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Abstract

Rodents navigating in a well–known environment can rapidly learn and revisit ob-
served reward locations, often after a single trial. While the mechanism for rapid
path planning is unknown, the CA3 region in the hippocampus plays an important
role, and emerging evidence suggests that place cell activity during hippocam-
pal “preplay” periods may trace out future goal–directed trajectories. Here, we
show how a particular mapping of space allows for the immediate generation of
trajectories between arbitrary start and goal locations in an environment, based
only on the mapped representation of the goal. We show that this representation
can be implemented in a neural attractor network model, resulting in bump–like
activity profiles resembling those of the CA3 region of hippocampus. Neurons
tend to locally excite neurons with similar place field centers, while inhibiting
other neurons with distant place field centers, such that stable bumps of activity
can form at arbitrary locations in the environment. The network is initialized to
represent a point in the environment, then weakly stimulated with an input cor-
responding to an arbitrary goal location. We show that the resulting activity can
be interpreted as a gradient ascent on the value function induced by a reward at
the goal location. Indeed, in networks with large place fields, we show that the
network properties cause the bump to move smoothly from its initial location to
the goal, around obstacles or walls. Our results illustrate that an attractor network
with hippocampal–like attributes may be important for rapid path planning.

1 Introduction

While early human case studies revealed the importance of the hippocampus in episodic memory [1,
2], the discovery of “place cells” in rats [3] established its role for spatial representation. Recent
results have further suggested that, along with these functions, the hippocampus is involved in active
spatial planning: experiments in “one–shot learning” have revealed the critical role of the CA3
region [4, 5] and the intermediate hippocampus [6] in returning to goal locations that the animal has
seen only once. This poses the question of whether and how hippocampal dynamics could support
a representation of the current location, a representation of a goal, and the relation between the two.

In this article, we propose that a model of CA3 as a “bump attractor” [7] can be be used for path
planning. The attractor map represents not only locations within the environment, but also the spatial
relationship between locations. In particular, broad activity profiles (like those found in intermediate
and ventral hippocampus [8]) can be viewed as a condensed map of a particular environment. The
planned path presents as rapid sequential activity from the current position to the goal location,
similar to the “preplay” observed experimentally in hippocampal activity during navigation tasks [9,
10], including paths that require navigating around obstacles. In the model, the activity is produced
by supplying input to the network consistent with the sensory input that would be provided at the
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goal site. Unlike other recent models of rapid goal learning and path planning [11, 12], there is
no backwards diffusion of a value signal from the goal to the current state during the learning or
planning process. Instead, the sequential activity results from the representation of space in the
attractor network, even in the presence of obstacles.

The recurrent structure in our model is derived from the “successor representation” [13], which
represents space according to the number and length of paths connecting different locations. The
resulting network can be interpreted as an attractor manifold in a low–dimensional space, where the
dimensions correspond to weighted version of the most relevant eigenvectors of the environment’s
transition matrix. Such low–frequency functions have recently found support as a viable basis for
place cell activity [14–16]. We show that, when the attractor network operates in this basis and is
stimulated with a goal location, the network activity traces out a path to that goal. Thus, the bump
attractor network can act as a spatial path planning system as well as a spatial memory system.

2 The successor representation and path–finding

A key problem in reinforcement learning is assessing the value of a particular state, given the ex-
pected returns from that state in both the immediate and distant future. Several model–free algo-
rithms exist for solving this task [17], but they are slow to adjust when the reward landscape is
rapidly changing. The successor representation, proposed by Dayan [13], addresses this issue.

Given a Markov chain described by the transition matrix P, where each element P (s, s′) gives the
probability of transitioning from state s to state s′ in a single time step; a reward vector r, where
each element r(s′) gives the expected immediate returns from state s′; and a discount factor γ, the
expected returns v from each state can be described by

v = r + γPr + γ2P2r + γ3P3r + . . . (1)

= (I− γP)−1r

= Lr.

The successor representation L provides an efficient means of representing the state space according
to the expected (discounted) future occupancy of each state s′, given that the chain is initialized from
state s. An agent employing a policy described by the matrix P can immediately update the value
function when the reward landscape r changes, without any further exploration.

The successor representation is particularly useful for representing many reward landscapes in the
same state space. Here we consider the set of reward functions where returns are confined to a single
state s′; i.e. r(s′) = δs′g where δ denotes the Kronecker delta function and the index g denotes a
particular goal state. From Eq. 1, we see that the value function is then given by the column s′
of the matrix L. Indeed, when we consider only a single goal, we can see the elements of L as
L(s, s′) = v(s|s′ = g). We will use this property to generate a spatial mapping that allows for a
rapid approximation of the shortest path between any two points in an environment.

2.1 Representing space using the successor representation

In the spatial navigation problems considered here, we assume that the animal has explored the en-
vironment sufficiently to learn its natural topology. We represent the relationship between locations
with a Gaussian affinity metric a: given states s(x, y) and s′(x, y) in the 2D plane, their affinity is

a(s(x, y), s′(x, y)) = a(s′(x, y), s(x, y)) = exp

(
−d2

2σ2
s

)
(2)

where d is the length of the shortest traversable path between s and s′, respecting walls and obstacles.
We define σ to be small enough that the metric is localized (Fig. 1) such that a(s(x, y), ·) resembles
a small bump in space, truncated by walls. Normalizing the affinity metric gives

p(s, s′) =
a(s, s′)∑
s′ a(s, s′)

. (3)
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The normalized metric can be interpreted as a transition probability for an agent exploring the envi-
ronment randomly. In this case, a spectral analysis of the successor representation [14, 18] gives

v(s|s′ = g) = π(s′)

n∑
l=0

(1− γλl)−1ψl(s)ψl(s
′) (4)

where ψl are the right eigenvectors of the transition matrix P, 1 = |λ0| ≥ |λ1| ≥ |λ2| · · · ≥
|λn| are the eigenvalues [18], and π(s′) denotes the steady–state occupancy of state s′ resulting
from P. Although the affinity metric is defined locally, large–scale features of the environment are
represented in the eigenvectors associated with the largest eigenvalues (Fig. 1).

