Supplementary Material:
Minimum Weight Perfect Matching
via Blossom Belief Propagation

A Background on Max-Product Belief Propagation

The max-product Belief Propagation (BP) algorithm is a popular heuristic for approximating the
MAP assignment in a GM. BP is implemented iteratively; at each iteration ¢, it maintains four

messages
t
{mtaai(c%mi%a(c) ice {07 1}}
between every variable z; and every associated o € F;, where F; := {« € F : i € a}; thatis, F;

is a subset of I such that all « in F; include the i*" position of z for any given z. The messages are
updated as follows:

mE(0) = max va(za) [Mo (z) ()
o jea\i
mit(e) = wile) [mh (o) (12)
o’ €F\a

where each z; only sends messages to Fj; that is, z; sends messages to «; only if 5 selects/includes

i. The outer-term in the message computation (11) is maximized over all possible z, € {0, 1}/l
with z; = c. The inner-term is a product that only depends on the variables z; (excluding z;) that
are connected to . The message-update (12) from variable z; to factor 1), is a product containing
all messages received by v, in the previous iteration, except for the message sent by z; itself.

Given a set of messages {m;_,(c), ma—i(c) : ¢ € {0,1}}, the so-called BP max-marginals are
computed as follows:

bilz] = ¢i(z) [masi(zi)- (13)

ackF;

This BP algorithm outputs 25 = [22F] where

1 if b;[1] > b[0]
PP =07 ifb[1] = b[0]

It is known that zB” converges to a MAP assignment after a sufficient number of iterations, if the
factor graph is a tree and the MAP assignment is unique. However, if the graph contains loops, the
BP algorithm is not guaranteed to converge to a MAP assignment in general.

B Proof of Theorem 3

For the proof of Theorem 3, once we show the half-integrality of LP (5), it is easy to check that
the half-integral edges forms disjoint odd cycles. Hence, it suffices to show that every vertex of
the polytope consisting of constraints of LP (5) is always half-integral. To this end, we show the
following lemma.

Lemma8 Let A = [A;;] € {0,1}™™ be an invertible 0-1 matrix whose row has at most two
non-zero entires. Then, each entry Ai_j1 of A Visin {O, +1, :I:%}

Proof. Suppose there exists a row in A with one non-zero entry. Then, one can assume that it is the
first row of A and A;; = 1 without loss of generality. Hence, Aj;' = 1, A};' = 0 fori # 1 and the
first column of A~! has only 0 and £1 entries since each row of A has at most two non-zero entries.
This means that one can proceed the proof of Lemma 8 for the submatrix of A deleting the first row
and column. Therefore, one can assume that each row of A contains exactly two non-zero entries.

We construct a graph G = (V, E) such that

V=[m]:={1,2,...,m} and E={(j,k):a;; =ay = 1forsomei € V},
i.e., each row A;p,) = (Ai1, ..., Air) and each column A,y = (Ayg, - , Apmi)T correspond to
an edge and a vertex of G, respectively. Since A is invertible, one can notice that G' does not contain

an even cycle as well as a path between two distinct odd cycles (including two odd cycles share a
vertex). Therefore, each connected component of GG has at most one odd cycle. Consider the ¢-th

column A[*ml]i = (A, ..., A)T of A7 and we have
A Ay =1 and - A Apt =0 forj #, (14)

ie., A[:,}]i assigns some values on V' such that the sum of values on two end-vertices of the edge
corresponding to the k-th row of A is 1 and 0 if £ = ¢ and k # 4, respectively.

Let e = (u,v) € E be the edge corresponding to the i-th row of A.

e First, consider the case when e is not in an odd cycle of GG. Since each component of G
contains at most one odd cycle, one can assume that the component of « is a tree in the
graph G'\ e. We will find the entries of A~! satisfying (14). Choose A;il = 0 for all vertex
w not in the component. and A;il = 1. Since the component forms a tree, one can set
A;il = 1 or — 1 for every vertex w # u in the component to satisfy (14). This implies that
A[*ml]i consists of 0 and +1.

e Second, consider the case when e is in an odd cycle of G. We will again find the entries
of A~ satisfying (14). Choose A, = A} = % and Ayl = 0 for every vertex w not
in the component containing e. Then, one can choose A[;:]i satisfying (14) by assigning

-1 _1 1 : L -1
A,; = 5 or — 5 for vertex w # u,v in the component containing e. Therefore, A[m]i

consists of 0 and +3. O

This completes the proof of Lemma 8.

Consider a vertex € [0, 1]1” "I of the polytope consisting of constraints of LP (5). Then, there exists
a linear system of equalities such that x is its unique solution where each equality is either . = 0,
T, = 1lor Zeeé(u) Ze = 1. One can plug z. = 0 and z. = 1 into the linear system, reducing it to
Axz = b where A is an invertible 0-1 matrix whose column contains at most two non-zero entries.
Hence, from Lemma 8, x is half-integral. This completes the proof of Theorem 3.

