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Table 1: Table of Symbol and Notations

Sl Subspace l
XA Clean data matrix
XO Irrelevant data
(XA)−i A submatrix of XAthat excludes the column i.
X l
A The selection of columns in XA that belongs to Sl.

Σ̂ Robust counterpart of XT
−iX−i

γ̂ Robust counterpart of XT
−ixi

P l−i Symmetrized convex hull of (XA)
(l)
−i

Σs,η The submatrix of Σ with row indices in set s and column indices in set η.
(XA)l

c

The submatrix matrix of XA that excludes column in subspace l.
C1, C2, C3 Numerical constants
‖ · ‖∞ Infinity norm of a vector or matrix
‖ · ‖2 2-norm of a vector
‖ · ‖1 1-norm of a vector

Lemma 1. Consider a matrix Σ ∈ RN×N and γ ∈ RN×1, If there exist a pair (c̃, ξ) and c̃ has a
support S ⊆ T , such that

sgn(c̃s) + Σs,ηξη = 0,

‖Σsc∩T,ηξη‖∞ ≤ 1,

‖ξ‖1 = λ,

‖ΣT c,ηξη‖∞ < 1,

(1)

where η is the set of indices of entry i such that |(Σc̃ − γ)i| = ‖Σc̃ − γ‖∞, then for all optimal
solution c∗ to the problem P (Σ, γ), we have c∗T c = 0.

Proof.

‖c∗‖1 + λ‖Σc∗ − γ‖∞ − ‖c̃‖1 − λ‖Σc̃− γ‖∞
≥ 〈sgn(c̃s), c

∗
s − c̃s〉+ ‖c∗sc∩T ‖1 + ‖c∗T c‖1 + 〈Σ.,ηξη, c∗ − c̃〉

= 〈−Σs,ηξη, c
∗
s − c̃s〉+ ‖c∗sc∩T ‖1 + ‖c∗T c‖1 + 〈Σ.,ηξη, c∗ − c̃〉

= ‖c∗sc∩T ‖1 + ‖c∗T c‖1 + 〈Σsc∩T,ηξη, c∗sc∩T 〉+ 〈ΣT c,ηξη, c∗T c〉
≥ (1− ‖Σsc∩T,ηξη‖∞)‖c∗sc∩T ‖1 + (1− ‖ΣT c,ηξη‖∞)‖c∗T c‖1.
> 0(unless‖c∗T c‖ = 0)

(2)
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where the notion Σ.,η denotes the submatrix of Σ with same row and column indices in η. The first
inequality holds from the convexity of objective function. The second inequality holds form the
property of dual norm. The last inequality holds from the fact that ‖ΣT c,ηξη‖∞ < 1. Thus c∗ is not
the optimal solution unless c∗T c = 0. Note that c̃ is also the optimal solution.

Before we start to prove our main theorem of the deterministic model, we first look at some proper-
ties of the robust inner product and how to decompose Σ̂ and γ̂.

Lemma 2. Suppose Σ̂ and γ̂ are robust counterparts ofXT
−iX−i andXT

−ixi respectively and among
D + D1 features, up to D1 are irrelevant. We can decompose Σ̂ and γ̂ into following form Σ̂ =
(XA)T−i(XA)−i + Σ̃ and γ̂ = (XA)T−i(xA)i + γ̃. We define δ1 := ‖γ̃‖∞ and δ2 := ‖Σ̃‖∞ .If
‖(xA)i‖∞ ≤ ε1 and ‖(XA)−i‖∞ ≤ ε2, then δ2 ≤ 2D1ε

2
2, δ1 ≤ 2D1ε1ε2.

Proof. Consider the robust inner product h(j) between jth column of X−i and xi. A is the set of
indices of k such that (X−i)kj and (xi)k are true data.

h(j) =
∑
k∈A

(X−i)kj(xi)k −
∑

k∈truncated true features

(X−i)kj(xi)k +
∑

k∈remaining irrelevant features

(X−i)kj(xi)k

(3)

Notice the first term is the inner product of the true data and we need to bound the last two terms.

For the wrongly truncated true data we have

|
∑

k∈truncated true features

(X−i)kj(xi)k| ≤ D1(max
k∈A
|(X−i)kj |)(max

k∈A
|(xi)k|).

