
A Proofs

Proof of entropy relaxation. We apply the entropy power inequality [6], which asserts that for independent
d-dimensional random vectors  1:K , the sum

 =
KX

k=1

 k

satisfies

e

2h( )
d �

KX

k=1

e

2h( k)
d � max

1kK
e

2h( k)
d

, (10)

where h denotes differential entropy.

In our case, we have
 k = Fk (✓k)

and
 = ✓ = F (✓1, . . . , ✓K)

Since
H [q] = h ( ) ,

equation (10) implies

H [q] � max
1kK

h ( k) = max
1kK

(H [pk] + Epk [log det J (Fk) (✓k)]) .

Defining

H̃ [q] =
1

K

KX

k=1

Epk [log det J (Fk) (✓k)] + min
1kK

H [pk] ,

we immediately see that
H [q] � H̃ [q] ,

as required.

Proof of Theorem 4.1. We first define

L0 (q) = Eq [log p (✓, X) | ✓1:K ] = log p (F (✓1:K) , X) .

Since L (q) = Ep1:K [L0 (q)], where the expectation is taken with respect to the subposteriors, which do
not vary with q, it suffices to show that L0 is concave in each F

u individually for each fixed ✓1:K . Fur-
thermore, since F (✓1:K) is linear in F by the definition of function addition, it actually suffices to show
` (✓) = log p (F (✓1:K) , X) in each ✓

u individually. To see why this holds, first observe that for each
u 2 V (G), we have

` (✓) = log hu (✓u) +
X

u02par(u)

⇣
✓

u0⌘T
T

u0!u
⇣
✓

u0⌘
(11)

+
X

v2ch(u)

h
(✓u)T T

u!v (✓v)� logAv
⇣
✓

par(v)
⌘i

+ cu, (12)

where cu is a function of ✓ that is constant in ✓u. By the log-concavity assumption, the sum of the first two
terms of ` (✓) in (12) is concave in ✓u. On the other hand, by basic properties of exponential families, each
logAv

⇣
✓

par(v)
⌘

is convex in ✓par(v) and hence in ✓u, making its negative concave. Since the remaining terms
are linear or constant, ` is in fact concave in ✓u. The claim follows.

Proof of Theorem 4.2. Clearly it suffices to show that each Epk [log det J (Fk) (✓k)] is concave and for this
it suffices to show that for fixed ✓k, log det J (Fk) (✓k) is concave. This is immediate, however, since the
Jacobian is a linear function and log det is a concave function.

B Variational objective functions

We derive the variational objectives and gradients for the models we analyze. Throughout, we make the con-
vention that for A, B 2 Rd⇥d,

hhA, Bii = Tr (AB)

denotes the trace inner product.
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B.1 Bayesian probit regression

In this section, we compute the variational objective for the Bayesian probit regression model. For convenience,
we define

µk = Epk [�k] and Sk = Epk

h
�k�

T
k

i
.

In this notation, the variational objective takes the simple form

L(W ) = � 1

2�2

KX

k=1

"DD
Sk, W

T
k Wk

EE
+ 2

X

` 6=k

DD
µkµ

T
` W

T
` , Wk

EE#

+

NX

n=1

"
yn · Eq [log�n] + (1� yn) · Eq [log (1� �n)]

#

+
1

K

KX

k=1

log det (Wk)

where �n = �
�P

k

⌦⌦
Wk, �kx

T
n

↵↵�
.

This leads to the gradients

rWkL =
1

�

2

"
SkW

T
k +

X

` 6=k

⇣
µkµ

T
` W

T
` +W`µ`µ

T
k

⌘#

+

NX

n=1

Eq

✓
�n

�n (1� �n)
· (yn � �n)

◆
· �k

�
x

T
n

+
W

�1
k

K

,

where we have additionally defined �n = �

⇣PK
k=1

⌦⌦
Wk, �kx

T
n

↵↵⌘
and

� =

KX

k=1

Wk�k.

B.2 Normal-inverse Wishart model

The variational objective for the normal-inverse Wishart model takes the form
L (W ) = Eq [L0 (W, ⇤1:K)] + H̃ [q] ,

where

L0 (W ) = �1

2

KX

k=1

DD
Rk

⇣
V

�1 +X

T
X

⌘
R

T
k , WkDk

EE

+
N

2

KX

k=1

DD
Rk

⇣
µx̄

T + x̄µ

T
⌘
, WkDk

EE
� N

2

KX

k=1

DD
(Rkµ) (Rkµ)

T
, WkDk

EE

+
⌫ +N � d� 1

2
· log det

 
KX

k=1

R

T
k [WkDk]Rk

!
,

and we have compressed our notation by setting µ =
P

k Akµk, x̄ = 1
N

P
n xn, Rk = R (⇤k),

and Dk = D (⇤k). As before, we have

H̃ [q] =
1

K

KX

k=1

log det (Wk) ,

where we have suppressed the constant depending on the p1:K since it does not vary with Wk.

