
A Notation

A.1 Basic Definitions and Notation

Here we do a brief recap of notation. We assume that we are given a target hypothesis class H of
VC dimension d, and a difference hypothesis class H d f of VC dimension d′.

We are given access to an unlabeled distribution U and two labeling oracles O and W . Querying O
(resp. W ) with an unlabeled data point xi generates a label yi,O (resp. yi,W ) which is drawn from the
distribution PO(y|xi) (resp. PW (y|xi)). In general these two distributions are different. We use the
notation D to denote the joint distribution over examples and labels from O and W :

PD (x,yO,yW ) = PU (x)PO(yO|x)PW (yW |x)

Our goal in this paper is to learn a classifier in H which has low error with respect to the data
distribution D described as: PD(x,y) = PU (x)PO(y|x) and our goal is use queries to W to reduce
the number of queries to O. We use yO to denote the labels returned by O, yW to denote the labels
returned by W .

The error of a classifier h under a labeled data distribution Q is defined as: errQ(h) =P(x,y)∼Q(h(x) =
y); we use the notation err(h,S) to denote its empirical error on a labeled data set S. We use the
notation h∗ to denote the classifier with the lowest error under D. Define the excess error of h with
respect to distribution D as errD(h)− errD(h

∗). For a set Z, we occasionally abuse notation and use
Z to also denote the uniform distribution over the elements of Z.

Confidence Sets and Disagreement Region. Our active learning algorithm will maintain a
(1− δ )-confidence set for h∗ throughout the algorithm. A set of classifiers V ⊆ H produced by
a (possibly randomized) algorithm is said to be a (1−δ )-confidence set for h∗ if h∗ ∈V with proba-
bility ≥ 1−δ ; here the probability is over the randomness of the algorithm as well as the choice of
all labeled and unlabeled examples drawn by it.

Given two classifiers h1 and h2 the disagreement between h1 and h2 under an unlabeled data distribu-
tion U , denoted by ρU (h1,h2), is Px∼U (h1(x) = h2(x)). Given an unlabeled dataset S, the empirical
disagreement of h1 and h2 on S is denoted by ρS(h1,h2). Observe that the disagreements under U
form a pseudometric over H . We use BU (h,r) to denote a ball of radius r centered around h in
this metric. The disagreement region of a set V of classifiers, denoted by DIS(V ), is the set of all
examples x ∈ X such that there exist two classifiers h1 and h2 in V for which h1(x) = h2(x).

Disagreement Region. We denote the disagreement region of a disagreement ball of radius r
centered around h∗ by

Δ(r) := DIS(B(h∗,r)) (7)

Concentration Inequalities. Suppose Z is a dataset consisting of n iid samples from a distribution
D. We will use the following result, which is obtained from a standard application of the normalized
VC inequality. With probability 1−δ over the random draw of Z, for all h,h′ ∈ H ,

|(err(h,Z)− err(h′,Z))− (errD(h)− errD(h
′))|

≤ min



σ(n,δ )ρZ(h,h′)+σ(n,δ ),


σ(n,δ )ρD(h,h′)+σ(n,δ )


(8)

|(err(h,Z)− errD(h)|
≤ min




σ(n,δ )err(h,Z)+σ(n,δ ),


σ(n,δ )errD(h)+σ(n,δ )


(9)

where d is the VC dimension of H and the notation σ(n,δ ) is defined as:

σ(n,δ ) =
8

n
(2d ln

2en

d
+ ln

24

δ
) (10)

Equation (8) loosely implies the following equation:

|(err(h,Z)− err(h′,Z))− (errD(h)− errD(h
′))|≤



4σ(n,δ ) (11)
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The following is a consequence of standard Chernoff bounds. Let X1, . . . ,Xn be iid Bernoulli random
variables with mean p. If p̂ = ∑i Xi/n, then with probabiliy 1−δ ,

|p̂− p|≤ min(


pγ(n,δ )+ γ(n,δ ),


p̂γ(n,δ )+ γ(n,δ )) (12)

where the notation γ(n,δ ) is defined as:

γ(n,δ ) =
4

n
ln

2

δ
(13)

Equation (12) loosely implies the following equation:

| p̂− p|≤


4γ(n,δ ) (14)

Using the notation we just introduced, we can rephrase Assumption 1 as follows. For any r,η > 0,

there exists an h
d f
η ,r ∈ H d f with the following properties:

PD (hd f
η ,r(x) =−1,x ∈ Δ(r),yO = yW )≤ η

PD (hd f
η ,r(x) = 1,x ∈ Δ(r))≤ α(r,η)

We end with an useful fact about σ(n,δ ).

Fact 1. The minimum n such that σ(n,δ/(logn(logn+1)))≤ ε is at most

64

ε
(d ln

512

ε
+ ln

24

δ
)

A.2 Adaptive Procedure for Estimating Probability Mass

For completeness, we describe in Algorithm 3 a standard doubling procedure for estimating the bias
of a coin within a constant factor. This procedure is used by Algorithm 2 to estimate the probability
mass of the disagreement region of the current confidence set based on unlabeled examples drawn
from U .

Algorithm 3 Adaptive Procedure for Estimating the Bias of a Coin

1: Input: failure probability δ , an oracle O which returns iid Bernoulli random variables with
unknown bias p.

2: Output: p̂, an estimate of bias p such that p̂ ≤ p ≤ 2p̂ with probability ≥ 1−δ .
3: for i = 1,2, . . . do
4: Call the oracle O 2i times to get empirical frequency p̂i.

5: if



4ln 4·2i

δ
2i ≤ p̂i/3 then return p̂ = 2p̂i

3

6: end if
7: end for

Lemma 1. Suppose p > 0 and Algorithm 3 is run with failure probability δ . Then with probability
1− δ , (1) the output p̂ is such that p̂ ≤ p ≤ 2p̂. (2) The total number of calls to O is at most
O( 1

p2 ln 1
δ p

).

Proof. Consider the event

E = { for all i ∈ N, |p̂i − p|≤



4ln 2·2i

δ

2i
}

By Equation (14) and union bound, P(E) ≥ 1− δ . On event E, we claim that if i is large enough
that

4



4ln 4·2i

δ

2i
≤ p (15)
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then the condition in line 5 will be met. Indeed, this implies



4ln 4·2i

δ

2i
≤

p−


4ln 4·2i

δ
2i

3
≤ p̂i

3

Define i0 as the smallest number i such that Equation (15) is true. Then by algebra, 2i0 =O( 1
p2 ln 1

δ p
).

Hence the number of calls to oracle O is at most 1+2+ . . .+2i0 = O( 1
p2 ln 1

δ p
).

Consider the smallest i∗ such that the condition in line 5 is met. We have that


4ln 4·2i∗

δ

2i∗ ≤ p̂i∗/3

By the definition of E,
|p− p̂i∗ |≤ p̂i∗/3

that is, 2p̂i∗/3 ≤ p ≤ 4p̂i∗/3, implying p̂ ≤ p ≤ 2p̂.

A.3 Notations on Datasets

Without loss of generality, assume the examples drawn throughout Algorithm 1 have distinct feature
values x, since this happens with probability 1 under mild assumptions.

Algorithm 1 uses a mixture of three kinds of labeled data to learn a target classifier – labels obtained
from querying O, labels inferred by the algorithm, and labels obtained from querying W . To analyze
the effect of these three kinds of labeled data, we need to introduce some notation.

Recall that we define the joint distribution D over examples and labels both from O and W as
follows:

PD (x,yO,yW ) = PU (x)PO(yO|x)PW (yW |x)
where given an example x, the labels generated by O and W are conditionally independent.

A dataset Ŝ with empirical error minimizer ĥ and a rejection threshold τ define a implicit confidence
set for h∗ as follows:

V (Ŝ,τ) = {h : err(h, Ŝ)− err(ĥ, Ŝ)≤ τ}
At the beginning of epoch k, we have Ŝk−1. ĥk−1 is defined as the empirical error minimizer of

Ŝk−1. The disagreement region of the implicit confidence set at epoch k, Rk−1 is defined as Rk−1 :=
DIS(V (Ŝk−1,3εk/2)). Algorithm 4 in disagr region(Ŝk−1,3εk/2,x) provides a test deciding if an
unlabeled example x is inside Rk−1 in epoch k. (See Lemma 6.)

