
A Recovering the Transition Probabilities and Initial Probabilities

Algorithm 2 recovers the transition and initial probabilities, given estimates of observation matrices.
Theorem 2 provides finite sample guarantees on Algorithm 1 in conjunction with Algorithm 2.

Algorithm 2 Recovering the Transition Probabilities and Initial Probabilities

1: Input: N samples of the first three observations (x1, x2, x3)
N
i=1 generated by a tree HMM,

Estimates of observation matrices Ôu.
2: for u ∈ V do
3: if u is root r then
4: Compute Ŵ r = (Ôu)†P̂ r

1 .
5: Compute Q̂r = (Ôr)†P̂ r,r

2,1 (Ô
r)†�.

6: Normalize over the zu2 coordinate to get T̂u.
7: else
8: Compute Ŵu = (Ôu)†Pu,π(u)

1,1 (Ôπ(u))†�.

9: Compute Q̂u = P
u,π(u),u
2,2,1 ((Ôu)†T , (Ôπ(u))†�, (Ôu)†�).

10: Normalize over the zu2 coordinate to get T̂u.
11: end if
12: end for

B Additional Notations

For a node u ∈ V , when it is clear from context, we sometimes use H to denote Hu and d to denote
du.

Define OH
2 to be a nd × md matrix whose rows are indexed by elements in [n]d and columns are

indexed by elements in [m]d. In particular, (OH
2 )(i1,...,id),(j1,...,jd) = P (xr

2 = i1, . . . , x
u
2 = id|zr2 =

j1, . . . , z
u
2 = jd). Similarly we define OH

3 whose entries are (OH
3 )(i1,...,id),(j1,...,jd) = P (xr

3 =

i1, . . . , x
u
3 = id|zr2 = j1, . . . , z

u
2 = jd), and OH

1 whose its entries are (OH
1 )(i1,...,id),(j1,...,jd) =

P (xr
1 = i1, . . . , x

u
1 = id|zr2 = j1, . . . , z

u
2 = jd). We define Ou

2 to be a n × md matrix, whose
rows are indexed by elements in [n], and columns are indexed by elements in [m]d. Its entries are
(Ou

2 )i,(j1,...,jd) = P (xu
1 = i|zr2 = j1, . . . , z

u
2 = jd).

Define πH to be a vector representing the marginal probability of (zr2 , . . . , z
u
2 ). In particular, its rows

are indexed by elements in [m]d, and πH
(i1,...,id)

= P (zr2 = i1, . . . , z
u
2 = id). Define πu to be a vector

representing the marginal probability of zu2 . In particular, its rows are indexed by elements in [m],
and πu

i = P (zu2 = i). Define πu
min as mini π

u
i . Define ρH as the md dimensional vector representing

the marginal probability of (zr1 , . . . , z
u
1 ) whose entries are indexed by elements in [m]d. In particular,

ρH(i1,...,id) = P (zr1 = i1, . . . , z
u
1 = id). TH is defined as the md × md matrix representing the

conditional probability of zH2 given zH1 , and its rows and columns are indexed by elements in [m]d,
in particular, T(i1,...,id),(j1,...,jd) = P (zr2 = i1, . . . , z

u
2 = id|zr1 = j1, . . . , z

u
1 = jd).

Let u be a node in V . Define Uu to be a matrix whose columns form an orthonormal basis of Ou.
One way to get Uu is to take its columns to be the top m singular vectors of Ou. The specific choice
of Uu does not affect our analysis, as we will be only looking at the projection matrix Uu(Uu)�

throughout. Define UH to be ⊗v∈HUu.

For a matrix M , define �M� to be its operator norm, that is, max�u�=1,�v�=1 �v�Mu�. Define
the Frobenius norm of M , �M�F to be square root of the sum of the square of its entries, that is,��

i,j M
2
ij . By standard results in linear algebra, �M� ≤ �M�F . Similarly, for a third order

tensor T , define �T� to be its operator norm, that is max�u�=1,�v�=1,�w�=1 T (u, v, w). Define
the Frobenius norm of T , �T�F to be square root of the sum of the square of its entries, that is,��

i,j,k T
2
ijk. By standard results of linear algebra, �T� ≤ �T�F .
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C Main Lemmas

C.1 Partitioning Lemmas

Lemma 1 (Path Partitioning). Suppose observations and states {xv
t , z

v
t }v∈V,t∈N are drawn from

a THS-HMM represented by H = (G, T,O,W ), where G = (V,E), T = {Tv, v ∈ V }, O =
{Ov, v ∈ V }, W = {Wv, v ∈ V }. Let u ∈ V , and let Hu denote nodes inside the unique path
from root r to u. Then {xv

t , z
v
t }u∈Hu,t∈N are generated by a THS-HMM represented by a tuple

H̃ = (G̃, T̃ , Õ, W̃ ), where G̃ = (Ṽ , Ẽ) is the induced subgraph on Hu. In particular, Ṽ = Hu,
Ẽ = {(v,π(v))}v∈Hu

), T̃ = {Tv, v ∈ Hu}, Õ = {Ov, v ∈ Hu}, W̃ = {Wv, v ∈ Hu}.