A easy observation is

|
∑

k∈remaining irrelevant features

(X−i)kj(xi)k| ≤
∑

k∈remaining irrelevant features

|(X−i)kj(xi)k|

≤
∑

k∈truncated true features

|(X−i)kj(xi)k|

≤ D1(max
k∈A
|(X−i)kj |)(max

k∈A
|(xi)k|),

(4)

where the second inequality holds from the definition of the robust inner product.

So we can decompose γ̂ into two parts

γ̂ = (XA)T−i(xA)i + γ̃,

where γ̃j = −
∑
k∈truncated true features(X−i)kj(xi)k +

∑
k∈remaining irrelevant features(X−i)kj(xi)k. Thus

|γ̃j | ≤ 2D1(max
k∈A
|(X−i)kj |)(max

k∈A
|(xi)k|) ≤ 2D1ε1ε2

.

Similarly, we can decompose Σ̂ = (XA)T−i(XA)−i + Σ̃. Consider the Robust inner project h(p, q)
between pth column and qth column of X . A is the set of index k such that Xkp and Xkq are true
data.

h(p, q) =
∑
k∈A

(X−i)kp(X−i)kq −
∑

k∈truncated true features

(X−i)kp(X−i)kq

+
∑

k∈remaining irrelevant features

(X−i)kp(X−i)kq
(5)
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The first term corresponds to the true data.

We define

Σ̃p,q = −
∑

k∈truncated true features

(X−i)kp(X−i)kq +
∑

k∈remaining irrelevant features

(X−i)kp(X−i)kq.

Similarly we can bound last two terms.

|
∑

k∈truncated true features

(X−i)kp(X−i)kq| ≤ D1(max
k∈A
|(X−i)kp|)(max

k∈A
|(X−i)kq|).

|
∑

k∈remaining irrelevant features

(X−i)kp(X−i)kq| ≤
∑

k∈truncated true features

|(X−i)kp(X−i)kq|

≤ D1(max
k∈A
|(X−i)kp|)(max

k∈A
|(X−i)kq|).

(6)

So we have
|Σ̃p,q| ≤ 2D1(max

k∈A
|(X−i)kp|)(max

k∈A
|(X−i)kq|) ≤ 2D1ε

2
2.

It makes sense that upper bounded of |Σ̃p,q| and |γ̃j | are proportional to D1 and ‖XA‖∞, since D1

is the upper bound of the number of irrelevant features. It is easier to detect subspace with smaller
D1. ‖XA‖∞ decide the incoherence of data, small ‖XA‖∞ indicates the information spreads out.
Suppose the true data matrix is sparse, then it is hard to know which feature is irrelevant and which
one is the true.

1 Proof of Theorem 1

1.1 Construction of Dual Certificate

We consider the following oracle problem P (Σ̂l,l, γ̂l) to construct the dual certificate.

min
c
‖c‖1 + λ‖Σ̂l,lc− γ̂l‖∞, (7)

where Σ̂l,l and γ̂l are robust counterparts of (XA)
(l)T
−i (XA)

(l)
−i and (XA)

(l)T
−i (xA)i respectively.

The dual problem is

max
ξ
〈ξ, γ̂〉 subject to ‖ξ‖1 = λ ‖Σ̂l,lξ‖∞ ≤ 1. (8)

Optimal solution pair (ĉ ,ξ̂) of the this oracle problem satisfies

sgn(ĉŝ) + Σ̂ŝ,η̂ ξ̂η̂ = 0,

‖Σ̂ŝc,η̂ ξ̂η̂‖∞ ≤ 1,

‖ξ̂‖1 = λ,

(9)

where subscripts ŝ and η̂ denote the support of ĉ and ξ̂ respectively, and η̂ is the set of indices of entry
i such that |(Σl,lĉ− γ̂l)i| = ‖Σl,lĉ− γ̂l‖∞. If we set c̃ = (0, ..., ĉ, ..., 0) and ξ = (0, ..., ξ̂, ..., 0), it
is easy to see we just need to verify the following condition for Lemma1.

‖Σ̂lc,η̂ ξ̂η̂‖∞ < 1. (10)

Recall that Σ̂lc,η̂ = (XA)(l
c)T (XA)η̂ + Σ̃lc,η̂ . We define v := (XA)η̂ ξ̂η̂ . Thus the condition (10)

becomes
‖(XA)(l

c)T v + Σ̃lc,η̂ ξ̂η̂‖∞ < 1. (11)
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we establish the condition required for (11) to hold. The idea is to provide a upper bound of the left
hand side.