Define Ak to be the distribution D conditioned on the set {(x,yO,yW ) : x ∈ Rk−1}. At epoch k,
Algorithm 2 has inputs distribution U , oracles W and O, target false negative error ε = εk/128,

hypothesis class H d f , confidence δ = δk/2, previous labeled dataset Ŝk−1, and outputs a difference

classfier ĥ
d f
k . By the setting of m in Equation (1), Algorithm 2 first computes p̂k using unlabeled

examples drawn from U , which is an estimator of PD (x ∈ Rk−1). Then it draws a subsample of size

mk,1 =
64 ·1024p̂k

εk

(d ln
512 ·1024p̂k

εk

+ ln
144

δk

) (16)

iid from Ak. We call the resulting dataset A ′
k .

At epoch k, Algorithm 5 performs adaptive subsampling to refine the implicit (1− δ )-confidence

set. For each round t, it subsamples U to get an unlabeled dataset S
t,U
k of size 2t . Define the corre-

sponding (hypothetical) dataset with labels queried from both W and O as S t
k . St

k, the (hypothetical)
dataset with labels queried from O, is defined as:

St
k = {(x,yO)|(x,yO,yW ) ∈ S

t
k }

In addition to obtaining labels from O, the algorithm obtains labels in two other ways. First, if an

x ∈ X \Rk−1, then its label is safely inferred and with high probability, this inferred label ĥk−1(x)

is equal to h∗(x). Second, if an x lies in Rk−1 but if the difference classifier ĥ
d f
k predicts agreement
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between O and W , then its label is obtained by querying W . The actual dataset Ŝt
k generated by

Algorithm 5 is defined as:

Ŝt
k = {(x, ĥk−1(x))|(x,yO,yW ) ∈ S

t
k ,x /∈ Rk−1}∪{(x,yO)|(x,yO,yW ) ∈ S

t
k ,x ∈ Rk−1, ĥ

d f
k (x) = +1}

∪{(x,yW )|(x,yO,yW ) ∈ S
t
k ,x ∈ Rk−1, ĥ

d f
k (x) =−1}

We use D̂k to denote the labeled data distribution as follows:

PD̂k
(x,y) = PU (x)PQ̂k

(y|x)

PQ̂k
(y|x) =











I(ĥk−1(x) = y), x /∈ Rk−1

PO(y|x), x ∈ Rk−1, ĥ
d f
k (x) = +1

PW (y|x), x ∈ Rk−1, ĥ
d f
k (x) =−1

Therefore, Ŝt
k can be seen as a sample of size 2t drawn iid from D̂k.

Observe that ĥt
k is obtained by training an ERM classifier over Ŝt

k, and δ t
k = δk/2t(t +1).

Suppose Algorithm 5 stops at iteration t0(k), then the final dataset returned is Ŝk = Ŝ
t0(k)
k , with a total

number of mk,2 label requests to O. We define Sk = S
t0(k)
k , Sk = S

t0(k)
k and σk = σ(2t0(k),δ

t0(k)
k ).

For k = 0, we define the notation Ŝk differently. Ŝ0 is the dataset drawn iid at random from D,

with labels queried entirely to O. For notational convenience, define S0 = Ŝ0. σ0 is defined as
σ0 = σ(n0,δ0), where σ(·, ·) is defined by Equation (10) and n0 is defined as:

n0 = (64 ·10242)(2d ln(512 ·10242)+ ln
96

δ
)

Recall that ĥk = argminh∈H err(h, Ŝk) is the empirical error minimizer with respect to the dataset Ŝk.

Note that the empirical distance ρZ(·, ·) does not depend on the labels in dataset Z, therefore,
ρŜk

(h,h′) = ρSk
(h,h′). We will use them interchangably throughout.

A.4 Events

Recall that δk = δ/(4(k+1)2),εk = 2−k.

Define

h
d f
k = h

d f

2ν+εk−1,εk/512

where the notation h
d f
r,η is introduced in Assumption 1.

We begin by defining some events that we will condition on later in the proof, and showing that
these events occur with high probability.

Define event

E1
k :=



PD (x ∈ Rk−1)/2 ≤ p̂k ≤ PD (x ∈ Rk−1),

and For all hd f ∈ H
d f ,

|PA ′
k
(hd f (x) =−1,yO = yW )−PAk

(hd f (x) =−1,yO = yW )|≤ εk

1024PD (x ∈ Rk−1)

+



min(PAk
(hd f (x) =−1,yO = yW ),PA ′

k
(hd f (x) =−1,yO = yW ))

εk

1024PD (x ∈ Rk−1)

and |PA ′
k
(hd f (x) = +1)−PAk

(hd f (x) = +1)|

≤


min(PAk
(hd f (x) = +1),PA ′

k
(hd f (x) = +1))

εk

1024PD (x ∈ Rk−1)
+

εk

1024PD (x ∈ Rk−1)



Fact 2. P(E1
k )≥ 1−δk/2.
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Table 1: Summary of Notations.

Notation Explanation Samples Drawn from

D Joint distribution of (x,yW ,yO) -
D Joint distribution of (x,yO) -
U Marginal distribution of x -
O Conditional distribution of yO given x -
W Conditional distribution of yW given x -

Rk−1 Disagreement region at epoch k -
Ak Conditional distribution of (x,yW ,yO) given x ∈ Rk−1 -
A ′

k Dataset used to train difference classifier at epoch k Ak

h
d f
k Difference classifier h

d f

2ν+εk−1,εk/512
, where hη ,r is defined in As-

sumption 1

-

ĥ
d f
k Difference classifier returned by Algorithm 2 at epoch k -

S
t,U
k unlabeled dataset drawn at iteration t of Algorithm 5 at epoch

k ≥ 1
U

S t
k S

t,U
k augmented by labels from O and W D

St
k {(x,yO)|(x,yO,yW ) ∈ S t

k} D

Ŝt
k Labeled dataset produced at iteration t of Algorithm 5 at epoch

k ≥ 1
D̂k

D̂k Distribution of Ŝt
k for k ≥ 1 and any t. Has marginal U over X .

The conditional distribution of y|x is I(h∗(x)) if x /∈ Rk−1, W if

x ∈ Rk−1 and ĥd f (x) =−1, and O otherwise

-

t0(k) Number of iterations of Algorithm 5 at epoch k ≥ 1 -

Ŝ0 Initial dataset drawn by Algorithm 1 D

Ŝk Dataset finally returned by Algorithm 5 at epoch k ≥ 1. Equal to

Ŝ
t0(k)
k

D̂k

Sk Dataset obtained by replacing all labels in Ŝk by labels drawn

from O. Equal to S
t0(k)
k

D

Sk Equal to S
t0(k)
k D

ĥk Empirical error minimizer on Ŝk -

Define event

E2
k =



For all t ∈ N, for all h,h′ ∈ H ,

|(err(h,St
k)− err(h′,St

k))− (errD(h)− errD(h
′))|≤ σ(2t ,δ t

k)+


σ(2t ,δ t
k)ρSt

k
(h,h′)

and err(h, Ŝt
k)− errD̂k

(h)≤ σ(2t ,δ t
k)+



σ(2t ,δ t
k)errD̂k

(h)

and PS t
k
(ĥd f

k (x) =−1,yO = yW ,x ∈ Rk−1)−PD (ĥd f
k (x) =−1,yO = yW ,x ∈ Rk−1)

≤


γ(2t ,δ t
k)PS t

k
(ĥd f

k (x) =−1,yO = yW ,x ∈ Rk−1)+ γ(2t ,δ t
k)

and PS t
k
(ĥd f

k (x) =−1∩ x ∈ Rk−1)≤ 2(PD (ĥd f
k (x) =−1,x ∈ Rk−1)+ γ(2t ,δ t

k))


Fact 3. P(E2
k )≥ 1−δk/2.