Recalling that Wk is diagonal, we can obtain the gradients by first computing

rWkL0 (W ) = Dk · diag
h
Rk

⇣
V

�1 +X

T
X

⌘
R

T
k

i

+
N

2
·Dk (Rkµ � x̄+Rkx̄ � µ)� N

2
·Dk (Rkµ) � (Rkµ)

+
⌫ +N � d� 1

2
·Dk · diag

2

4
Rk

 
KX

`=1

R

T
` [W`D`]R`

!�1

R

T
k

3

5
,
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where we have used � to denote elementwise vector products. We then find

rWkL = Eq [rWkL0 (W )] +
W

�1
k

K

.

B.3 Mixture of Gaussians

Per the description of aggregation in Section 5, we define merged samples in the mixture of Gaussians model
by the equations

✓

⇤
` = Fa` (✓1:K,1:L) =

KX

k=1

Wk`✓kak` ,

where ` = 1, . . . , L denotes the cluster index and ak denotes the alignment mapping indices on the master core
to indices on worker core k. Throughout this section, we treat the alignment variables as fixed.

Using this notation, we define

L0 (W, ✓1:K,1:L) = � 1

2⌧2

LX

`=1

||✓⇤` ||
2
2 �

1

2�2

LX

`=1

nX

i=1

�i` (W ) ||✓⇤` � xi||22 ,

where
�n` =

�̃n`PL
`0=1 �̃n`0

and
�̃n` = exp

✓
� 1

2�2
||✓⇤` � xn||22

◆
.

The variational objective then takes the form

L (W ) = Ep1:K [L0 (W, ✓1:K,1:L)] + H̃ [q] ,

with the usual equation

H̃ [q] =
1

K

KX

k=1

LX

`=1

log det (Wk`) .

Some calculation then shows that the gradients with respect to the various Wk` are given by

rk`L0 (W, ✓1:K,1:L) =
1

2�4

NX

n=1

�n` (1� �i`) ||✓⇤` � xn||22 · ✓kak` (✓
⇤
` � xn)

T

�
 

1

⌧

2
+

PN
n=1 �n`

�

2

!
· ✓kak` (✓

⇤
` � x̃`)

T
,

where

x̃` =

 
1

⌧

2
+

PN
n=1 �n`

�

2

!�1 NX

n=1

�n`

�

2
· xn.

This covers the case of general PSD matrices Wk`. When the matrices are restricted to be diagonal, we get the
simplified gradient

rk`L0 (W, ✓1:K,1:L) =
1

2�4

NX

n=1

�i` (1� �n`) ||✓⇤` � xn||22 · ✓kak` � (✓
⇤
` � xn)

�
 

1

⌧

2
+

PN
n=1 �n`

�

2

!
· ✓kak` � (✓

⇤
` � x̃`) ,

where � denotes elementwise multiplication of vectors.

Since

rk`L (W ) = Ep1:K [rk`L (W, ✓1:K,1:L)] +
W

�1
k`

K

,

this gives us all the information we need to implement an optimization procedure for the objective.
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C Extended empirical evaluation

Figure 4: Five-dimensional probit regression (d = 5). Moment approximation error for the uniform
and Gaussian averaging baselines and VCMC, relative to serial MCMC. We assessed three groups of
functions: (left) first moments, with f(�) = �j for 1  j  d; (center) pure second moments, with
f(�) = �

2
j for 1  j  d; and (right) mixed second moments, with f(�) = �i�j for 1  i < j  d.

Figure 5: High-dimensional probit regression (d = 300). Moment approximation error for the uni-
form and Gaussian averaging baselines and VCMC, relative to serial MCMC, for subposteriors (left)

and partial posteriors (right). Here we show the pure second moments.
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Figure 6: Five-dimensional normal-inverse Wishart model (d = 5). Moment approximation error
for the uniform and Gaussian averaging baselines and VCMC, relative to serial MCMC. Letting ⇢j

denote the jth largest eigenvalue of ⇤�1, we assessed three groups of functions: (left) first moments,
with f(⇤) = ⇢j for 1  j  d; (center) pure second moments, with f(⇤) = ⇢

2
j for 1  j  d; and

(right) mixed second moments, with f(⇤) = ⇢i⇢j for 1  i < j  d.
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