‖(XA)(l
c)T v + Σ̃lc,η̂ ξ̂η̂‖∞ ≤ ‖(XA)(l

c)T v‖∞ + ‖Σ̃lc,η̂ ξ̂η̂‖∞
≤ ‖v‖2‖(XA)(l

c)T v

‖v‖2
‖∞ + ‖Σ̃lc,η̂‖∞‖ξ̂η̂‖1

= ‖v‖2‖(XA)(l
c)T v

‖v‖2
‖∞ + λ‖Σ̃lc,η̂‖∞.

(12)

The term ‖(XA)(l
c)T v
‖v‖2 ‖∞ is the incoherence that we defined before. Now we need to bound

‖v‖2.

Bounding ‖v‖2
Before we bound ‖v‖2, we introduce the definition of polar set and circumradius.

Definition of Polar Set

The polar set K◦ of the set K ∈ RD is defined as

K◦ = {y ∈ RD : 〈x, y〉 ≤ 1 for all x ∈ K}.

Definition of circumradius

The circumradius of a convex body P , denoted byR(P ), is defined as the radius of the smallest ball
containing P .

We exploit the optimal condition in 9 to bound ‖v‖2. Using the first two condition in 9, we know

‖Σ̂l,η̂ ξ̂η̂‖∞ ≤ 1

which implies
‖(XA)

(l)T
−i v + Σ̃l,η̂ ξ̂η̂‖∞ ≤ 1.

The above condition implies

‖(XA)
(l)T
−i v‖∞ ≤ 1 + ‖Σ̃l,η̂ ξ̂η̂‖∞

and

v ∈ [P (
(XA)

(l)
−i

1 + ‖Σ̃l,η̂ ξ̂η̂‖∞
)]◦

Using the definition of circumradius, we have

‖v‖2 ≤ R([P (
(XA)

(l)
−i

1 + ‖Σ̃l,η̂ ξ̂η̂‖∞
)]◦)

The following lemma extracted from [2] relates the circumradius to the inradius of its polar set.

Lemma 3. For a symmetric convex body P , i.e., P = −P , the following relationship between the
inradius of P and circumradius of its polar P ◦ holds

r(P )R(P ◦) = 1.

Remind that polar of a polar set is the tightest convex envelope of original set, i.e., K = (K◦)◦.
Combining this property and Lemma 3, we have

‖v‖2 ≤
1 + ‖Σ̃l,η̂ ξ̂η̂‖∞

r(P l−i)
≤ 1 + ‖ξ̂η̂‖1‖Σ̃l,η̂‖∞

r(P l−i)
=

1 + λ‖Σ̃l,η̂‖∞
r(P l−i)
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1.2 The upper bound of λ

Replace ‖v‖2 in (12) by its upper bound we have

1 + λ‖Σ̃l,η̂‖∞
r(P l−i)

µl + λ‖Σ̃lc,η̂‖∞ ≤ 1 (13)

Remind we define δ2 = ‖Σ̃‖∞ and it is easy to see ‖Σ̃lc,η̂‖∞ ≤ δ2, ‖Σ̃l,η̂‖∞ ≤ δ2. Thus a sufficient
condition of (13) is

λ <
r(P l−i)− ul

δ2(ul + r(P l−i))

Replace δ2 by its upper bound in Lemma 2, we get the upper bound of λ in the theorem. If λ is
small, we can tolerate more irrelevant features. However λ can not be as small as 0, otherwise c = 0
is the trivial solution of the primal problem. We discuss how to choose λ to avoid this case in the
following section.

1.3 The lower bound λ

If λ satisfies the following condition, the optimal solution of Robust Dantzig Selector can not be
zero

λ >
1

r2(P l−i)− 2D1ε22 − 4r(P l−i)D1ε1ε2
.