We will also use the following definitions of events in our proof. Define event F0 as

F0 =


for all h,h′ ∈H , |(err(h,S0)−err(h′,S0))−(errD(h)−errD(h
′))|≤σ(n0,δ0)+



σ(n0,δ0)ρS0
(h,h′)
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For k ∈ {1,2, . . . ,k0}, event Fk is defined inductively as

Fk = Fk−1 ∩ (E1
k ∩E2

k )

Fact 4. For k ∈ {0,1, . . . ,k0}, P(Fk)≥ 1−δ0 −δ1 − . . .−δk. Specifically, P(Fk0
)≥ 1−δ .

The proofs of Facts 2, 3 and 4 are provided in Appendix E.

B Proof Outline and Main Lemmas

The main idea of the proof is to maintain the following three invariants on the outputs of Algorithm 1
in each epoch. We prove that these invariants hold simultaneously for each epoch with high proba-
bility by induction over the epochs. Throughout, for k ≥ 1, the end of epoch k refers to the end of
execution of line 13 of Algorithm 1 at iteration k. The end of epoch 0 refers to the end of execution
of line 5 in Algorithm 1.

Invariant 1 states that if we replace the inferred labels and labels obtained from W in Ŝk by those
obtained from O (thus getting the dataset Sk), then the excess errors of classifiers in H will not
decrease by much.

Invariant 1 (Approximate Favorable Bias). Let h be any classifier in H , and h′ be another classifier
in H with excess error on D no greater than εk. Then, at the end of epoch k, we have:

err(h,Sk)− err(h′,Sk)≤ err(h, Ŝk)− err(h′, Ŝk)+ εk/16

Invariant 2 establishes that in epoch k, Algorithm 5 selects enough examples so as to ensure that
concentration of empirical errors of classifiers in H on Sk to their true errors.

Invariant 2 (Concentration). At the end of epoch k, Ŝk, Sk and σk are such that:
1. For any pair of classifiers h,h′ ∈ H , it holds that:

|(err(h,Sk)− err(h′,Sk))− (errD(h)− errD(h
′))|≤ σk +



σkρSk
(h,h′) (17)

2. The dataset Ŝk has the following property:

σk +



σkerr(ĥk, Ŝk)≤ εk/512 (18)

Finally, Invariant 3 ensures that the difference classifier produced in epoch k has low false negative
error on the disagreement region of the (1−δ ) confidence set at epoch k.

Invariant 3 (Difference Classifier). At epoch k, the difference classifier output by Algorithm 2 is
such that

PD (ĥd f
k (x) =−1,yO = yW ,x ∈ Rk−1)≤ εk/64 (19)

PD (ĥd f
k (x) = +1,x ∈ Rk−1)≤ 6(α(2ν + εk−1,εk/512)+ εk/1024) (20)

We will show the following property about the three invariants. Its proof is deferred to Subsec-
tion B.4.

Lemma 2. There is a numerical constant c0 > 0 such that the following holds. The collection of

events {Fk}k0
k=0 is such that for k ∈ {0,1, . . . ,k0}:

(1) If k = 0, then on event Fk, at epoch k,
(1.1) Invariants 1,2 hold.
(1.2) The number of label requests to O is at most m0 ≤ c0(d + ln 1

δ ).
(2) If k ≥ 1, then on event Fk, at epoch k,
(2.1) Invariants 1,2,3 hold.
(2.2) the number of label requests to O is at most

mk ≤ c0

 (α(2ν + εk−1,εk/1024)+ εk)(ν + εk)

ε2
k

d(ln2 1

εk

+ ln2 1

δk

)+
PU (x ∈ Δ(2ν + εk−1))

εk

(d′ ln
1

εk

+ ln
1

δk

)
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Algorithm 4 in disagr region(Ŝ,τ ,x): Test if x is in the disagreement region of current confidence
set

1: Input: labeled dataset Ŝ, rejection threshold τ , unlabeled example x.
2: Output: 1 if x in the disagreement region of current confidence set, 0 otherwise.

3: Train ĥ ← CONS-LEARNH ({ /0, Ŝ}).
4: Train ĥ′x ← CONS-LEARNH ({(x,−ĥ(x))}, Ŝ}).
5: if err(ĥ′x, Ŝ)− err(ĥ, Ŝ)> τ then # x is in the agreement region
6: return 0
7: else # x is in the disagreement region
8: return 1
9: end if

B.1 Active Label Inference and Identifying the Disagreement Region

We begin by proving some lemmas about Algorithm 4 which identifies if an example lies in the
disagreement region of the current confidence set. This is done by using a constrained ERM oracle
CONS-LEARNH(·, ·) using ideas similar to [9, 14, 3, 4].

Lemma 3. When given as input a dataset Ŝ, a threshold τ > 0, an unlabeled example x, Algorithm 4
in disagr region returns 1 if and only if x lies inside DIS(V (Ŝ,τ)).

Proof. (⇒) If Algorithm 4 returns 1, then we have found a classifier ĥ′x such that (1) ĥx(x) =−ĥ(x),

and (2) err(ĥ′x, Ŝ)− err(ĥ, Ŝ)≤ τ , i.e. ĥ′x ∈V (Ŝ,τ). Therefore, x is in DIS(V (Ŝ,τ)).

(⇐) If x is in DIS(V (Ŝ,τ)), then there exists a classifier h ∈ H such that (1) h(x) =−ĥ(x) and (2)

err(h, Ŝ)− err(ĥ, Ŝ) ≤ τ . Hence by definition of ĥ′x, err(ĥ′x, Ŝ)− err(ĥ, Ŝ) ≤ τ . Thus, Algorithm 4
returns 1.

We now provide some lemmas about the behavior of Algorithm 4 called at epoch k.

Lemma 4. Suppose Invariants 1 and 2 hold at the end of epoch k − 1. If h ∈ H is such that
errD(h)≤ errD(h

∗)+ εk−1/2, then

err(h, Ŝk−1)− err(ĥk−1, Ŝk−1)≤ 3εk−1/4

Proof. If h ∈ H has excess error at most εk−1/2 with respect to D, then,

err(h, Ŝk−1)− err(ĥk−1, Ŝk−1)

≤ err(h,Sk−1)− err(ĥk−1,Sk−1)+ εk−1/16

≤ errD(h)− errD(ĥk−1)+σk−1 +


σk−1ρSk−1
(h, ĥk−1)+ εk−1/16

≤ εk−1/2+σk−1 +


σk−1ρSk−1
(h, ĥk−1)+ εk−1/16

≤ 9εk−1/16+σk−1 +



σk−1err(h, Ŝk−1)+



σk−1err(ĥk−1, Ŝk−1)

≤ 9εk−1/16+σk−1 +



σk−1err(h, Ŝk−1)+



σk−1(err(ĥk−1, Ŝk−1)+9εk−1/16)

Where the first inequality follows from Invariant 1, the second inequality from Equation (17) of
Invariant 2, the third inequality from the assumption that h has excess error at most εk−1/2, and the
fourth inequality from the triangle inequality, the fifth inequality is by adding a nonnegative number
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in the last term. Continuing,

err(h, Ŝk−1)− err(ĥk−1, Ŝk−1)

≤ 9εk−1/16+4σk−1 +2



σk−1(err(ĥk−1, Ŝk−1)+9εk−1/16)

≤ 9εk−1/16+4σk−1 +2



σk−1err(ĥk−1, Ŝk−1)+2


εk−1/512 ·9εk−1/16

≤ 9εk−1/16+ εk−1/32+2


εk−1/512 ·9εk−1/16

≤ 3εk−1/4

Where the first inequality is by simple algebra (by letting D = err(h, Ŝk−1), E = err(ĥk−1, Ŝk−1)+

9εk−1/16, F = σk−1 in D ≤ E +F +
√

DF +
√

EF ⇒ D ≤ E +4F +2
√

EF), the second inequality

is from
√

A+B ≤
√

A+
√

B and σk−1 ≤ εk−1/512 which utilizes Equation (18) of Invariant 2, the
third inequality is again by Equation (18) of Invariant 2, the fourth inequality is by algebra.

