
Supplemental Materials: Rate-Agnostic (Causal)
Structure Learning

Sergey Plis
The Mind Research Network,

Albuquerque, NM
s.m.plis@gmail.com

David Danks
Carnegie-Mellon University

Pittsburgh, PA
ddanks@cmu.edu

Cynthia Freeman
The Mind Research Network,

CS Dept., University of New Mexico
Albuquerque, NM

cynthiaw2004@gmail.com

Vince Calhoun
The Mind Research Network

ECE Dept., University of New Mexico
Albuquerque, NM

vcalhoun@mrn.org

Abstract

Supplemental materials for Rate-Agnostic (Causal) Structure Learning.

1 Convergence

Definition Frobenius number is the largest integer unrepresentable by an integer weighted combi-
nation of a set of integers (denoted here as nF ).

Definition Graph diameter the length of the “longest shortest path” between any two graph nodes.

Definition Transient number is the length of the “longest shortest path” from a node that touches
all simple loops of the SCC. We denote this path as τ and length(τ) = γ.

In other words, γ can be defined operationally as follows (see Figure 1):

1. for each node in the SCC find the shortest path that goes through the SCC and touches
enough simple loops to make their gcd=1 and their Frobenius number ≤ nF of the whole
SCC (passing through just one node of a simple loop is enough);

2. choose the path of the maximum length out of these n (number of nodes) shortest paths;
3. the length of this path is γ

Theorem 3.1. If gcd(LS) = 1, then stabilization occurs at f ≤ nF + γ + d+ 1.1

Proof. Consider arbitrary nodes X,Y . Let τX be the “transient path” for X . By definition of
Frobenius number and the fact that length(τX) ≤ length(τ) = γ, we have that ∀l ≥ (nF +
γ)∃π[π : X → . . . → X & length(π) = l]. Let σ be the shortest path from X to Y . Clearly,
length(σ) ≤ d. Thus, ∀l ≥ (nF + γ + d)∃ρ[ρ = π ◦ σ & length(ρ) = l]. Thus, for those l, there
is a path from arbitrary X to arbitrary Y . Because bidirected edges appear only for u > k where k
is the length of the balanced paths, we must add 1 to ensure full convergence.

Theorem 3.2. If Gu = Gv for u > v, then ∀w > u∃kw < u[Gw = Gkw ].

1All proofs are found in the supplement for clarity of exposition
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Figure 1: Definition of γ and computation of convergence undersampling rate for two SCCs with
gcd(·) = 1

Proof. Let chGu(Vi) denote the children of Vi in Gu. In general, chGu+1(Vi) = chG1(chGu(Vi)).
Therefore, ∀Vi[chGu(Vi) = chGv (Vi)]⇒ ∀Vi[chGu+1(Vi) = chGv+1(Vi)]. For w = u+ r, repeated
application of this rule (and using Gu = Gv to “reset” the right-hand index) yields: ∀Vi[chGw(Vi) =
chGkw (Vi)] for kw = v + rmod(u− v) < u.

Since bidirected edges do not disappear as u increases (and Gu = Gv), the bidirected edges in Gkw

are the same as those in Gu. Suppose Vi ↔ Vj is in Gw but not Gu. Such an edge implies there is a
balanced trek composed of directed paths π1, π2 with shared start H of length k ≥ u in G1 and no
such balanced trek of length l < u. This implies H → Vi and H → Vj both in Gk, but not both in
any Gl. But this contradicts the conclusion of the previous paragraph that, for k ≥ u, there exists
l < u such that ∀Vi[chGk(Vi) = chGl(Vi)] (and so chGk(H) = chGl(H)).

Theorem 3.3. If G1 ⊆ J 1, then ∀u[Gu ⊆ J u].

Proof. It suffices to prove that, for arbitrary u, every directed and bidirected edge in Gu is contained
in J u. Consider arbitrary X → Y in Gu. This edge corresponds to some directed path π in G1 from
X to Y where length(π) = u. Since G1 ⊆ J 1, every edge in π is also in J 1. Thus, X → Y must
also be in J u. Similarly, arbitrary X ↔ Y in Gu corresponds to a balanced trek (π1, π2) in G1 with
X and Y as the termini of each path, and where length(π1) = length(π2) = k < u. Every edge in
π1 or π2 must also be in J 1, so there is a suitable balanced trek in J 1, so X ↔ Y in J u.

Theorem 3.6. The RASLre algorithm is correct and complete.

Proof. Correctness follows from the fact that we only add G1 to JHK if we explicitly find u such that
Gu = H. For completeness, note that RASLre does not stop descending along a branch, even when
it finds G1 ∈ H. Thus, the only graphs that are not explicitly checked are those that are super-graphs
of some G1 such that ∀u[Gu * H]. By Corollary 3.5, though, those graphs cannot possibly have u
such that Gu = H. Hence, every graph that could possibly be in JHK is checked, and so RASLre is
complete.

Lemma 3.7. If u > 1, then ∀V 6→ W ∈ H, G1 cannot contain any of the following paths:

1.
	

V →W ; 2.
	

V → X →W ; 3. V →
	

X →W ; 4. V → X →
	

W ; 5. V →
	

W .

Proof. Proof by contradiction. If G1 contains a path of type (1), then ∀u > 1, there is a path
π : V → . . .→ V →W with u−1 instances of V . length(π) = u, and so ∀u > 1, V →W ∈ Gu,
so G1 6∈ JHK. Similarly, if G1 contains a path of types (2) through (5), then ∀u > 1, there is a
length-u path π : V → . . .→W in G1, and so ∀u > 1, V →W ∈ Gu, so G1 6∈ JHK.
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Figure 4: Enlarged version of Figure 4 in the main text.

Lemma 3.8. If u > 1, then ∀V 6↔W ∈ H @T [V ← T →W ] ∈ G1

Proof. Proof follows immediately from persistence of bidirected edges in undersampling.
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