margin CRFs: Training log-linear models with cost functions. In
North American Association for Computational Linguistics (NAACL), pages 733-736, 2010.

J. Besag. The analysis of non-lattice data. The Statistician, 24:179-195, 1975.

P. Liang and M. I. Jordan. An asymptotic analysis of generative, discriminative, and pseudolikelihood
estimators. In International Conference on Machine Learning (ICML), pages 584-591, 2008.

A. Y. Ng, D. Harada, and S. Russell. Policy invariance under reward transformations: Theory and appli-
cation to reward shaping. In International Conference on Machine Learning (ICML), 1999.

G. Mann and A. McCallum. Generalized expectation criteria for semi-supervised learning of conditional
random fields. In HLT/ACL, pages 870-878, 2008.

G. Druck, G. Mann, and A. McCallum. Learning from labeled features using generalized expectation
criteria. In ACM Special Interest Group on Information Retreival (SIGIR), pages 595-602, 2008.

P. Liang, M. L. Jordan, and D. Klein. Learning from measurements in exponential families. In Interna-
tional Conference on Machine Learning (ICML), 2009.

K. Gancheyv, J. Graga, J. Gillenwater, and B. Taskar. Posterior regularization for structured latent variable
models. Journal of Machine Learning Research (JMLR), 11:2001-2049, 2010.

J. Jiang, A. Teichert, J. Eisner, and H. Daume. Learned prioritization for trading off accuracy and speed.
In Advances in Neural Information Processing Systems (NIPS), 2012.

T. Shi, J. Steinhardt, and P. Liang. Learning where to sample in structured prediction. In AISTATS, 2015.
J. Steinhardt and P. Liang. Learning fast-mixing models for structured prediction. In /CML, 2015.

H. He, H. Daume, and J. Eisner. Cost-sensitive dynamic feature selection. In ICML Inferning Workshop,
2012.

H. He, H. Daume, and J. Eisner. Dynamic feature selection for dependency parsing. In EMNLP, 2013.

D. J. Weiss and B. Taskar. Learning adaptive value of information for structured prediction. In Advances
in Neural Information Processing Systems (NIPS), pages 953-961, 2013.

A Proofs for Section 2

.. def . C .
Proof of Proposition 2.5. Let 1 = 7, X --- x 7. Since ¢ is injective by assumption, we have

exp(A(B;2) = Y exp(8T4(2,y)) (16)
yey
= > (87207 () (17
peL(Y)

I
N
@
5

k
(— > Bl (f(2)) # pj]) (18)

Jj=1

A
]
. @

5

k
(—Zﬁjﬂ[ﬂj(f@)) #pﬂ) (19)

pell, Vj j=1
k
=1] D exp(=8llr;(£(2)) # p)]) (20)
J=1p;€Y;
k
= [T+ (V-1 exp(=5))), @1
j=1
as was to be shown.]
B Proofs for Section 3
B.1 Effect on loss
Proof of Proposition 3.1. Note that we have
L* = Ep[~logpe-(y | x)] (22)
=]EP* [_ 1Og EZN;DQ* [S(Zv y)“ (23)
(a)
> Ep [~ 108 Enp,. [exp(879(2,9))]] (24)
=Ep [~ logE.p,. [ps(y | 2) exp(A(B))]] (25)
=Ep-[logpe- s(y | z) — A(B)] (26)
= L(0",8) — A(B) @7
Q]
> L(05,8) — A(B). (28)

Here (a) follows because S(z,y) < exp(37(z,y)), since the latter is non-negative and is 1 when
S(z,y) = 1; (b) follows because 0} is the minimizer of L(-, 3). Continuing:

L(85,) = A(B) = By [~ 10g Ean,. [exp(8T4(2,9))] (29)
S By [108 E. . [exp(~ (1 S(z.9))] (30)
= Ep- [~ log(po; (v | #) + (1 = poz (y | 7)) exp(—fmin))] G1)
= By [~ log(1 — (1~ pas (y | 2))(1 — exp(—Busin)))] (32)
By 11— 903 (5 | 2)(1 — exp(—Buin))] 33