Lemma 5. Suppose Invariants 1 and 2 hold at the end of epoch k−1. Then,

errD(ĥk−1)− errD(h
∗)≤ εk−1/8

Proof. By Lemma 4, we know that since h∗ has excess error 0 with respect to D,

err(h∗, Ŝk−1)− err(ĥk−1, Ŝk−1)≤ 3εk−1/4 (21)

Therefore,

errD(ĥk−1)− errD(h
∗)

≤ err(ĥk−1,Sk−1)− err(h∗,Sk−1)+σk−1 +


σk−1ρSk−1
(ĥk−1,h∗)

≤ err(ĥk−1, Ŝk−1)− err(h∗, Ŝk−1)+σk−1 +


σk−1ρSk−1
(ĥk−1,h∗)+ εk−1/16

≤ εk−1/16+σk−1 +



σk−1(err(ĥk−1, Ŝk−1)+ err(h∗, Ŝk−1))

≤ εk−1/16+σk−1 +



σk−1(2err(ĥk−1, Ŝk−1)+3εk−1/4)

≤ εk−1/16+σk−1 +



2σk−1err(ĥk−1, Ŝk−1)+


εk−1/512 ·3εk−1/4

≤ εk−1/8

where the first inequality is from Equation (17) of Invariant 2, the second inequality uses Invariant 1,

the third inequality follows from the optimality of ĥk−1 and triangle inequality, the fourth inequality

uses Equation (21), the fifth inequality uses the fact that
√

A+B ≤
√

A+
√

B and σk−1 ≤ εk−1/512,
which is from Equation (18) of Invariant 2, the last inequality again utilizes the Equation (18) of
Invariant 2.

Lemma 6. Suppose Invariants 1, 2, and 3 hold in epoch k − 1 conditioned on event Fk−1. Then

conditioned on event Fk−1, the implicit confidence set Vk−1 =V (Ŝk−1,3εk/2) is such that:
(1) If h ∈ H satisfies errD(h)− errD(h

∗)≤ εk, then h is in Vk−1.
(2) If h ∈ H is in Vk−1, then errD(h)− errD(h

∗)≤ εk−1. Hence Vk−1 ⊆ BU (h
∗,2ν + εk−1).

(3) Algorithm 4, in disagr region, when run on inputs dataset Ŝk−1, threshold 3εk/2, unlabeled
example x, returns 1 if and only if x is in Rk−1.

Proof. (1) Let h be a classifier with errD(h)− errD(h
∗)≤ εk = εk−1/2. Then, by Lemma 4, one has

err(h, Ŝk−1)− err(ĥk−1, Ŝk−1)≤ 3εk−1/4 = 3εk/2. Hence, h is in Vk−1.
(2) Fix any h in Vk−1, by definition of Vk−1,

err(h, Ŝk−1)− err(ĥk−1, Ŝk−1)≤ 3εk/2 = 3εk−1/4 (22)

Recall that from Lemma 5,
errD(ĥk−1)− errD(h

∗)≤ εk−1/8
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Thus for classifier h, applying Invariant 1 by taking h′ := ĥk−1, we get

err(h,Sk−1)− err(ĥk−1,Sk−1)≤ err(h, Ŝk−1)− err(ĥk−1, Ŝk−1)+ εk−1/32 (23)

Therefore,

errD(h)− errD(ĥk−1)

≤ err(h,Sk−1)− err(ĥk−1,Sk−1)+σk−1 +


σk−1ρSk−1
(h, ĥk−1)

≤ err(h,Sk−1)− err(ĥk−1,Sk−1)+σk−1 +



σk−1(err(h, Ŝk−1)+ err(ĥk−1, Ŝk−1))

≤ err(h, Ŝk−1)− err(ĥk−1, Ŝk−1)+σk−1 +



σk−1(err(h, Ŝk−1)+ err(ĥk−1, Ŝk−1))+ εk−1/16

≤ 13εk−1/16+σk−1 +



σk−1(2err(ĥk−1, Ŝk−1)+3εk−1/4)

≤ 13εk−1/16+σk−1 +



2σk−1err(ĥk−1, Ŝk−1)+


εk−1/512 ·3εk−1/4

≤ 7εk−1/8

where the first inequality is from Equation (17) of Invariant 2, the second inequality uses the fact

that ρŜk−1
(h,h′) = ρSk−1

(h,h′) ≤ err(h, Ŝk−1)+ err(h′, Ŝk−1) for h,h′ ∈ H , the third inequality uses

Equation (23); the fourth inequality is from Equation (22); the fifth inequality is from the fact that√
A+B ≤

√
A+

√
B and σk−1 ≤ εk−1/512, which is from Equation (18) of Invariant 2, the last

inequality again follows from Equation (18) of Invariant 2 and algebra.

In conjunction with the fact that errD(ĥk−1)− errD(h
∗)≤ εk−1/8, this implies

errD(h)− errD(h
∗)≤ εk−1

By triangle inequality, ρ(h,h∗) ≤ 2ν + εk−1, hence h ∈ BU (h
∗,2ν + εk−1). In summary Vk−1 ⊆

BU (h
∗,2ν + εk−1).

(3) Follows directly from Lemma 3 and the fact that Rk−1 = DIS(Vk−1).

B.2 Training the Difference Classifier

Recall that Δ(r) = DIS(BU (h
∗,r)) is the disagreement region of the disagreement ball centered

around h∗ with radius r.

Lemma 7 (Difference Classifier Invariant). There is a numerical constant c1 > 0 such that the
following holds. Suppose that Invariants 1 and 2 hold at the end of epoch k − 1 conditioned on
event Fk−1 and that Algorithm 2 has inputs unlabeled data distribution U, oracle O, ε = εk/128,

hypothesis class H d f , δ = δk/2, previous labeled dataset Ŝk−1. Then conditioned on event Fk,

(1) ĥ
d f
k , the output of Algorithm 2, maintains Invariant 3.

(2)(Label Complexity: Part 1.) The number of label queries made to O is at most

mk,1 ≤ c1



PU (x ∈ Δ(2ν + εk−1))

εk

(d′ ln
1

εk

+ ln
1

δk

)


Proof. (1) Recall that Fk = Fk−1 ∩E1
k ∩E2

k , where E1
k , E2

k are defined in Subsection A.4. Suppose
event Fk happens.

Proof of Equation (19). Recall that ĥ
d f
k is the optimal solution of optimization problem (2). We

have by feasibility and the fact that on event E3
k , 2p̂k ≥ PD (x ∈ Rk−1),

PA ′
k
(ĥd f

k (x) =−1,yO = yW )≤ εk

256p̂k

≤ εk

128PD (x ∈ Rk−1)

By definition of event E2
k , this implies

PAk
(ĥd f

k (x) =−1,yO = yW )

≤ PA ′
k
(ĥd f

k (x) =−1,yO = yW )+



PA ′
k
(ĥd f

k (x) =−1,yO = yW )
εk

1024PD (x ∈ Rk−1)
+

εk

1024PD (x ∈ Rk−1)

≤ εk

64PD (x ∈ Rk−1)
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Indicating

PD (ĥd f
k (x) =−1,yO = yW ,x ∈ Rk−1)≤

εk

64

Proof of Equation (20). By definition of h
d f
k in Subsection A.4, h

d f
k is such that:

PD (hd f
k (x) = +1,x ∈ Δ(2ν + εk−1))≤ α(2ν + εk−1,εk/512)

PD (hd f
k (x) =−1,yO = yW ,x ∈ Δ(2ν + εk−1))≤ εk/512

By item (2) of Lemma 6, we have Rk−1 ⊆ DIS(BU (h
∗,2ν + εk−1)), thus

PD (hd f
k (x) = +1,x ∈ Rk−1)≤ α(2ν + εk−1,εk/512) (24)