If c = 0 is the optimal solution in the primal problem P (Σ̂l,l, γ̂l), the optimal value is λ‖γ̂l‖∞. Now
we choose a special non-zero c such that

‖c‖1 + λ‖Σ̂l,lc− γ̂l‖∞ < λ‖γ̂l‖∞. (14)

Thus we can prove by contradiction. In particular, c is the optimal solution of the following problem
with clean data

min
c
‖c‖1s.t. (XA)

(l)
−ic = (xA)−i. (15)

The dual of this problem is

max
q
〈q, (xA)i〉 s.t.‖(XA)

(l)
−iq‖∞ ≤ 1 (16)

Since it is linear programming, the strong duality holds. We have 〈q, (xA)i〉 ≤ ‖q‖2 using the
fact that ‖(xA)i‖2 = 1. Now we apply Lemma 3 again and use the definition of circumradius, the
optimal value ‖c‖1 of (15) satisfies

‖c‖1 ≤ ‖q‖2 ≤
1

r(P l−i)
.

We first look at the upper bound of LHS of (14).

‖c‖1 + λ‖Σ̂l,lc− γ̂l‖∞
=‖c‖1 + λ‖(XA)

(l)
−i((XA)

(l)
−ic− (xA)i) + Σ̃l,lc− γ̃l‖∞

=‖c‖1 + λ‖Σ̃l,lc− γ̃l‖∞
≤‖c‖1 + λ‖Σ̃l,lc‖∞ + λ‖γ̃l‖∞
≤‖c‖1 + λ‖Σ̃l,l‖∞‖c‖1 + λ‖γ̃l‖∞

≤(1 + λ‖Σ̃l,l‖∞)
1

r(P l−i)
+ λ‖γ̃l‖∞,

(17)
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where the second equality holds from the fact that c is feasible in problem (15).

Now we derive the lower bound of RHS of (14).

λ‖γ̂l‖∞ = λ‖(XA)
(l)T
−i (xA)i + γ̃‖∞

≥ λ‖(XA)
(l)T
−i (xA)i‖∞ − λ‖γ̃‖∞

≥ λr(P l−i)− λ‖γ̃‖∞,

(18)

where the last inequality holds from the geometric meaning of the inradius of a symmetric convex
body.

Thus a sufficient condition for 14 is

(1 + λ‖Σ̃l,l‖∞)
1

r(P l−i)
+ λ‖γ̃l‖∞ ≤ λr(P (l−i)− λ‖γ̃‖∞,

which implies

λ >
1/r(P l−i)

r(P l−i)− 2‖γ̃l‖∞ − 1
r(P l−i)

‖Σ̃l,l‖∞
. (19)

Remind that we define δ1 = ‖γ̃‖∞ and ‖γ̃l‖∞ ≤ δ1, we get the lower bound of λ

λ >
1

r2(P l−i)− δ2 − 2r(P l−i)δ1
.

replace δ1 and δ2 by corresponding upper bounds in Lemma 2, we get the theorem.

2 Proof of Theorem 2

In this section, we prove Theorem 2 in the fully random model. In this case, both the orientation of
the subspace and the distribution of the points are random. Before the proof, we need the following
Lemma of the upper bound on the spherical cap [1].
Lemma 4. Let x ∈ RD be a random vector sampled from a unit sphere and z is a fixed vector. Then
we have

Pr(|xT z| ≥ ε‖z‖2) ≤ 2 exp(
−Dε2

2
).

2.1 Bounding δ1 and δ2

Remind that
|γ̃j | ≤ 2D1(max

k∈A
|(X−i)kj |)(max

k∈A
|(xi)k|)

|Σ̃p,q| ≤ 2D1(max
k∈A
|(X−i)kp|)(max

k∈A
|(X−i)kq|)

Using Lemma 4 with z = ei (ei is the vector with a 1 in the ith coordinate and 0’s elsewhere) and
union bound over dimension D , we have

Pr(max
i
|(XA)ij | ≥ ε) ≤ 2D exp(

−Dε2

2
)

for a fixed j.

In particular, we choose ε =
√

log(D)+8 logN
D . Using the union bound again over all N2 entires of

Σ̃, then we have

δ1 ≤
C1D1(log(D) + C2 log(N))

D
,
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δ2 ≤
C1D1(log(D) + C2 log(N))

D
.

with probability at least 1− 1
N respectively, where C1 and C2 are some absolute constants.

2.2 Bounding the inradius r

We need to bound the inradius r, the following lemma is extracted from [2].