Proof of Lemma 1. To show this lemma, we will calculate the marginal distribution of the variables
{xv

t , z
v
t }v∈Hu,t∈[τ ]. Observe that the full joint distribution of {xv

t , z
v
t }v∈G,t∈[τ ] is equal to:

�

v∈G

Pr(zv1 )

τ−1�

t=1

�

v∈Hu

Pr(zvt+1|zvt , zπ(v)t+1 )

τ�

t=1

�

v∈G

Pr(xv
t |zvt )

To calculate the marginal over {xv
t , z

v
t }v∈Hu,t∈[τ ], we eliminate the rest of the variables one by one.

Observe that we can eliminate any observation variable xv
t for v /∈ Hu without introducing any extra

edges, as xv
t is only connected to zvt . Moreover, marginalizing xv

t gives:
�

x Pr(x
v
t = x|zvt = z) =

1.

Let G̃ be the current tree; initially G̃ = G. We next eliminate the nodes {zvt , t = τ, . . . , 1} for
v /∈ Hu one by one where v /∈ Hu is a leaf node in G̃. We do this in the order zvT , z

v
T−1, . . . , z

v
1 ;

once we have eliminated these nodes, we delete v from G̃, and we continue until only the nodes in
Hu are left. To eliminate a zvt when {zvs , s > t} have been eliminated, we sum over:

�
z Pr(z

v
t =

z|zvt−1, z
π(v)
t ) which also sums to 1.

We repeat this process until only the nodes {xv
t , z

v
t }u∈Hu,t∈[T ] are left. Since we get 1 from elimi-

nating each variable, the marginal we are left with is:

�

v∈Hu

Pr(zv1 )

T−1�

t=1

�

v∈Hu

Pr(zvt+1|zvt , zπ(v)t+1 )

T�

t=1

�

v∈Hu

Pr(xv
t |zvt ), (1)

which is the marginal distribution of an HMM with tree-structured hidden states described by the
tuple (G̃, T̃ , Õ, W̃ ). The lemma follows.

The following is a Corollary of Lemma 1.

Corollary 1. If observations and states {xv
t , z

v
t }v∈Hu,t∈N are drawn from a THS-HMM represented

by (G̃, T̃ , Õ, W̃ ), then the sequence of coalesced observations and states {xHu
t , zHu

t }t∈N are drawn
from an HMM.

Proof. The proof is a simple extension of Lemma 1. (1) gives us the marginal distribution of
{xv

t , z
v
t }v∈Hu,t∈N. Observe that for any t, conditioned on zHu

t , xHu
t is d-separated from all the

other nodes of the graph – this is because for any node x in the graphical model, xHu
t , zHu

t and x

either form a chain or or a fork structure whose middle node is zHu
t . Moreover, conditioned on zHu

t ,
zHu
t+1 is d-separated from the set of nodes {zHu

s }t−1
s=1. This is because zHu

s , zHu
t and zHu

t+1 form a
chain structure whose middle node is zHu

t . The lemma thus follows.

C.2 Skeletensor Lemmas

In this subsection, we justify our construction of a skeletensor. Let u be any node in the tree G and
let H be the path from the root of G to u.
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Recall that we define OH
1 to be the nd × md matrix, whose entries are (OH

1 )(i1,...,id),(j1,...,jd) =

P (xr
1 = i1, . . . , x

u
1 = id|zr2 = j1, . . . , z

u
2 = jd). Similarly, OH

3 is a nd ×md matrix, with entries
(OH

3 )(i1,...,id),(j1,...,jd) = P (xr
3 = i1, . . . , x

u
3 = id|zr2 = j1, . . . , z

u
2 = jd).

We begin by showing that under Assumptions 1 and 2, the matrices OH
1 and OH

3 for the three-view
mixture model induced by the HMM have full column rank.

Lemma 2. Let u be a node in V . Recall that H = Hu is the set of nodes along the path from root r
to u. Then:
(1) The matrices diag(ρH)(TH)�diag(πH)−1 and TH are of full rank.
(2) The matrices OH

1 and OH
3 are of full column rank.

Proof. By Lemma 1, xH
1 , xH

2 , xH
3 are conditionally independent given hH

2 . Thus,

PH,H
1,2 = OH

1 diag(πH)(OH
2 )�

Since by Assumption 2, PH,H
1,2 is of rank md, this implies that the matrix OH

1 must be of rank md as
well. By Proposition 4.2 of [2],

OH
1 = OHdiag(ρH)(TH)�diag(πH)−1

This implies that diag(ρH)(TH)�diag(πH)−1 is of rank md, which is of full rank. Hence TH is of
full rank. By Proposition 4.2 of [2],

OH
3 = OHTH

This shows OH
3 is of full column rank.

Second, we discuss the infinite sample version of our symmetrization matrix. This will be extended
in Lemma 8 in our detailed finite sample analysis.