PD (hd f
k (x) =−1,yO = yW ,x ∈ Rk−1)≤ εk/512 (25)

Equation (25) implies that

PAk
(hd f

k (x) =−1,yO = yW )≤ εk

512PD (x ∈ Rk−1)
(26)

Recall that A ′
k is the dataset subsampled from Ak in line 3 of Algorithm 2. By definition of event

E1
k , we have that for h

d f
k ,

PA ′
k
(hd f

k (x) =−1,yO = yW )

≤ PAk
(hd f

k (x) =−1,yO = yW )+



PAk
(hd f

k (x) =−1,yO = yW )
εk

1024PD (x ∈ Rk−1)
+

εk

1024PD (x ∈ Rk−1)

≤ εk

256PD (x ∈ Rk−1)
≤ εk

256p̂k

where the second inequality is from Equation (26), and the last inequality is from the fact that

p̂k ≤ PD (x ∈ Rk−1). Hence, h
d f
k is a feasible solution to the optimization problem (2). Thus,

PAk
(ĥd f

k (x) = +1)

≤ PA ′
k
(ĥd f

k (x) = +1)+



PA ′
k
(ĥd f

k (x) = +1)
εk

1024PD (x ∈ Rk−1)
+

εk

1024PD (x ∈ Rk−1)

≤ 2(PA ′
k
(ĥd f

k (x) = +1)+
εk

1024PD (x ∈ Rk−1)
)

≤ 2(PA ′
k
(hd f

k (x) = +1)+
εk

1024PD (x ∈ Rk−1)
)

≤ 2((PAk
(hd f

k (x) = +1)+



PAk
(hd f

k (x) = +1)
εk

1024PD (x ∈ Rk−1)
+

εk

1024PD (x ∈ Rk−1)
)+

εk

1024PD (x ∈ Rk−1)
)

≤ 6(PAk
(hd f

k (x) = +1)+
εk

1024PD (x ∈ Rk−1)
)

where the first inequality is by definition of event E1
k , the second inequality is by algebra, the third in-

equality is by optimality of ĥ
d f
k in (2), PA ′

k
(ĥd f

k (x) =+1)≤ PA ′
k
(hd f

k (x) =+1), the fourth inequality

is by definition of event E1
k , the fifth inequality is by algebra.

Therefore,

PD (ĥd f
k (x)=+1,x∈Rk−1)≤ 6(PD (hd f

k (x)=+1,x∈Rk−1)+εk/1024)≤ 6(α(2ν+εk−1,εk/512)+εk/1024)
(27)

where the second inequality follows from Equation (24). This establishes the correctness of Invari-
ant 3.
(2) The number of label requests to O follows from line 3 of Algorithm 2 (see Equation (16)). That
is, we can choose c1 large enough (independently of k), such that

mk,1 ≤ c1



PD (x ∈ Rk−1)

εk

(d′ ln
1

εk

+ ln
1

δk

)


≤ c1



PU (x ∈ Δ(2ν + εk−1))

εk

(d′ ln
1

εk

+ ln
1

δk

)


where in the second step we use the fact that on event Fk, by item (2) of Lemma 6, Rk−1 ⊆
DIS(BU (h

∗,2ν +εk−1)), thus PD (x ∈ Rk−1)≤ PD (x ∈ Δ(2ν +εk−1)) = PU (x ∈ Δ(2ν +εk−1)).
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B.3 Adaptive Subsampling

Algorithm 5 Adaptive Active Learning using Difference Classifier

1: Input: Unlabeled data distribution U , oracles W and O, difference classifier hd f , target excess
error ε , confidence δ , previous labeled dataset T̂ .

2: Output: Parameter σ , labeled dataset Ŝ.

3: Let ĥ = CONS-LEARNH ( /0, T̂ ).
4: for t = 1,2, . . . , do

5: Let δ t = δ/t(t +1). Define: σ(2t ,δ t) = 8
2t (2d ln 2e2t

d
+ ln 24

δ t ).

6: Draw 2t examples from U to form St,U .
7: for each x ∈ St,U do:
8: if in disagr region(T̂ , 3ε

2
,x) = 0 then # x is inside the agreement region

9: Add (x, ĥ(x)) to Ŝt .
10: else # x is inside the disagreement region
11: If hd f (x) = +1, query O for the label y of x, otherwise query W . Add (x,y) to Ŝt .
12: end if
13: end for
14: Train ĥt ← CONS-LEARNH ( /0, Ŝt).

15: if σ(2t ,δ t)+


σ(2t ,δ t)err(ĥt , Ŝt)≤ ε/512 then

16: t0 ← t, break
17: end if
18: end for
19: return σ ← σ(2t0 ,δ t0), Ŝ ← Ŝt0 .

Lemma 8. There is a numerical constant c2 > 0 such that the following holds. Suppose Invari-
ants 1, 2, and 3 hold in epoch k−1 on event Fk−1; Algorithm 5 receives inputs unlabeled distribution

U, classifier ĥk−1, difference classifier ĥd f = ĥ
d f
k , target excess error ε = εk, confidence δ = δk/2,

previous labeled dataset Ŝk−1. Then on event Fk,

(1) Ŝk, the output of Algorithm 5, maintains Invariants 1 and 2.
(2) (Label Complexity: Part 2.) The number of label queries to O in Algorithm 5 is at most:

mk,2 ≤ c2

 (ν + εk)(α(2ν + εk−1,εk/512)+ εk)

ε2
k

·d(ln2 1

εk

+ ln2 1

δk

)


Proof. (1) Recall that Fk = Fk−1 ∩E1
k ∩E2

k , where E1
k , E2

k are defined in Subsection A.4. Suppose
event Fk happens.

Proof of Invariant 1. We consider a pair of classifiers h,h′ ∈ H , where h is an arbitrary classifier
in H and h′ has excess error at most εk.

At iteration t = t0(k) of Algorithm 5, the breaking criteron in line 14 is met, i.e.

σ(2t0(k),δ
t0(k)
k )+



σ(2t0(k),δ
t0(k)
k )err(ĥt0(k), Ŝ

t0(k)
k )≤ εk/512 (28)

First we expand the definition of err(h,Sk) and err(h, Ŝk) respectively:

err(h,Sk)=PSk
(ĥ

d f
k
(x)=+1,h(x) = yO,x∈Rk−1)+PSk

(ĥ
d f
k
(x)=−1,h(x) = yO,x∈Rk−1)+PSk

(h(x) = yO,x /∈Rk−1)

err(h, Ŝk)=PSk
(ĥ

d f
k
(x)=+1,h(x) = yO,x∈Rk−1)+PSk

(ĥ
d f
k
(x)=−1,h(x) = yW ,x∈Rk−1)+PSk

(h(x) = h∗(x),x /∈Rk−1)

where we use the fact that by Lemma 6, for all examples x /∈ Rk−1, ĥk−1(x) = h∗(x).