C Proof of Corollary 4

The proof of Corollary 4 will be completed using Theorem 1. If LP (6) has a unique solution, LP (6)
has a unique and integral solution by Theorem 3, i.e., Condition C/ of Theorem 1. LP (6) satisfies
Condition C2 as each edge is incident with two vertices. Now, we need to prove that LP (6) satisfies
Condition C3 of Theorem 1. Let z* be a unique optimal solution of LP (6). Suppose v is a non-
blossom vertex and v, (75(,)) = 1 for some x5,y # a:jg(v). If x. # x5 =1 for e € §(v), there exist

f €6(v)suchthat xy # 2 = 0. Similarly, If z. # 27 = 0 for e € J(v), there exists f € J(v) such
that zy # :c’} = 1. Then, it follows that

bo(ah(v) =1, wherea!, = {x ife ¢ fe.f}

xk, otherwise

xze ife’ €{e, f}

v ! =1 h // -
Yy (25(v)) J where T, {:c:, otherwise

Suppose v is a blossom vertex and v, (z5(,)) = 1 for some z5(,) # xg(v). If z. # a2} = 1 for
e € 0(v), choose f € 6(v) such that zy # 7} = 0 if it exists. Otherwise, choose f = e. Similarly,
Ifz. # 27 = 0fore € 6(v), choose f € d(v) such that xy # 2% = Lif it exists. Otherwise, choose
f = e. Then, it follows that

Yo(z5(v)) =1, where 2/, = {xe/ ife’ ¢ {@f}.

x}, otherwise

ze ife €{e, f}
¥, otherwise

e’

Uo(ah(v) =1, whereal, = {

D Proof of Lemma 6

In this section, we prove that the number of iterations of the auxiliary algorithm is bounded by
O(|V|?). To this end, let (O, W, M) be the cycle-claw-matching decomposition of GT and N =
|O|+ W) at some iteration of the algorithm. We first prove that |O|+|W| does not increase at every
iteration. At Step 1, the algorithm deletes an element in either O or W and hence, |O|+|W| = N—1.
On the other hand, at Step 2, one can observe that the algorithm run into one of the following
scenarios with respect to |O] + |[W)|:

Grow. |O| +(W|=N -1
Matching. |O| + |[W| =N —2
Cycle. |O| + [W| =N

Claw. |O|+|W|=N

Therefore, the total number of odd cycles and claws at Step 2 does not increase as well.

From now on, we define {t¢1,to, - : t; € Z} to be indexes of iterations when Matching occurs at
Step 2, and we call the set of iterations {¢ : t; < ¢ < t; 11} as the i-th srage. We will show that the
length of each stage is O(|V|), i.e., for all 4,

[t — tiv1| = O(|V]). (15)

This implies that the auxiliary algorithm terminates in O(|V|?) iterations since the total number of
odd cycles and claws at the initialization is O(|V|) and it decrease by two if Matching occurs. To
this end, we prove the following key lemmas.

Claim 9 At every iteration of the auxiliary algorithm, there exist no path consisting of tight edges
between two vertices vi,vy € V1 where each v; is either a blossom vertex v(S) withys = 0 or a
(blossom or non-blossom) vertex in an odd cycle consisted of tight edges.

Proof. First observe that w' (see (10) for its definition) is updated only at Contraction and Ex-
pansion of Step 1. If Contraction occurs, there exist a cycle C' to be contracted before Step 1.
Then one can observe that before the contraction, for every vertex v in C, v, is expressed as a linear
combination of w:

1 .
w=y5 D, (D], (16)
e€E(C)

where dc (v, e) is the graph distance from vertex v to edge e in the odd cycle C. Moreover w is
updated after the contraction as

w! + wl —y, ifvisinthecycle C ande € §(v)

wl «— w] otherwise
Thus the updated value w] can be expressed as a linear combination of the old values w! where

each coefficient is uniquely determined by G'. One can show the same conclusion similarly when
Expansion occurs. Therefore one conclude the following.

& Each value w] at any iteration can be expressed as a linear combination of the original
weight values w where each coefficient is uniquely determined by the prior history in G'T.

To derive a contradiction, we assume there exist a path P consisting of tight edges between two
vertices v1 and vo where each v; is either a blossom vertex v(.S) with yg = 0 or a vertex in an odd
cycle consisting of tight edges. Consider the case where v, and vs are in cycle C; and Cs consisting
of tight edges, where other cases can be argued similarly. Then one can observe that there exists a
linear relationship between 1/, and v, and w:

Yo, + (_1)dP(v2,U1)yv2 _ Z(_l)dp(eml)wl (17)
ecP

where dp(ve,v1) and dp (e, v1) is the graph distance from v; to vy and e, respectively, in the path
P. Since vy, vy are in cycles C, Cy, respectively, we can apply (16). From this observation, (17)
and &, there exists a linear relationship among the original weight values w, where each coefficient
is uniquely determined by the prior history in GT. This is impossible since the number of possi-
ble scenarios in the history of G is finite, whereas we add continuous random noises to w. This
completes the proof of Claim 9.]