Lemma 3. Let u be a node in V . Recall that Hu is the set of nodes along the path from root r to u.
Assume Pu,H

2,3 , PH,H
1,3 , Pu,H

2,1 are given (where PH,H
3,1 = (PH,H

1,3 )T ). Let the symmetrization matrices
be:

Su
1 = Pu,H

2,3 (PH,H
1,3 )†

Su
3 = Pu,H

2,1 (PH,H
3,1 )†

and the ground truth symmetrized pair-wise and triple-wise co-occurence tensors be:

Mu
2 = PH,u

1,2 (SuT
1 , I)

Mu
3 = PH,u,H

1,2,3 (SuT
1 , I, SuT

3 )

Then,
Mu

2 =
�

i

πu
i (O

u)i ⊗ (Ou)i

Mu
3 =

�

i

πu
i (O

u)i ⊗ (Ou)i ⊗ (Ou)i

Proof. By Lemma 1, xH
1 , xu

2 , xH
3 are conditionally independent given zH2 , thus

Pu,H
2,3 = Ou

2 diag(πH)OHT
3

PH,H
1,3 = OH

1 diag(πH)OHT
3

Lemma 2 implies that OH
1 is of full column rank, and diag(πH)OHT

3 is of full row rank. Therefore
by standard properties of pseudoinverse,

(PH,H
1,3 )† = (diag(πH)OHT

3 )†(OH
1 )†

Therefore,
Su
1 = Ou

2 (O
H
1 )†

12



Likewise,
Su
3 = Ou

2 (O
H
3 )†

Then,

Mu
2 = PH,u

1,2 (SuT
1 , I)

=
�

i1,...,iD

πH
i1,...,iD (O

u
2 )i1,...,iD ⊗ (Ou

2 )i1,...,iD

=
�

i1,...,iD

πH
i1,...,iD (O

u)iD ⊗ (Ou)iD

=
�

i

πu
i (O

u)i ⊗ (Ou)i

Mu
3 = PH,u,H

1,2,3 (SuT
1 , I, SuT

3 )

=
�

i1,...,iD

πH
i1,...,iD (O

u
2 )i1,...,iD ⊗ (Ou

2 )i1,...,iD ⊗ (Ou
2 )i1,...,iD

=
�

i1,...,iD

πH
i1,...,iD (O

u)iD ⊗ (Ou)iD ⊗ (Ou)iD

=
�

i

πu
i (O

u)i ⊗ (Ou)i ⊗ (Ou)i

C.3 Product Projections Lemmas

C.3.1 Application 1: HMM with more general hidden states

Consider an HMM with a hidden state represented by a general graphical model G = (V,E) with
an observation variable xu

t corresponding to each u ∈ V . xu
t is independent of all other hidden

state and observation nodes, conditioned on its corresponding hidden state variable zut . In this case,
O|V | = ⊗u∈V O

u. Similar graphical models have been used in biology to model gene expression
time courses [12].
Lemma 4. OH , the observation matrix of the HMM that generates the meta-states and meta-
observations {zHt , xH

t }t∈N, equals
�

v∈H Ov .

Proof. We consider the observation matrix of the HMM that generates the meta-states and meta-
observations {zHt , xH

t }t∈N. The number of possible meta-hidden states zHt is md, indexed by
(zvt )v∈H and the number of possible meta-observations xH

t is nd, indexed by (xv
t )v∈H . Thus, the

observation matrix OH is of dimension nd ×md. Entrywise,

(OHu)(i1,...,id),(j1,...,jd)

= P(xr
t = i1, . . . , x

u
t = id|zrt = j1, . . . , z

u
t = jd)

= Oi1,j1 . . . Oid,jd

= (
�

v∈H

Ov)(i1,...,id),(j1,...,jd)

Where the second equality uses conditional independence. Therefore, OH =
�

v∈H Ov .

C.3.2 Application 2: HMM with rank-deficient observation matrix.

Consider an HMM whose observation matrix O is rank-deficient. In this case, [3] suggests
compressing sequences of successive observations of size s for s = 2, 3, . . . until the matrices
Õf

s = P (xt, xt+1, . . . , xt+s−1|zt) and Õb
s = P (xt, xt−1, . . . , xt−s+1|zt) have rank m. A version

of [18] is then run using observation sequence pairs P1:s,s+1:2s and triples P1:s,s+1,s+2:2s+1. In
this case, we can show that both range(Õf

s ) and range(Õb
s) are contained in range(O⊗s); we can

therefore use Product Projections to improve the Ω(ns) running time to O(mO(s)).
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We first define forward and backward observation matrices Õf
s and Õb

s formally. For a fixed s, Õf
s

is a ns × m matrix, with rows indexed by a s-tuple (j1, . . . , js) ∈ [n]s, and columns indexed by
i ∈ [m]. Entrywise,

(Õf
s )(i1,...,is),j = P (xt = i1, xt+1 = i2, . . . , xt+s−1 = is|zt = j)

Similarly we define backward observation matrices Õb
s = P (xt, xt−1, . . . , xt−s+1|zt). Entrywise,

(Õb
s)(i1,...,is),j = P (xt = i1, xt−1 = i2, . . . , xt−s+1 = is|zt = j)

The claim is the range of the forward(backward) observation matrices is contained in the range of
the s-wise Kronecker product of the original observation matrices.
Lemma 5.