We next show that PSk
(ĥd f

k (x) = −1,h(x) = yO,x ∈ Rk−1) is close to PSk
(ĥd f

k (x) = −1,h(x) =
yW ,x ∈ Rk−1).
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From Lemma 7, we know that conditioned on event Fk,

PD (ĥd f
k (x) =−1,yO = yW ,x ∈ Rk−1)≤ εk/64

In the meantime, from Equation (28), γ(2t0(k),δ
t0(k)
k )≤ σ(2t0(k),δ

t0(k)
k )≤ εk/512. Recall that Sk =

S
t0(k)
k . Therefore, by definition of E2

k ,

PSk
(ĥd f

k (x) =−1,yO = yW ,x ∈ Rk−1)

≤ PD (ĥd f
k (x) =−1,yO = yW ,x ∈ Rk−1)+



PD (ĥd f
k (x) =−1,yO = yW ,x ∈ Rk−1)γ(2t0(k),δ

t0(k)
k )+ γ(2t0(k),δ

t0(k)
k )

≤ PD (ĥd f
k (x) =−1,yO = yW ,x ∈ Rk−1)+



PD (ĥd f
k (x) =−1,yO = yW ,x ∈ Rk−1)εk/512+ εk/512

≤ εk/32

By triangle inequality, for all classifier h0 ∈ H ,

|PSk
(ĥd f

k (x) =−1,h0(x) = yO,x ∈ Rk−1)−PSk
(ĥd f

k (x) =−1,h0(x) = yW ,x ∈ Rk−1)|≤ εk/32 (29)

Specifically for h and h′, Equation (29) hold:

|PSk
(ĥd f

k (x) =−1,h(x) = yO,x ∈ Rk−1)−PSk
(ĥd f

k (x) =−1,h(x) = yW ,x ∈ Rk−1)|≤ εk/32

|PSk
(ĥd f

k (x) =−1,h′(x) = yO,x ∈ Rk−1)−PSk
(ĥd f

k (x) =−1,h′(x) = yW ,x ∈ Rk−1)|≤ εk/32

Combining, we get:

(PSk
(ĥd f

k (x) =−1,h(x) = yW ,x ∈ Rk−1)−PSk
(ĥd f

k (x) =−1,h′(x) = yW ,x ∈ Rk−1)) (30)

− (PSk
(ĥd f

k (x) =−1,h(x) = yO,x ∈ Rk−1)−PSk
(ĥd f

k (x) =−1,h′(x) = yO,x ∈ Rk−1))≤ εk/16

We now show the labels inferred in the region X \ Rk−1 is “favorable” to the classifiers whose
excess error is at most εk/2.
By triangle inequality,

PSk
(h(x) = yO,x /∈ Rk−1)−PSk

(h∗(x) = yO,x /∈ Rk−1)≤ PSk
(h(x) = h∗(x),x /∈ Rk−1)

By Lemma 6, since h′ has excess error at most εk, h′ agrees with h∗ on all x inside X \Rk−1 on
event Fk−1, hence PSk

(h′(x) = h∗(x),x /∈ Rk−1) = 0. This gives

PSk
(h(x) = yO,x /∈ Rk−1)−PSk

(h′(x) = yO,x /∈ Rk−1)

≤ PSk
(h(x) = h∗(x),x /∈ Rk−1)−PSk

(h′(x) = h∗(x),x /∈ Rk−1) (31)

Combining Equations (30) and (31), we conclude that

err(h,Sk)− err(h′,Sk)≤ err(h, Ŝk)− err(h′, Ŝk)+ εk/16

This establishes the correctness of Invariant 1.

Proof of Invariant 2. Recall by definition of E2
k the following concentration results hold for all

t ∈ N:

|(err(h,St
k)− err(h′,St

k))− (errD(h)− errD(h
′))|≤ σ(2t ,δ t

k)+


σ(2t ,δ t
k)ρSt

k
(h,h′))

In particular, for iteration t0(k) we have

|(err(h,S
t0(k)
k )−err(h′,St0(k)

k ))−(errD(h)−errD(h
′))|≤σ(2t0(k),δ

t0(k)
k )+



σ(2t0(k),δ
t0(k)
k )ρ

S
t0(k)
k

(h,h′)

Recall that Ŝk = Ŝ
t0(k)
k , ĥk = ĥ

t0(k)
k , and σk = σ(2t0(k),δ

t0(k)
k ), hence the above is equivalent to

|(err(h,Sk)− err(h′,Sk))− (errD(h)− errD(h
′))|≤ σk +



σkρSk
(h,h′) (32)
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Equation (32) establishes the correctness of Equation (17) of Invariant 2. Equation (18) of
Invariant 2 follows from Equation (28).

(2) We define h̃k = argminh∈H errD̂k
(h), and define ν̃k to be errD̂k

(h̃k). To prove the bound

on the number of label requests, we first claim that if t is sufficiently large that

σ(2t ,δ t
k)+



σ(2t ,δ t
k)ν̃k ≤ εk/1536 (33)

then the algorithm will satisfy the breaking criterion at line 14 of Algorithm 5, that is, for this value
of t,

σ(2t ,δ t
k)+



σ(2t ,δ t
k)err(ĥt , Ŝt

k)≤ εk/512 (34)

Indeed, by definition of E2
k , if event Fk happens,

err(h̃k, Ŝ
t
k)

≤ errD̂k
(h̃k)+σ(2t ,δ t

k)+


σ(2t ,δ t
k)errD̂k

(h̃k)

= ν̃k +σ(2t ,δ t
k)+



σ(2t ,δ t
k)ν̃k (35)

Therefore,

σ(2t ,δ t
k)+



σ(2t ,δ t
k)err(ĥt

k, Ŝ
t
k)

≤ σ(2t ,δ t
k)+



σ(2t ,δ t
k)err(h̃k, Ŝ

t
k)

≤ σ(2t ,δ t
k)+



σ(2t ,δ t
k)(2ν̃k +2σ(2t ,δ t

k))

≤ 3σ(2t ,δ t
k)+2



σ(2t ,δ t
k)ν̃k

≤ εk/512

where the first inequality is from the optimality of ĥt
k, the second inequality is from Equation (35),

the third inequality is by algebra, the last inequality follows from Equation (33). The claim follows.
Next, we solve for the minimum t that satisfies (33), which is an upper bound of t0(k). Fact 1 implies
that there is a numerical constant c3 > 0 such that

2t0(k) ≤ c3
ν̃k + εk

ε2
k

(d ln
1

εk

+ ln
1

δk

))

Thus, there is a numerical constant c4 > 0 such that

t0(k)≤ c4(lnd + ln
1

εk

+ ln ln
1

δk

)

Hence, there is a numerical constant c5 > 0 (that does not depend on k) such that the following holds.
If event Fk happens, then the number of label queries made by Algorithm 5 to O can be bounded as
follows:

mk,2 =
t0(k)

∑
t=1

|St,U
k ∩{x : ĥ

d f
k (x) = +1}∩Rk−1|

=
t0(k)

∑
t=1

2t
PS t

k
(ĥd f

k (x) = +1,x ∈ Rk−1)

≤
t0(k)

∑
t=1

2t(2PD (ĥd f
k (x) = +1,x ∈ Rk−1)+2 ·4

ln 2
δ t

k

2t
)

≤ 4 ·2t0(k)PD (ĥd f
k (x) = +1,x ∈ Rk−1)+8 · t0(k) ln

2

δ
t0(k)
k

≤ c5



(
(ν̃k + εk)PD (ĥd f

k (x) = +1,x ∈ Rk−1)

ε2
k

+1) ·d(ln2 1

εk

+ ln2 1

δk

)


≤ c5



(
(ν̃k + εk) ·6(α(2ν + εk−1,εk/512)+ εk/1024)

ε2
k

+1) ·d(ln2 1

εk

+ ln2 1

δk

)
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where the second equality is from the fact that |St,U
k ∩ {x : ĥ

d f
k (x) = −1} ∩ Rk−1| = |St,U

k | ·
PS t

k
(ĥd f

k (x) = −1,x ∈ Rk−1), in conjunction with |St,U
k | = 2t ; the first inequality is by definition

of E2
k , the second and third inequality is from algebra that t0(k) ln 1

δ
t0(k)
k

≤ c5d(ln2 1
εk
+ ln2 1

δk
) for

some constant c5 > 0, along with the choice of c2, the fourth step is from Lemma 7 which states that
Invariant 3 holds at epoch k.
What remains to be argued is an upper bound on ν̃k. Note that

ν̃k

= min
h∈H

[PD (ĥ
d f
k
(x) =−1,h(x) = yW ,x ∈ Rk−1)+PD (ĥ

d f
k
(x) = +1,h(x) = yO,x ∈ Rk−1)+PD (h(x) = h∗(x),x /∈ Rk−1)]

≤ PD (ĥ
d f
k
(x) =−1,h∗(x) = yW ,x ∈ Rk−1)+PD (ĥ

d f
k
(x) = +1,h∗(x) = yO,x ∈ Rk−1)