Claim 10 Consider a + vertexv € V1 at some iteration of the auxiliary algorithm. Then, at the first
iteration afterward where v becomes a — vertex or is removed from V' (i.e., due to the contraction
of a blossom), it is connected to an odd cycle C' € O via an even-sized alternating path consisting of
tight edges with respect to matching M whenever each iteration starts during the same stage. Here,
O and M are from the cycle-claw-decomposition.

Proof. To this end, suppose that a 4 vertex v at the ¢'-th iteration first becomes a — vertex or is
removed from V' at the t*-th iteration where ¢, t-th iterations are in the same stage. First observe
that if v is removed from G at the tf-th iteration, there exist a cycle in O that includes it at the
start of the ¢*-th iteration, resulting a zero-sized alternating path between such vertex and cycle, i.e.,
the conclusion of Lemma 10 holds. Now, for the other case, i.e., v becomes a — vertex at the tf-th
iteration, we will prove the following.

% For any ¢-th iteration with ¢! < ¢ < ¥, one of the followings holds:

1. The vertex v becomes a + vertex during the ¢-th iteration. Moreover, v either becomes
a + vertex during the (¢+1)-th iteration or v becomes connected to some cycle C'in O
via an even-sized alternating path P consisting of tight edges at the start of (¢ 4 1)-th
iteration.

2. The vertex v is not in the tree 1" during the ¢-th iteration. Moreover, if v is connected
to some cycle C in O via an even-sized alternating path P consisting of tight edges
at the start of ¢-th iteration, v remains connected to cycle C' in O via an even-sized
alternating path P consisted of tight edges at the start of (¢ + 1)-th iteration, i.e.
the algorithm parameters associated with P and C' are not updated during the ¢-th
iteration.

For % — 1, observe that if v becomes a + vertex during the ¢-th iteration, the iteration terminates
with one of the following scenarios:

I. The iteration terminates with Matching. This contradicts to the assumption that ¢f, ¢¥-th
iterations are in the same stage, i.e., no Matching occurs during the ¢-th iteration.

I. The iteration terminates with Cycle. The vertex v is connected to the cycle newly added to
O via an even-sized alternating path consisting of tight edges in tree 1" at the start of the
next (i.e., (¢ + 1)-th) iteration.

III. The iteration terminates with Claw. The vertex v becomes a + vertex of tree 7' of the next
(i.e., (t + 1)-th) iteration. This is due to the following reasons. After Claw, the algorithm
expands the center vertex of newly made claw 1/ by Expansion in the next iteration. Then,
there exists an even-sized alternating path Py, from r to v consisted of tight edges in the
newly constructed tree 7". Furthermore, edges in Py are continuously added to 7" by Grow
without modifying parameter y in Step 2 until v becomes a + vertex in 7. This is because
Claw and Cycle are impossible to occur due to Claim 9.

For % — 2, in order to derive a contradiction, assume that a vertex v violates ¥ — 2 at some iteration,
i.e. the algorithm parameters associated to the even-sized alternating path P and the cycle C in the

statement of % — 2 are updated during the iteration. Observe that the algorithm parameters are
updated due to one of the following scenarios:

I. The cycle C is contracted. If v is in C, v no longer remains in V1 and contradicts to the
assumption that v remains in VT, If v is not in C, v becomes a + vertex in tree T after
continuously adding edges of P by Grow without modifying parameter y due to Claim 9.
This contradicts to the assumption of % — 2 that v is not in tree 7" during the ¢-th iteration.

II. A vertex in C is added to tree 7. Then, Matching occurs, i.e. the new stage starts. This
contradicts to the assumption that ¢!, ¢*-th iterations are in the same stage.

III. An edge in P is added to tree 7. Then, there exists a vertex w in P that first became a
— vertex among vertices in P, and it either (a) has an even-sized alternating path P’ to C'
consisting of tight edges or (b) has an odd-sized alternating path P’ to v consisting of tight
edges. For (a), the edges in P’ are continuously added to T" without modifying parameter
y by Claim 9 and Matching occurs. This contradicts to the assumption again. For (b), P’
are added to T" without modifying parameter y due Claim 9, and v is added to tree T as a
+ vertex. This contradicts to the assumption of % — 2 that v is not in tree 7" during the ¢-th
1teration.