range(Õf
s ) ⊆ range(O⊗s)

range(Õb
s) ⊆ range(O⊗s)

Proof. We prove the first relationship, since the proof of the second is almost identical.
Note that by the law of total probability,

(Õf
s )(i1,i2,...,is),j

= P (xt = i1, xt+1 = i2, . . . , xt+s−1 = is|zt = j)

=
�

j2,...,js

P (xt = i1, xt+1 = i2, . . . , xt+s−1 = is|zt = j, zt+1 = j2, . . . , zt+s−1 = js)

×P (zt+1 = j2 . . . , zt+s−1 = js|zt = j)

=
�

j2,...,js

Oi1,jOi2,j2 . . . Ois,jsP (zt+1 = j2 . . . , zt+s−1 = js|zt = j)

=
�

j2,...,js

(O⊗s)(i1,i2,...,is),(j,j2,...,js)P (zt+1 = j2 . . . , zt+s−1 = js|zt = j)

Thus, each column of Õf
s is a linear combination of the columns of O⊗s, thus completing the proof.

D Finite Sample Guarantees

Theorem 2 (Accuracy of Initial Distribution and Transition Probabilities). There exists a universal
constant C such that the following hold. Suppose Algorithm 1 is given as input N iid observation
triples (xi1, xi2, xi3)

N
i=1 generated by a THS-HMM, and outputs estimates of observaton matrices

Ôu, for each node u in the tree. Then Algorithm 2 is run on the same sample and has {Ôu}u∈V as
input. If the size of sample N is greater than:

Cmax
� D2

σ2
2σ

2
3

ln
D

δ
,

m

σ2
1σ

2
2

ln
D

δ
,

m2

σ6
1σ

6
3π

3
min

ln
D

δ
,

m

σ2
2σ

8
1�

2
ln

D

δ
,

m2

σ6
3σ

14
1 π4

min�
2
ln

D

δ

�

where σ1 = minu∈V σm(Ou), σ2 = minu∈V σm(Pu,u
1,2 ), σ3 = minu∈V σmd(PHu,Hu

1,3 ) and πmin =
minu,i π

u
i , then with probability ≥ 1 − δ over the training examples, with probability 0.9 over the

random initializations in Algorithm 1, there exist permutation matrices {Πu}u∈V such that for all
u ∈ V ,

�Ou − (ÔuΠu)� ≤ �

if u is the root node, then,
�Ŵu − (Πu)�Wu� ≤ �

�Q̂u −Qu(Πu,Πu)� ≤ �

Otherwise,
�Ŵu −Wu(Πu,Ππ(u))� ≤ �

�Q̂u −Qu(Πu,Πu,Ππ(u))� ≤ �
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We emphasize that our algorithm recovers the initial probability and transition probability tensors
up to permutations of hidden states in a globally consistent manner. In contrast to [20] where some
hidden nodes do not have observations directly associated with them, in our setting, each hidden
state has an associated observation, which makes recovery of permutations easier. How to perform
parameter recovery in a THS-HMM with internal hidden states where each hidden tree node does
not have an associated observation is an interesting question for future work.

E Proofs

Throughout this section, we first assume a technical condition on the sample size. This will result in
concentration of the projection and the symmetrization matrices.
Assumption 3. Recall that D = |V |. The sample size N is large enough that

�(N, δ)

≤ min
�minu∈V σm(Pu,u

1,2 )minu∈V σmd(PH,H
1,3 )

16D
,

minu∈V σm(Pu,u
1,2 )minu∈V σm(Ou)

4
√
m

,
minu∈V σmd(PH,H

1,3 )3 minu∈V σm(Ou)3π
3/2
min

1536c1m

�

= min
�σ2σ3

16D
,
σ2σ1

4
√
m
,
π
3/2
minσ

3
1σ

3
3

1536c1m

�
(2)

Where c1 > 0 is a constant given in Lemma 11, and σ1, σ2, σ3 and πmin are defined in Theorem 2.

E.1 Raw Moments Concentration

We start with standard concentration of raw moments, which uses the fact that all the (vectorized)
raw moments can be viewed as a probability vector. Let u be a node in V , recall that H is the set of
nodes along the path from root r to u.

Let �(N, δ) =
�

1+ln(10D/δ)
N . Define event

E =
�

for all u ∈ V : �P̂u,u
1,2 − Pu,u

1,2 �F ≤ �(N, δ)

�P̂H,u
1,2 − PH,u

1,2 �F ≤ �(N, δ)

�P̂u,H
2,3 − Pu,H

2,3 �F ≤ �(N, δ)

�P̂H,H
1,3 − PH,H

1,3 �F ≤ �(N, δ)

�P̂H,u,H
1,2,3 − PH,u,H

1,2,3 �F ≤ �(N, δ)

�P̂u
1 − Pu

1 �F ≤ �(N, δ)

�P̂u,u
1,2 − Pu,u

1,2 �F ≤ �(N, δ)

�P̂u,π(u)
1,1 − P

u,π(u)
1,1 �F ≤ �(N, δ)

�P̂u,π(u),u
2,2,1 − P

u,π(u),u
2,2,1 �F ≤ �(N, δ)

�

Lemma 6 (Concentration of Raw Moments). P(E) ≥ 1− δ.