Lemma 5. For every ρ > 0, there exist a constant c(ρ) such that if (1 + ρ)d < N < d exp(d/2),
such that

Pr{r(P l−i) ≤
c(ρ)√

2

√
log ρ

d
for all pairs (l, i)} ≤

L∑
l=1

Nl exp(−dβN1−β
l ),

where ρ = Nl−1
d is the relative number of iid samples. There is a numerical value ρ0, such that for

all ρ > ρ0, one can take c(ρ) = 1/
√

8.

This Lemma is from the Theorem 2.8 in [2]. We choose β = 1
2 . In the fully random model, we have

N1 = N2 = ... = Nl = ρd+ 1.

2.3 Incoherence bound

Notice v just depends on the data X(l)
−i and xi corresponding to the subspace l, thus v and X(lc)

A are
independent. Using the lemma 4, we have

Pr(‖xA
v

‖v‖2
‖2 ≤

√
6 logN

D
) ≤ 2

N3

for all true data point xA ∈ X\X l .

2.4 The range of λ

To make the upper bound of λ meaningful, we need rl > ul. Replace rl by its lower bound and ul
by its upper bound we have

d ≤ Dc2(ρ) log(ρ)

12 logN

and

1

1
2c

2(ρ) log ρ
d − (

√
2c(ρ)

√
log ρ
d + 1)C1D1(logD+C2 logN)

D

< λ <
1− κ
1 + κ

D

C1D1(logD + C2 logN)
,

where κ =
√

12d logN
Dc2(ρ) log ρ .

2.5 The number of irrelevant features

We further simplify the lower bound of λ.

If D1 < D, D1 <
c(ρ)D log ρ

8C1d(log(D)+C2 logN) and d ≥ 2c(ρ)2 log ρ, then we can choose

λ =
4d

c(ρ)2 log ρ
.

Remind the upper bound of λ < r(P l−i)−ul
δ2(ul+r(P l−i))

, we set
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4d

c(ρ)2 log ρ
=

r(P l−i)− ul
δ2(ul + r(P l−i))

.

Replace r by its lower bound and δ1, δ2 by the corresponding upper bounds, using the union bound,
we can get the number of irrelevant features we can tolerate is

D1 =
1−

√
12d logN
Dc2(ρ) log ρ

1 +
√

12d logN
Dc2(ρ) log ρ

C0Dc(ρ)2 log ρ

C1d(log(D) + C2 logN)

with probability at least 1− 4
N −N exp(−√ρd).

Thus

D1 = min{D, c(ρ)D log ρ

8C1d(log(D) + C2 logN)
,

1−
√

12d logN
Dc2(ρ) log ρ

1 +
√

12d logN
Dc2(ρ) log ρ

C0Dc(ρ)2 log ρ

C1d(log(D) + C2 logN)

= min{ C(ρ)D log ρ

8C1d(log(D) + C2 logN)
,

1−
√

12d logN
Dc2(ρ) log ρ

1 +
√

12d logN
Dc2(ρ) log ρ

C0Dc(ρ)2 log ρ

C1d(log(D) + C2 logN)
.

(20)

Similarly D1 < D, D1 <
Dc(ρ)

√
log ρ
d

4
√
2C1(log(D)+C2 logN)

and d ≤ 2c(ρ)2 log ρ, then we choose

λ =
4d

c(ρ)2 log ρ
.

Using the union bound again, we have

D1 = min{
Dc(ρ)

√
log ρ
d

4
√

2C1(log(D) + C2 logN)
,

1−
√

12d logN
Dc2(ρ) log ρ

1 +
√

12d logN
Dc2(ρ) log ρ

C0Dc(ρ)2 log ρ

C1d(log(D) + C2 logN)
}.

with probability at least 1− 4
N −N exp(−√ρd).
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Figure 1: We test LASSO-SSC with different lambda. Simulated with D = 200, d = 5, L = 3,
ρ = 5, and D1 from 1 to 20. Notice that RelViolation=0.1 is pretty large and can be considered as
clustering failure.
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Additional Numerical Experiment

We test LASSO-SSC with different λ in Figure 1 to demonstrate that LASSO-SSC is not robust to
irrelevant features. The X-axis is the number of irrelevant features and the Y-axis is the Relviolation.
The ambient dimension D = 200, L = 3, d = 5, the relative sample density ρ = 5. The values of
irrelevant features are independently sampled from a uniform distribution in the region [−10, 10].
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