Therefore, % holds. One can observe that there exists t* € (tT, ti) such that at the ¢*-th iteration,
v last becomes a + vertex before the ¢tf-th iteration, i.e. v is not in tree T during ¢-th iteration for
t* < t < t*. Then v is connected to some cycle C in O via an even length alternating path P at
(t* 4 1)-th iteration and such path and cycle remains unchanged during ¢-th iteration for t* < ¢ < ¢t
due to ¥%. This completes the proof of Claim 10.]

Now we aim for proving (15). To this end, we claim the following.

& A + vertex of VT at some iteration cannot be a — one (whenever it appears in V1) afterward
in the same stage.

For proving #, we assume that a + vertex v € V1 at the ¢-th iteration violates & to derive a
contradiction, i.e., it becomes a — one in some tree 7" during t’-th iteration in the same stage.
Without loss of generality, one can assume that the vertex v has the minimum value of ¢’ — ¢ among
such vertices violating #. We consider two cases: (a) v is always contained in V1 afterward in
the same stage, and (b) v is removed from VT (at least once, due to the contraction of a blossom
containing v) afterward in the same stage. First consider the case (a). Then, due to the assumption of
the case (a) and Claim 10, there exist a path P from v to a cycle C' € O when the t’-th iteration starts.
Then, one can observe that in order to add v to tree 1" as a — vertex, it must be the first vertex in
path P added to T' by Grow during the ¢-iteration. Furthermore, tree 7" keeps continuing to perform
Grow afterward using tight edges of path P without modifying parameter y until Matching occurs,
i.e., the new stage starts. This is because Claw and Cycle are impossible to occur before Matching
due to Claim 9. Hence, it contradicts to the assumption that ¢ and ¢ are in the same stage, and
completes the proof of é for the case (a). Now we consider the case (b), i.e., v is removed from vt
due to the contraction of a blossom S € L. In this case, the blossom vertex v(S) € VT must be
expanded before v becomes a — vertex. However, v(S) becomes a + vertex after contracting .S and
a — vertex before expanding v(.9), i.e., v(S) also violates #. This contradicts to the assumption that
the vertex v has the minimum value of ¢ — ¢ among vertices violating #, and completes the proof
of #. Due to #, a blossom cannot expand after contraction in the same stage, where we remind that
a blossom vertex becomes a + one after contraction and a — one before expansion. This implies
that the number contractions and expansions in the same stage is O(|V'|), which leads to (15) and
completes the proof of Lemma 6.

E Proof of Lemma 7

Initially, it is trivial. Now we assume the induction hypothesis that £,y* and the cycle-claw-
decomposition are equivalent between both algorithms at the previous iteration. First, it is easy
to observe that £ is updated equivalently since it is only decided by the cycle-claw-decomposition at
the previous iteration in both algorithms. Next, it is also easy to check that y* is updated equivalently

since (a) if we remove a blossom S from £, it is trivial and (b) if we add a blossom S = V (C) for
some cycle C to £, y* is uniquely decided by C' and w' in both algorithms.

In the remaining of this section, we will show that once £,y* are updated equivalently, the cycle-
claw-decomposition also changes equivalently in both algorithms. Observe that GT,w only de-
pends on £, 3. In addition, y maintained by the auxiliary algorithm also satisfies constraints of LP
(9). Consider the cycle-claw-matching decomposition (O, W, M) of the auxiliary algorithm, and
the corresponding x = [z.] € {0,1/2, 1}|E” that satisfies constraints of LP (5). Then, and y'
satisfy the complementary slackness condition:

xe(wl — yL - yl) =0, Ve = (u,v) € Ef

yl(s) Z ze—1| =0, VS eL,
e€d(v(9))

where the first equality is because the cycle-claw-matching decomposition consists of tight edges
and the second equality is because every claw maintained by the auxiliary algorithm has its center
vertex v(S) with y,(g) = 0 for some S € L. Therefore, x is an optimal solution of LP (5), i.e., the
cycle-claw-decomposition is updated equivalently in both algorithms. This completes the proof of
Lemma 7.

F Example of evolution of Blossoms under Blossom-LP

NODIN T BN RN

(a) Initial graph (b) Solution of LP (5) in the (c) Solution of LP (5) in the
1st iteration 2nd iteration

CONTRACT !
‘ I‘\ :__.l ™ D :
[N N | \\
N N RN
LN N | N ‘

(d) Solution of LP (5) in the (e) Solution of LP (5) in the (f) Solution of LP (5) in the
3rd iteration 4th iteration 5th iteration

(g) Output matching

Figure 1: Example of evolution of Blossoms under Blossom-LP, where solid and dashed lines cor-
respond to 1 and % solutions of LP (5), respectively.

	Background on Max-Product Belief Propagation
	Proof of Theorem 3
	Proof of Corollary 4
	Proof of Lemma 6
	Proof of Lemma 7
	Example of evolution of Blossoms under Blossom-LP