Proof. Applying Proposition 19 in [18] along with union bound.

E.2 Subspace Concentration

Next we state a useful lemma that says that conditioned on the event E, performing an SVD on the
empirical version of Pu,u

1,2 = E[xu
1 ⊗ xu

2 ] gives us a good approximation to the range of Ou. Recall
that Uu is a matrix whose columns form an orthonormal basis of Ou, and define UH is ⊗v∈HUu.
Also, recall for a matrix U with orthonormal columns, the projection matrix onto range(U) is UU�.
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Lemma 7 (Subspace Concentration). Supposes N is large enough such that Assumption 3 holds.
Ûu is the output of line 3 of Algorithm 1. Let u be a node in V , recall that H is the set of nodes
along the path from root r to u. Then conditioned on event E, we have:
(1) �Uu(Uu)� − Ûu(Ûu)�� ≤ 2�(N,δ)

σm(Pu,u
1,2 )

.
In particular,

�Uu(Uu)� − Ûu(Ûu)�� ≤ min(
minu∈V σm(PH,H

1,3 )

8D
,
minu∈V σm(Ou)

2
√
m

)

(2)

�UH(UH)� − ÛH(ÛH)�� ≤
minu∈V σm(PHu,Hu

1,3 )

8
(3)

σm((Ûu)�Ou) ≥ σm(Ou)

2

Proof. (1) Φu, the matrix of principal angles between range(Ûu) and range(Uu), is such that
� sinΦu�

≤ �(N, δ)

σm(Pu,u
1,2 )− �(N, δ)

≤ 2�(N, δ)

σm(Pu,u
1,2 )

(3)

where the first inequality is by Theorem 4, by taking A = Pu,u
1,2 and Ã = P̂u,u

1,2 ; the second inequality
from Assumption 3, which implies that �(N, δ) ≤ σm(Pu,u

1,2 )/2.

Thus, by Equation (2) in Assumption 3,

� sinΦu� ≤ min(
minu∈V σm(PHu,Hu

1,3 )

8D
,
minu∈V σm(Ou)

2
√
m

)

The result follows from the fact that
� sinΦu� = �Uu(Uu)� − Ûu(Ûu)��

(2) First we enumerate the nodes in Hu : Hu = {v1, . . . , vl}.

�UH(UH)� − ÛH(ÛH)��
≤ �(Uv1(Uv1)� − Ûv1(Ûv1)�)⊗ . . .⊗ (Uvl(Uvl)�)|�+ . . .+ �(Uv1(Uv1)�)⊗ . . .⊗ (Uvl(Uvl)� − Ûvl(Ûvl)�)�
≤ �Uv1(Uv1)� − Ûv1(Ûv1)��+ . . .+ �Uvl(Uvl)� − Ûvl(Ûvl)��

≤
�

v∈H

2�(N, δ)

σm(P v,v
1,2 )

≤
minu∈V σm(PH,H

1,3 )

8
where the first inequality is by triangle inequality, the second inequality uses standard facts about
Kronecker product (�A ⊗ B� = �A��B�), the third inequality is from Equation (3), the fourth
inequality is from Equation (2).

(3) By item (1) we know that

�Uu(Uu)� − Ûu(Ûu)�� ≤ σm(Ou)/(2
√
m)

Hence
�Uu(Uu)�Ou − Ûu(Ûu)�Ou� ≤ �Uu(Uu)� − Ûu(Ûu)���Ou� ≤ σm(Ou)/2

where the second inequality is from the fact that Ou is a column stochastic matrix, which implies
that �Ou� ≤ �Ou�F ≤ √

m.
Therefore by Theorem 3,

σm((Ûu)�Ou) = σm(Ûu(Ûu)�Ou) ≥ σm(Ou)/2
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E.3 Symmetrized Moment Concentration

Lemma 8. Suppose we are given a set of matrices Ûu, u ∈ V such that (Ûu)�Ou is invertible for
all u ∈ V . Moreover, assume the expected second order moments Pu,H

2,3 , PH,H
1,3 , Pu,H

2,1 , and third
order moments PH,u,H

1,2,3 are given. Consider the symmetrization matrices:

S̃u
1 = ((Ûu)�Pu,H

2,3 ÛH)((ÛH)�PH,H
1,3 ÛH)−1

S̃u
3 = ((Ûu)�Pu,H

2,1 ÛH)((ÛH)�PH,H
3,1 ÛH)−1

and the ground truth symmetrized second order and third order cooccurence matrices be:

Mu
2 = PH,u

1,2 (ÛH(S̃u
1 )

�, Ûu)

Mu
3 = PH,u,H

1,2,3 (ÛH(S̃u
1 )

�, Ûu, ÛH S̃uT
3 )

Then,
Mu

2 =
�

i

πu
i ((Û

u)�Ou)i ⊗ ((Ûu)�Ou)i

Mu
3 =

�

i

πu
i ((Û

u)�Ou)i ⊗ ((Ûu)�Ou)i ⊗ ((Ûu)�Ou)i

Proof. Recall that by Lemma 2

OH
1 = OHdiag(ρH)(TH)�diag(πH)−1

where diag(ρH)(TH)�diag(πH)−1 is invertible. Thus,

(ÛH)�OH
1 = (ÛH)�OHdiag(ρH)(TH)�diag(πH)−1

This shows that (ÛH)�OH
1 is invertible.