≤ PD (ĥ
d f
k
(x) =−1,h∗(x) = yO,x ∈ Rk−1)+PD (ĥ

d f
k
(x) = +1,h∗(x) = yO,x ∈ Rk−1)+ εk/64

≤ PD (ĥ
d f
k
(x) =−1,h∗(x) = yO,x ∈ Rk−1)+PD (ĥ

d f
k
(x) = +1,h∗(x) = yO,x ∈ Rk−1)+PD (h(x) = yO,x /∈ Rk−1)+ εk/64

= ν + εk/64

where the first step is by definition of errD̂k
(h), the second step is by the suboptimality of h∗, the

third step is by Equation (29), the fourth step is by adding a positive term PD (h(x) = yO,x /∈ Rk−1),
the fifth step is by definition of errD(h). Therefore, we conclude that there is a numerical constant
c2 > 0, such that mk,2, the number of label requests to O in Algorithm 5 is at most

c2

 (ν + εk)(α(2ν + εk−1,εk/512)+ εk)

ε2
k

·d(ln2 1

εk

+ ln2 1

δk

)


B.4 Putting It Together – Consistency and Label Complexity

Proof of Lemma 2. With foresight, pick c0 > 0 to be a large enough constant. We prove the result
by induction.

Base case. Consider k = 0. Recall that F0 is defined as

F0 =


for all h,h′ ∈H , |(err(h,S0)−err(h′,S0))−(errD(h)−errD(h
′))|≤σ(n0,δ0)+



σ(n0,δ0)ρS0
(h,h′)



Note that by definition in Subsection A.3, Ŝ0 = S0. Therefore Invariant 1 trivially holds. When F0

happens, Equation (17) of Invariant 2 holds, and n0 is such that
√

σ0 ≤ ε0/1024, thus,

σ0 +



σ0err(ĥ0, Ŝ0)≤ ε0/512

which establishes the validity of Equation (18) of Invariant 2.

Meanwhile, the number of label requests to O is

n0 = 64 ·10242(d ln(512 ·10242)+ ln
96

δ
))≤ c0(d + ln

1

δ
)

Inductive case. Suppose the claim holds for k′ < k. The inductive hypothesis states that Invariants
1,2,3 hold in epoch k−1 on event Fk−1. By Lemma 7 and Lemma 8, Invariants 1,2,3 holds in epoch
k on event Fk. Suppose Fk happens. By Lemma 7, there is a numerical constant c1 > 0 such that the
number of label queries in Algorithm 2 in line 12 is at most

mk,1 ≤ c1



PU (x ∈ Δ(2ν + εk−1))

εk

(d′ ln
1

εk

+ ln
1

δk

)


Meanwhile, by Lemma 8, there is a numerical constant c2 > 0 such that the number of label queries
in Algorithm 5 in line 14 is at most

mk,2 ≤ c2

 (α(2ν + εk−1,εk/512)+ εk)(ν + εk)

ε2
k

·d(ln2 1

εk

+ ln2 1

δk

)
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Thus, the number of label requests in total at epoch k is at most

mk = mk,1 +mk,2

≤ c0



(
α(2ν + εk−1,εk/512)+ εk)(ν + εk)

ε2
k

d(ln2 1

εk

+ ln2 1

δk

)+
PU (x ∈ Δ(2ν + εk−1))

εk

(d′ ln
1

εk

+ ln
1

δk

)


This completes the induction.

Theorem 3 (Consistency). If Fk0
happens, then the classifier ĥ returned by Algorithm 1 is such that

errD(ĥ)− errD(h
∗)≤ ε

Proof. By Lemma 2, Invariants 1, 2, 3 hold at epoch k0. Thus by Lemma 5,

errD(ĥ)− errD(h
∗) = errD(ĥk0

)− errD(h
∗)≤ εk0

/8 ≤ ε

Proof of Theorem 1. This is an immediate consequence of Theorem 3.

Theorem 4 (Label Complexity). If Fk0
happens, then the number of label queries made by Algo-

rithm 1 to O is at most

Õ((sup
r≥ε

α(2ν + r,r/1024)

2ν + r
)d(

ν2

ε2
+1)+(sup

r≥ε

PU (x ∈ Δ(2ν + r))

2ν + r
)d′(

ν

ε
+1))

Proof. Conditioned on event Fk0
, we bound the sum ∑

k0
k=0 mk.

k0

∑
k=0

mk

≤ c0(d + ln
1

δ
)+ c0

 k0

∑
k=1

(α(2ν + εk−1,εk/512)+ εk)(ν + εk)

ε2
k

d(ln2 1

εk

+ ln2 1

δk

)+
PU (x ∈ Δ(2ν + εk−1))

εk

(d′ ln
1

εk

+ ln
1

δk

)


≤ c0(d + ln
1

δ
)+ c0

 k0

∑
k=1

(α(2ν + εk−1,εk/512)+ εk)(ν + εk)

ε2
k

d(3ln2 1

ε
+2ln2 1

δ
)+

PU (x ∈ Δ(2ν + εk−1))

εk

(2d′ ln
1

ε
+ ln

1

δ
)


≤ (sup
r≥ε

α(2ν + r,r/1024)+ r

2ν + r
)d(3ln2 1

ε
+2ln2 1

δ
)

k0

∑
k=0

(ν + εk)
2

ε2
k

+ sup
r≥ε

PU (x ∈ Δ(2ν + r))

2ν + r
(2d′ ln

1

ε
+ ln

1

δ
)

k0

∑
k=0

(ν + εk)

εk

≤ Õ((sup
r≥ε

α(2ν + r,r/1024)+ r

2ν + r
)d(

ν2

ε2
+1)+(sup

r≥ε

PU (x ∈ Δ(2ν + r))

2ν + r
)d′(

ν

ε
+1))

where the first inequality is by Lemma 2, the second inequality is by noticing for all k ≥ 1, ln2 1
εk
+

ln2 1
δk

≤ 3ln2 1
ε +2ln2 1

δ and d′ ln 1
εk
+ ln 1

δk
≤ 2d′ ln 1

ε + ln 1
δ , the rest of the derivations follows from

standard algebra.

Proof of Theorem 2. Item 1 is an immediate consequence of Lemma 2, whereas item 2 is a conse-
quence of Theorem 4.
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C Case Study: Linear Classfication under Uniform Distribution over Unit

Ball

We remind the reader the setting of our example in Section 4. H is the class of homogeneous linear
separators on the d-dimensional unit ball and H d f is defined to be {hΔh′ : h,h′ ∈ H }. Note that
d′ is at most 5d. Furthermore, U is the uniform distribution over the unit ball. O is a deterministic
labeler such that errD(h

∗) = ν > 0, W is such that there exists a difference classifier h̄d f with false

negative error 0 for which PrU (h̄
d f (x) = 1) ≤ g = o(

√
dν). We prove the label complexity bound

provided by Corollary 1.

Proof of Corollary 1. We claim that under the assumptions of Corollary 1, α(2ν + r,r/1024) is at

most g. Indeed, by taking hd f = h̄d f , observe that

P(h̄d f (x) =−1,yW = yO,x ∈ Δ(2ν + r))≤ P(h̄d f (x) =−1,yW = yO) = 0

P(h̄d f (x) = +1,x ∈ Δ(2ν + r))≤ g

This shows that α(2ν + r,0)≤ g. Hence, α(2ν + r,r/1024)≤ α(2ν + r,0)≤ g. Therefore,

sup
r:r≥ε

α(2ν + r,r/1024)+ r

2ν + r
≤ sup

r≥ε

g+ r

ν + r
≤ max(

g

ν
,1)

Recall that the disagreement coefficient θ(2ν + r)≤
√

d for all r, and d′ ≤ 5d. Thus, by Theorem 2,
the number of label queries to O is at most

Õ



d max(
g

ν
,1)(

ν2

ε2
+1)+d3/2



1+
ν

ε





D Performance Guarantees for Learning with Respect to Data labeled by O

and W

An interesting variant of our model is to consider learning from data labeled by a mixture of O and
W .