We now express the position in the 2D space using a set of “successor coordinates”, such that

s(x, y) 7→ s̆ =

(√
(1− γλ0)

−1
ψ0(s),

√
(1− γλ1)

−1
ψ1(s), . . . ,

√
(1− γλq)

−1
ψq(s)

)
(5)

= (ξ0(s), ξ1(s), . . . , ξq(s))

where ξl =

√
(1− γλl)−1

ψl. This is similar to the “diffusion map” framework by Coifman and
Lafon [18]; with the useful property that, if q = n, the value of a given state when considering
a given goal is proportional to the scalar product of their respective mappings: v(s|s′ = g) =
π(s′)〈̆s, s̆′〉. We will use this property to show how a network operating in the successor coordinate
space can rapidly generate prospective trajectories between arbitrary locations.

Note that the mapping can also be defined using the eigenvectors φl of a related measure of the
space, the normalized graph Laplacian [19]. The eigenvectors φl serve as the objective functions for
slow feature analysis [20], and approximations have been extracted through hierarchical slow feature
analysis on visual data [15, 16], where they have been used to generate place cell–like behaviour.

2.2 Path–finding using the successor coordinate mapping

Successor coordinates provide a means of mapping a set of locations in a 2D environment to a new
space based on the topology of the environment. In the new representation, the value landscape
is particularly simple. To move from a location s̆ towards a goal position s̆′, we can consider a
constrained gradient ascent procedure on the value landscape:

s̆t+1 = arg min
s̆∈S̆

[
(̆s− (̆st + α∇v(̆st)))

2
]

(6)

= arg min
s̆∈S̆

[
(̆s− (̆st + α̃s̆′))

2
]

where π(s′) has been absorbed into the parameter α̃. At each time step, the state closest to an
incremental ascent of the value gradient is selected amongst all states in the environment S̆. In the
following, we will consider how the step s̆t + α̃s̆′ can be approximated by a neural attractor network
acting in successor coordinate space.

Due to the properties of the transition matrix, ψ0 is constant across the state space and does not
contribute to the value gradient in Eq. 6. As such, we substituted a free parameter for the coefficient√

(1− γλ0)−1, which controlled the overall level of activity in the network simulations.

3 Encoding successor coordinates in an attractor network

The bump attractor network is a common model of place cell activity in the hippocampus [7, 21].
Neurons in the attractor network strongly excite other neurons with similar place field centers, and
weakly inhibit the neurons within the network with distant place field centers. As a result, the
network allows a stable bump of activity to form at an arbitrary location within the environment.
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Figure 1: [Left] A rat explores a maze–like environment and passively learns its topology. We as-
sume a process such as hierarchical slow feature analysis, that preliminarily extracts slowly changing
functions in the environment (here, the vectors ξ1 . . . ξq). The vector ξ1 for the maze is shown in
the top left. In practice, we extracted the vectors directly from a localized Gaussian transition func-
tion (bottom center, for an arbitrary location). [Right] This basis can be used to generate a value
map approximation over the environment for a given reward (goal) position and discount factor γ
(inset). Due to the walls, the function is highly discontinuous in the xy spatial dimensions. The
goal position is circled in white. In the scatter plot, the same array of states and value function are
shown in the first two non–trivial successor coordinate dimensions. In this space, the value function
is proportional to the scalar product between the states and the goal location. The grey and black
dots show corresponding states between the inset and the scatter plot.

Such networks typically represent a periodic (toroidal) environment [7, 21], using a local excitatory
weight profile that falls off exponentially. Here, we show how the spatial mapping of Eq. 5 can be
used to represent bounded environments with arbitrary obstacles. The resulting recurrent weights
induce stable firing fields that decrease with distance from the place field center, around walls and
obstacles, in a manner consistent with experimental observations [22]. In addition, the network
dynamics can be used to perform rapid path planning in the environment.

We will use the techniques introduced in the attractor network models by Eliasmith and Anderson
[23] to generalize the bump attractor. We first consider a purely feed–forward network, composed of
a population of neurons with place field centers scattered randomly throughout the environment. We
assume that the input is highly preprocessed, potentially by several layers of neuronal processing
(Fig. 1), and given directly by units k whose activities s̆ink (t) = ξk(sin(t)) represent the input in the
successor coordinate dimensions introduced above. The activity ai of neuron i in response to the m
inputs s̆ink (t) can be described by

τ
dai(t)

dt
= −ai(t) + g

[
m∑

k=1

wff
ik s̆

in
k (t)

]
+

(7)

where g is a gain factor, [·]+ represents a rectified linear function, and wff
ik are the feed–forward

weights. Each neuron is particularly responsive to a “bump” in the environment given by its encod-
ing vector ei = s̆i

||̆si || , the normalized successor coordinates of a particular point in space, which
corresponds to its place field center. The input to neuron i in the network is then given by

wff
ik = [ei]k,

m∑
k=1

wff
ik s̆

in
k (t) = ei · s̆in(t). (8)

A neuron is therefore maximally active when the input coordinates are nearly parallel to its encoding
vector. Although we assume the input is given directly in the basis vectors ξl for convenience, a
neural encoding using an (over)complete basis based on a linear combination of the eigenvectors ψl

or φl is also possible given a corresponding transformation in the feed–forward weights.
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