On the other hand,
OH

3 = OHTH

where TH is invertible. Thus,

(ÛH)�OH
3 = (ÛH)�OHTH

This shows that (ÛH)�OH
3 is invertible.

Therefore,

S̃u
1

= ((Ûu)�Ou
2 diag(πH)OHT

3 ÛH)((ÛH)�OH
1 diag(πH)OHT

3 ÛH)−1

= ((Ûu)�Ou
2 )((Û

H)�OH
1 )−1

Likewise,

S̃u
3

= ((Ûu)�Ou
2 diag(πH)OHT

1 ÛH)((ÛH)�OH
3 diag(πH)OHT

1 ÛH)−1

= ((Ûu)�Ou
2 )((Û

H)�OH
3 )−1

Then,

Mu
2 = PH,u

1,2 (UH(S̃u
1 )

�, Ûu)

=
�

i1,...,iD

πH
i1,...,iD ((Û

u)�Ou
2 )i1,...,iD ⊗ ((Ûu)�Ou

2 )i1,...,iD

=
�

i1,...,iD

πH
i1,...,iD ((Û

u)�Ou)iD ⊗ ((Ûu)�Ou)iD

=
�

i

πu
i ((Û

u)�Ou)i ⊗ ((Ûu)�Ou)i
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Mu
3 = PH,u,H

1,2,3 (ÛH(S̃u
1 )

�, Ûu, ÛH S̃uT
3 )

=
�

i1,...,iD

πH
i1,...,iD ((Û

u)�Ou
2 )i1,...,iD ⊗ ((Ûu)�Ou

2 )i1,...,iD ⊗ ((Ûu)�Ou
2 )i1,...,iD

=
�

i1,...,iD

πH
i1,...,iD ((Û

u)�Ou)iD ⊗ ((Ûu)�Ou)iD ⊗ ((Ûu)�Ou)iD

=
�

i

πu
i ((Û

u)�Ou)i ⊗ ((Ûu)�Ou)i ⊗ ((Ûu)�Ou)i

We next establish a result that shows that the symmetrization matrices Ŝu
1 and Ŝu

3 obtained in Line
7 of Algorithm 1 concentrate to S̃u

1 and S̃u
3 defined in Lemma 8. Recall from Algorithm 1 that:

Ŝu
1 = ((Ûu)�P̂u,Hu

2,3 ÛHu)((ÛHu)�P̂Hu,Hu

1,3 ÛHu)−1, Ŝu
3 = ((Ûu)�P̂u,Hu

2,1 ÛHu)((ÛHu)�P̂Hu,Hu

3,1 ÛHu)−1

Lemma 9. Suppose N is large enough that Assumption 3 holds. Recall Ŝu
1 and Ŝu

3 are the outputs
of line 7 in Algorithm 1 , and S̃u

1 and S̃u
3 are defined in Lemma 8. Conditioned on event E, the

following hold for all u ∈ V .

�S̃u
1 − Ŝu

1 �, �S̃u
3 − Ŝu

3 � ≤ 10�(N, δ)

σmd(PH,H
1,3 )2

�S̃u
1 �, �Ŝu

1 �, �S̃u
3 �, �Ŝu

3 � ≤ 4

σmd(PH,H
1,3 )

Proof. (1) We first show that σmd((ÛH)�P̂H,H
1,3 ÛH) ≥ 3σmd(PH,H

1,3 )/4, and
σmd((ÛH)�PH,H

1,3 ÛH) ≥ σmd(PH,H
1,3 )/2.

Under Assumption 3, by Item (2) of Lemma 7, we know that

�UH(UH)� − ÛH(ÛH)�� ≤ min
u∈V

σmd(PH,H
1,3 )/8 (4)

As a result,

�ÛH(ÛH)�PH,H
1,3 ÛH(ÛH)� − PH,H

1,3 �
= �ÛH(ÛH)�PH,H

1,3 ÛH(ÛH)� − UH(UH)�PH,H
1,3 UH(UH)�� (5)

≤ �(ÛH(ÛH)� − UH(UH)�)PH,H
1,3 ÛH(ÛH)��

+�UH(UH)�PH,H
1,3 (ÛH(ÛH)� − UH(UH)�)�

≤ �(ÛH(ÛH)� − UH(UH)�)��PH,H
1,3 ��ÛH(ÛH)��

+�UH(UH)���PH,H
1,3 ��(ÛH(ÛH)� − UH(UH)�)�

≤ σm(PH,H
1,3 )/8 + σm(PH,H

1,3 )/8

≤ σm(PH,H
1,3 )/4 (6)

where the first inequality is by triangle inequality, in the second inequality we use the fact that
�A · B� ≤ �A��B�, the third inequality is from the fact that �PH,H

