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1 Sampling from the copula-augmented variational distribution

We sample from the copula-augmented distribution by repeatedly doing inverse transform sam-
pling [1], also known as inverse CDF, on the individual pair copulas and finally the marginals. More
specifically, the sampling procedure is as follows:

1. Generate u = (u1, . . . ,ud) where each ui ∼ U(0, 1).

2. Calculate v = (v1, . . . ,vd) which follows a joint uniform distribution with dependencies
given by the copula:

v1 = u1

v2 = Q−12 | 1(u2 |v1)

v3 = Q−13 | 12(u3 |v1,v2)

...
vd = Q−1d | 12···d−1(ud |v1,v2, . . . ,vd−1)

Explicit calculations of the inverse of the conditional CDFs Q−1i|12···i−1 can be found in
Kurowicka and Cooke [3]. The procedure loops through the d(d − 1)/2 pair copulas and
thus has worst-case complexity of O(d2).

3. Calculate z = (Q−11 (v1), . . . , Q
−1
d (vd)), which is a sample from the copula-augmented

distribution q(z;λ,η).

Evaluating gradients with respect to λ and η easily follows from backpropagation, i.e., by applying
the chain rule on this sequence of deterministic transformations.

2 Choosing the tree structure and pair copula families

We assume that the vine structure and pair copula families are specified in order to perform copula
variational inference (copula vi), in the same way one must specify the mean-field family for black
box variational inference [5]. In general however, given a factorization of the variational distribution,
one can determine the tree structure and pair copula families based on synthetic data of the latent
variables z.

During tree selection, enumerating and calculating all possibilities is computationally intractable, as
the number of possible vines on d variables grows factorially: there exist d!/2 · 2(

d−2
2 ) many choices

[4]. The most common approach in practice is to sequentially select the maximum spanning tree
starting from the initial tree T1, where the weights of an edge are assigned by absolute values of the
Kendall’s τ correlation on each pair of random variables. Intuitively, the tree structures are selected
as to model the strongest pairwise dependencies. This procedure of sequential tree selection follows
Dissmann et al. [2].

In order to select a family of distributions for each conditional bivariate copula in the vine, one may
employ Bayesian model selection, i.e., choose among a set of families which maximizes the marginal
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likelihood. We note that both the sequential tree selection and model selection are implemented in
the VineCopula package in R [6], which makes it easy for users to learn the structure and families
for the copula-augmented variational distribution.

We also list below the 16 bivariate copula families used in our experiments.

Family Parameter θ(τ)
Independent — —
Gaussian θ ∈ [−1, 1]

sin
(π
2
τ
)

Student-t θ ∈ [−1, 1]
Clayton θ ∈ (0,∞) 2τ/(1− τ)
Gumbel θ ∈ [1,∞) 1/(1− τ)
Frank θ ∈ (0,∞) No closed formJoe θ ∈ (1,∞)

Table 1: The 16 bivariate copula families, with
their parameter domains and expressed in terms
of Kendall’s τ correlations, that we consider in
experiments. We include rotated versions (90◦,
180◦, and 270◦) of the Clayton, Gumbel, and Joe
copulas.

Figure 1: Example of a Frank copula with corre-
lation parameter 0.8, which is used tomodel weak
symmetric tail dependencies.

3 Additional Gaussian mixture experiments

We include figures showing the standard deviation estimates for µ and π which were not included in
the main paper. The results indicate the same pattern as for Λ.
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Figure 2: Covariance estimates from copula variational inference (copula vi), mean-field (mean-
field (mf)), and linear response variational Bayes (linear response variational Bayes (lrvb)) to the
ground truth (Gibbs samples). copula vi and lrvb effectively capture dependence while mf under-
estimates variance and forgets covariances.
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