Let DW be the distribution over labeled examples determined by U and W , specifically, PDW
(x,y) =

PU (x)PW (y|x). Let D′ be a mixture of D and DW , specifically D′ = (1− β )D+ βDW , for some
parameter β > 0. Define h′ to be the best classifier with respect to D′, and denote by ν ′ the error of
h′ with respect to D′.

Let O′ be the following mixture oracle. Given an example x, the label yO′ is generated as follows.
O′ flips a coin with bias β . If it comes up heads, it queries W for the label of x and returns the
result; otherwise O is queried and the result returned. It is immediate that the conditional probability
induced by O′ is PO′(y|x) = (1−β )PO(y|x)+βPW (y|x), and D′(x,y) = PO′(y|x)PU (x).

Assumption 2. For any r,η > 0, there exists an h
d f
η ,r ∈ H d f with the following properties:

PD (hd f
η ,r(x) =−1,x ∈ Δ(r),yO′ = yW )≤ η

PD (hd f
η ,r(x) = 1,x ∈ Δ(r))≤ α ′(r,η)

Recall that the disagreement coefficient θ(r) at scale r is θ(r) = suph∈H supr′≥r
PU (DIS(BU (h,r′))

r′ ,
which only depends on the unlabeled data distribution U and does not depend on W or O.

We have the following corollary.

Corollary 2 (Learning with respect to Mixture). Let d be the VC dimension of H and let d′ be the
VC dimension of H d f . If Assumption 2 holds, and if the error of the best classifier in H on D′ is at
most ν ′. Algorithm 1 is run with inputs unlabeled distribution U, target excess error ε , confidence
δ , labeling oracle O′, weak oracle W, hypothesis class H , hypothesis class for difference classifier
H d f , confidence δ . Then with probability ≥ 1−2δ , the following hold:
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1. the classifier ĥ output by Algorithm 1 satisfies: errD′(ĥ)≤ errD′(h′)+ ε .

2. the total number of label queries made by Algorithm 1 to the oracle O is at most:

Õ


(1−β )


sup
r≥ε

α ′(2ν ′+ r,r/1024)+ r

2ν ′+ r
·d



ν ′2

ε2
+1



+θ(2ν ′+ ε)d′


ν ′

ε
+1





Proof Sketch. Consider running Algorithm 1 in the setting above. By Theorem 1 and Theorem 2,

there is an event F such that P(F) ≥ 1− δ , if event F happens, ĥ, the classifier learned by Algo-
rithm 1 is such that

errD′(ĥ)≤ errD′(h′)+ ε

By Theorem 2, the number of label requests to O′ is at most

mO′ = Õ


sup
r≥ε

α ′(2ν ′+ r,r/1024)+ r

2ν ′+ r
·d



ν ′2

ε2
+1



+θ(2ν ′+ ε)d′


ν ′

ε
+1





Since O′ is simulated by drawing a Bernoulli random variable Zi ∼ Ber(1−β ) in each call of O′, if
Zi = 1, then return O(x), otherwise return W (x). Define event

H = {
mO′

∑
i=1

Zi ≤ 2((1−β )mO′ +4ln
2

δ
)}

by Chernoff bound, P(H) ≥ 1− δ . Consider event J = F ∩H, by union bound, P(J) ≥ 1− 2δ .

Conditioned on event J, the number of label requests to O is at most ∑
mO′
i=1 Zi, which is at most

Õ


(1−β )


sup
r≥ε

α ′(2ν ′+ r,r/1024)+ r

2ν ′+ r
·d



ν ′2

ε2
+1



+θ(2ν ′+ ε)d′


ν ′

ε
+1





E Remaining Proofs

Proof of Fact 2. (1) First by Lemma 1, PD (x∈Rk−1)/2≤ p̂k ≤PD (x∈Rk−1) holds with probability
1−δk/6.

Second, for each classifier hd f ∈ H d f , define functions f 1
hd f , and f 2

hd f associated with it. Formally,

f 1
hd f (x,yO,yW ) = I(hd f (x) =−1,yO = yW )

f 2
hd f (x,yO,yW ) = I(hd f (x) = +1)

Consider the function class F 1 = { f 1
hd f : hd f ∈ H d f }, F 2 = { f 2

hd f : hd f ∈ H d f }. Note that both

F 1 and F 2 have VC dimension d′, which is the same as H d f . We note that A ′
k is a random sample

of size mk drawn iid from Ak. The fact follows from normalized VC inequality on F 1 and F 2 and
the choice of mk in Algorithm 2 called in epoch k, along with union bound.

Proof of Fact 3. For fixed t, we note that St
k is a random sample of size 2t drawn iid from D. By

Equation (8), for any fixed t ∈ N,

P



for all h,h′ ∈H , |(err(h,St
k)−err(h′,St

k))−(errD(h)−errD(h
′))|≤σ(2t ,δ t

k)+


σ(2t ,δ t
k
)ρSt

k
(h,h′)



≥ 1−δ t
k/8

(36)

Meanwhile, for fixed t ∈ N, note that Ŝt
k is a random sample of size 2t drawn iid from D̂k. By

Equation (8),

P



for all h,h′ ∈ H ,err(h, Ŝt
k)− errD̂k

(h)≤ σ(2t ,δ t
k)+



σ(2t ,δ t
k)errD̂k

(h)


≥ 1−δ t
k/8 (37)

Moreover, for fixed t ∈ N, note that S t
k is a random sample of size 2t drawn iid from D . By

Equation (12),

P



PS t
k
(ĥd f

k (x) =−1,yO = yW ,x ∈ Rk−1)≤ PD (ĥd f
k (x) =−1,yO = yW ,x ∈ Rk−1)

+



γ(2t ,δ t
k)PD (ĥd f

k (x) =−1,yO = yW ,x ∈ Rk−1)+ γ(2t ,δ t
k)


≥ 1−δ t
k/8 (38)
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Finally, for fixed t ∈ N, note that S t
k is a random sample of size 2t drawn iid from D . By Equa-

tion (12),

P



PS t
k
(ĥ

d f
k
(x)=−1,x∈Rk−1)≤PD (ĥ

d f
k
(x)=−1,x∈Rk−1)+



PD (ĥ
d f
k
(x) =−1,x ∈ Rk−1)γ(2t ,δ t

k
)+γ(2t ,δ t

k)


≥ 1−δ t
k/8

(39)
Note that by algebra,

PD (ĥ
d f
k
(x)=−1,x∈Rk−1)+



PD (ĥ
d f
k
(x) =−1,x ∈ Rk−1)γ(2t ,δ t

k
)+γ(2t ,δ t

k)≤ 2(PD (ĥ
d f
k
(x)=−1,x∈Rk−1)+γ(2t ,δ t

k))

Therefore,

P



PS t
k
(ĥd f

k (x) =−1,x ∈ Rk−1)≤ 2(PD (ĥd f
k (x) =−1,x ∈ Rk−1)+ γ(2t ,δ t

k))


≥ 1−δ t
k/12 (40)

The proof follows by applying union bound over Equations (36), (37), (38) and (40) and t ∈ N.

We emphasize that S t
k is chosen iid at random after ĥ

d f
k is determined, thus uniform convergence

argument over H d f is not necessary for Equations (38) and (40).

Proof of Fact 4. By induction on k.

Base Case. For k = 0, it follows directly from normalized VC inequality that P(F0)≥ 1−δ0.

Inductive Case. Assume P(Fk−1)≥ 1−δ0 − . . .−δk−1 holds. By union bound,

P(Fk)≥ P(Fk−1 ∩E1
k ∩E2

k )≥ P(Fk−1)−δk/2−δk/2 ≥ P(Fk−1)−δk

Hence, P(Fk)≥ 1−δ0 − . . .−δk. This finishes the induction.
In particular, P(Fk0

)≥ 1−δ0 − . . .δk0
≥ 1−δ .
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