1,3 � ≤ �PH,H
1,3 �F ≤ 1,

�ÛH(ÛH)�� = 1, �UH(UH)�� = 1 and Equation (4).
Therefore,

σmd((ÛH)�PH,H
1,3 ÛH)

= σmd(ÛH(ÛH)�PH,H
1,3 ÛH(ÛH)�)

≥ σmd(PH,H
1,3 )− �ÛH(ÛH)�PH,H

1,3 ÛH(ÛH)� − PH,H
1,3 �

≥ 3σmd(PH,H
1,3 )/4 (7)
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where the first inequality is by Theorem 3, the second inequality is by Equation 6.
In the meantime,

�(ÛH)�PH,H
1,3 ÛH − (ÛH)�P̂H,H

1,3 ÛH�
≤ �PH,H

1,3 − P̂H,H
1,3 �

≤ �(N, δ) ≤ σd
m(PH,H

1,3 )/4 (8)

where in the first inequality we use the fact that �ÛH� = 1, the second inequality is by the fact that
if E happens, �PH,H

1,3 − P̂H,H
1,3 � ≤ �(N, δ), the third inequality follows from Assumption 3.

Therefore

σmd((ÛH)�P̂H,H
1,3 ÛH)

≥ σmd((ÛH)�PH,H
1,3 ÛH)− �(ÛH)�PH,H

1,3 ÛH − (ÛH)�P̂H,H
1,3 ÛH�

≥ σm(PH,H
1,3 )/2

where the first inequality is from Theorem 3, the second inequality is from Equation (8).

We now have

�S̃u
1 − Ŝu

1 �
= �((Ûu)�Pu,H

2,3 ÛH)((ÛH)�PH,H
1,3 ÛH)−1 − ((Ûu)�P̂u,H

2,3 ÛH)((ÛH)�P̂H,H
1,3 ÛH)−1�

≤ �((Ûu)�(Pu,H
2,3 − P̂u,H

2,3 )ÛH)((ÛH)�PH,H
1,3 ÛH)−1�

+�((Ûu)�P̂u,H
2,3 ÛH)(((ÛH)�PH,H

1,3 ÛH)−1 − ((ÛH)�P̂H,H
1,3 ÛH)−1�

≤ �Ûu(Pu,H
2,3 − P̂u,H

2,3 )ÛH��((ÛH)�PH,H
1,3 ÛH)−1�

+�(Ûu)�P̂u,H
2,3 ÛH��((ÛH)�PH,H

1,3 ÛH)−1 − ((ÛH)�P̂H,H
1,3 ÛH)−1�

≤ 2�(N, δ)

σmd(PH,H
1,3 )

+
8�(N, δ)

σmd(PH,H
1,3 )2

≤ 10�(N, δ)

σmd(PH,H
1,3 )2

(9)

In the derivation above, the first inequality uses triangle inequality and the second inequality repeat-
edly uses the fact that �A ·B� ≤ �A��B�. The third inequality is obtained by bounding each term
individually as follows:

�(Ûu)�(Pu,H
2,3 − P̂u,H

2,3 )ÛH� ≤ �Pu,H
2,3 − P̂u,H

2,3 � ≤ �Pu,H
2,3 − P̂u,H

2,3 �F ≤ �(N, δ)

�((ÛH)�PH,H
1,3 ÛH)−1� = 1/σmd((ÛH)�PH,H

1,3 ÛH) ≤ 2/σmd(PH,H
1,3 )

�(Ûu)�P̂u,H
2,3 ÛH� ≤ �P̂u,H

2,3 � ≤ �P̂u,H
2,3 �F ≤ 1

�((ÛH)�PH,H
1,3 ÛH)−1 − ((ÛH)�P̂H,H

1,3 ÛH)−1�
≤ 2�(ÛH)�(PH,H

1,3 − P̂H,H
1,3 )ÛH�max(�((ÛH)�P̂H,H

1,3 ÛH)−1�, �((ÛH)�PH,H
1,3 ÛH)−1�)

≤ 8�(N, δ)

σmd(PH,H
1,3 )2

where the last inequality follows from Theorem 5.
The bound of �S̃u

3 − Ŝu
3 � is handled similarly.

(2) First,

�S̃u
1 � ≤ �(Ûu)�Pu,H

2,1 ÛH��((ÛH)�PH,H
3,1 ÛH)−1� ≤ 2

σmd(PH,H
1,3 )

where the first inequality is by the fact that �A · B� ≤ �A��B�, the second inequality is by Equa-
tion (7).
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Meanwhile, Assumption 3 implies �(N, δ) ≤ σmd(PH,H
1,3 )/5, therefore from Equation (9),

�Su
1 − Ŝu

1 � ≤ 2

σmd(PH,H
1,3 )

Hence by triangle inequality,

�Ŝu
1 � ≤ 4

σmd(PH,H
1,3 )

The bounds of �S̃u
3 � and �Ŝu

3 � are handled similarly.