Again, (c) follows because 874(2,9) < —Bmin(1 — S(z,¥)), and (d) follows because — log(1 —
z) = x for x < 1. Putting these together, we have L* > (1 — exp(—fBmin))Ep-[1 — pos (y |)],
which yields the desired result. O

10

Proof of Lemma 3.2. We will show a stronger result: any model and relaxation can be slightly mod-
ified to cause E,- [pg; (y |)] to be zero, in a way that is demonstrated below (though the modified

model will no longer be an exponential family).

Given any Sy.j, construct a new point zo such that S;.(z0,y) = 1 for all y, and add a new con-
straint So(z,y) = [z # 2o]. Then S(zg,y) = 0 for all y, so we never want to place mass on z
under the unrelaxed supervision. In addition, extend the model family to allow the single additional
distribution p’(z |) = [z = zo].

Now, suppose S1.x = oo and Sy = Bmin- Then, for any 6, we have L(6,3) = A(B) + L(6, o),
since py places no mass on zo; therefore, L(6,) > A(S)+ L* for all §. On the other hand, we have
Ly, B) = A(B) + Bmin- If Bmin < L*, we will thus use p’ and shift all of the mass to 2, thereby
placing zero mass on the correct answer. O

Note that the proof required constructing a “bad” z that satisfied almost all the constraints for many
values of y at once. It seems straightforward to avoid this in practice, and so it would be interesting
to find assumptions under which we obtain a better relative loss bound than Proposition 3.1.

B.2 Amount of data needed to learn

For the next few derivations we will make extensive use of the relation logpg g(y | =) =

A0, B;x,y) — A(;), where A0, 8;x,y) def log (ZZ exp (HTQS(I, 2) + BTY(z, y))) Note that
the preceding definition is consistent with (13) since we assume throughout Section 3 that T = 1.
We will also use the following properties of log-partition functions:

V@A(a,ﬂ;i,y) =]Ezwpg,g(-m,y) [qi)(x,z)] (34)
_ B[00, 2) exp(870(2,9)))
Ez~pe(~|x) [eXp(ﬁTw(Z, y))} ’
VAW, Biw,y) = —(VoA) (Vo A) | + Eupy (1.8, 2) @ 6(x, 2)] (36)
Ezwpg(-|.t) [(¢($, Z) ® ¢(.’E, Z)) eXp(5T1/)(Z, y))]
Ez~pg(-|a:) [exp(ﬁTw(z, y))]
Here we use VA as short-hand for Vg A(f, 8;x,y). These VoA terms will always cancel out
in the sequel, so they can be safely ignored. (The cancellation occurs because we always end up
subtracting two log-normalization constants, whose gradients must be equal by first-order optimality
conditions.) Analogous properties to those above hold for A(6; z):
VOA('gv :Z?) = Ez~p9(~|z) [¢(xa Z)L (38)
VA0 2) = —(VoA)(VoA) T + Eenpy o) [0(2,2) @ d(z, 2)]. (39)

= —(VoA)(VoA) " + (37

In this case, VA is short-hand for Vo A(0; z).

Proof of (8). We have

Too = Vi[—10g po- 00 (y | 2)] (40)

= V; [A(0%;2) — A(6",00; 2, y)] (41)

= Ep+ [0(2, 2) ® ¢(x, 2)] Eyp 5(2.1)] (42)

= (P[-S]E¢-[¢ ® ¢ | =S] + P[S]E¢«[¢p ® ¢ | S]) — Eg-[¢p @ ¢ | §] (44)

= Py-[-S] (Eg- [p @ ¢ | =S| —Ep- [p @ ¢ |S]). (45)

The result follows by taking expectations. O

11

Proof of (9). We have
Iy = Vi[—logpe; 5y |)] (46)

= Vi [A(5;) — A6, B;2,y)] (47)

Eo; [(¢(x, 2) @ ¢(z, 2)) exp(8T)]

== EG;; [d)(xa Z) & QZ/)(LE, Z)} - Ee; [eXp(BTw)] (48)

_ Eg3[6 @ ¢]Eqs [exp(87)] — Egs [(6 @) exp(B7)] 49)

a Eg: [exp(8T¢)]

_ Cove: [® ¢, exp(B7)]

=TT Ry (9] CO

(@) Covg;[p@ ¢, 14579 +0(8°)] 1)
Eo:[1+ O (B)]

Y Cove; [p® 9, BT0] +0 (5%), (52)

where in (a) we used exp(8 ') = 1+ 8¢ + O (5%) and in (b) we used Cov[-, 1] = 0. The result
again follows by taking expectations. O

Note: Assuming that [y is small for most z (as measured by py:), the O (?) term is small as
long as || B[|oc < 1. This assumption on > holds when Py: [S] ~ 1 (so that ¢) = 0 most of the time).

Proof of (10). Recall that we are assuming 3; = Bmin for all j, and that the =S; are all disjoint. In
this case, — 3 T@/J is equal to By if a constraint is violated and 0 if no constraints are violated. We
then have

Cove, [¢® ¢, —BT¢] (53)
= min Covoy (¢ ¢, 1[-S]] (54)
= BuinP[-S] (B[® ¢ | 8] — Eoz[6 © ¢]) (55)
= BuinP[~S] (Eo3 [0 @ ¢ | =] — P[-S]Eq; [0 @ ¢ | =] — PIS|Eg; [0 @ 6 |S]) (56)
= BuinPISIP[S] (B3 [0 © ¢ | =S] — Egs[60 ¢ | S]) (57)
as claimed. O

B.3 Optimizing 3

Proof of Proposition 3.3. We can re-express E, ,p«[—logp(y | z)] as KL (p* || p) + H(p*).
Hence, in particular, L(0, 8) = KL (p* || po,s) + H(p*) > H(p*),> with equality if and only if
po,3 = p*. On the other hand, py« o = pg= = p* by assumption, so equality is attainable, and
(6*, 00) is a global optimum of L.

Note that the normalization constant A(3) is important here, since if pg s did not (sub-)normalize
then the KL divergence would not necessarily be non-negative. [

“Here we use the fact that KL (p || q) def E,[logp — log ¢] is non-negative as long as p normalizes and ¢
sub-normalizes, which is true for ¢ = pg s by Proposition 2.5).

12

C Proofs for Section 4

Proof of (14). The acceptance rate is simply the expectation, over all z | z, of the acceptance
probability for that particular z. This can clearly be written as

> pox(z | x)exp (B74(2,y)) (58)
= T(zy)exp (07 d(x,2) — Ar(6;2,9)) exp (8 ¥(2,)) (59)
= exp (—Ar(6;2,9)) Y T(z,9) exp (07 (. 2) + BT (1)) (60)
= exp (A(0, Bz, y) — zz‘hr(@;x,y)) : (61)
Since (14) is the multiplicative inverse of (61), the result follows. O

Proof of (15). By convexity of A(0, 8;z,y), we have

A0, Bz, y) (62)
> A6, Bz, y) + (0 — 0) VoA, B;x,y) + (B — B)TVA®0, B;z,v) (63)
= A, B;z,y) + (0 — Q)TE%,B(_W@,) [o(x, 2)] + (B — B)TE%‘B(.‘E,y) [¥(z,y)] (64)
= A0, By2,y) + (0= 0)" o+ (8- 5) ", (65)
as was to be shown. O

13

	Introduction
	Framework
	Analysis
	Constraints for Efficient Inference
	Experiments
	Related Work and Discussion
	Proofs for Section 2
	Proofs for Section 3
	Effect on loss
	Amount of data needed to learn
	Optimizing

	Proofs for Section 4