Built upon the previous two lemmas, we next provide a result regarding the concentration of sym-
metrized moments.
Lemma 10. Suppose N is large enough that Assumption 3 holds. Let u be a node in V . Then on
the event E, the following hold.

�Mu
2 − M̂u

2 � ≤ 14�(N, δ)

σmd(PH,H
1,3 )2

�Mu
3 − M̂u

3 � ≤ 96�(N, δ)

σmd(PH,H
1,3 )3

Proof. (1) Define Pu = PH,u
1,2 (ÛH , Ûu) and P̂u = P̂H,u

1,2 (ÛH , Ûu). Then,

�Mu
2 − M̂u

2 �
= �Pu((S̃u

1 )
�, I)− P̂u((Ŝu

1 )
�, I)�

≤ �(Pu − P̂u)((S̃u
1 )

�, I)�+ �P̂u((S̃u
1 )

� − (Ŝu
1 )

�, I)�
≤ �Pu − P̂u��S̃u

1 �+ �P̂u��S̃u
1 − Ŝu

1 �

≤ 4�(N, δ)

σmd(PH,H
1,3 )

+
10�(N, δ)

σmd(PH,H
1,3 )2

≤ 14�(N, δ)

σmd(PH,H
1,3 )2

(10)

where the first inequality is by triangle inequality, the second inequality is by the fact that
�M(A,B)� ≤ �M��A��B�, the third inequality is from the fact that �Pu − P̂u� ≤ �PH,u

1,2 −
P̂H,u
1,2 � ≤ �PH,u

1,2 − P̂H,u
1,2 �F ≤ �(N, δ) and �P̂u� ≤ �P̂H,u

1,2 � ≤ �P̂H,u
1,2 �F ≤ 1, and Lemma 9.

As a result,

�Mu
2 − M̂u

2 �
= �(Pu((S̃u

1 )
�, I)� + Pu((S̃u

1 )
�, I))/2− (P̂u(Ŝu

1 , I)
� + P̂u(Ŝu

1 , I))/2�
≤ �Pu((S̃u

1 )
�, I)� − P̂u((Ŝu

1 )
�, I)��/2 + �Pu((S̃u

1 )
�, I)− P̂u((Ŝu

1 )
�, I)�/2

≤ 14�(N, δ)

σmd(PH,H
1,3 )2

where the first inequality follows from triangle inequality, the second inequality is from Equa-
tion (10).

(2) Define Tu = PH,u,H
1,2,3 (ÛH , Ûu, ÛH) and T̂u = P̂H,u,H

1,2,3 (ÛH , Ûu, ÛH). Then,

�Mu
3 − M̂u

3 �
= �Tu((S̃u

1 )
�, I, (S̃u

3 )
�)− T̂u((Ŝu

1 )
�, I, (Ŝu

3 )
�)�

≤ �Tu − T̂u��S̃u
1 ��S̃u

3 �+ �T̂u��S̃u
1 − Ŝu

1 ��S̃u
3 �+ �T̂u��Ŝu

1 ��S̃u
3 − Ŝu

3 �

≤ 16�(N, δ)

σmd(PH,H
1,3 )2

+
10�(N, δ)

σmd(PH,H
1,3 )2

4

σmd(PH,H
1,3 )

+
4

σmd(PH,H
1,3 )

10�(N, δ)

σmd(PH,H
1,3 )2

≤ 96�(N, δ)

σmd(PH,H
1,3 )3
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where the first inequality is from triangle inequality, and the fact that �T (A,B,C)� ≤
�T��A��B��C�, the second inequality is by the fact that �Tu − T̂u� ≤ �PH,u,H

1,2,3 − P̂H,u,H
1,2,3 � ≤

�PH,u,H
1,2,3 − P̂H,u,H

1,2,3 �F ≤ �(N, δ), �T̂u� ≤ �P̂H,u,H
1,2,3 � ≤ 1, and Lemma 9, the third inequality is by

algebra.

E.4 Accucary of Tensor Decomposition

Algorithm 3 A Procedure That Finds Symmetric Decomposition based on Second and Third Order
Moments

1: Input: number of components m, perturbed version M̂2 and M̂3 of matrix M2 and tensor M3

satisfying M2 =
�m

i=1 πiθi ⊗ θi, M3 =
�m

i=1 πiθi ⊗ θi ⊗ θi
2: Output: {θ̂i}mi=1, estimate of {θi}mi=1

3: Whiten. Perform an SVD on M̂2 = ÛD̂Û�, and let Ŵ = ÛmD̂
−1/2
m (where Ûm is matrix that

contains the first m columns of Û , D̂m is the diagonal matrix with D̂’s first m diagonal entries),
let Ĝ = M̂3(Ŵ , Ŵ , Ŵ ).

4: Decompose Tensor. Apply robust tensor power iteration algorithm in [1] with input Ĝ to get
{v̂1, . . . , v̂m}

5: for i = 1, 2, . . . ,m do
6: Let Ẑi =

1
T̂ (v̂i,v̂i,v̂i)

.

7: Recover θ̂i =
(Ŵ�)†v̂i

Ẑi

8: end for

In this section, we introduce a lemma that is implicit in [1] regarding using orthogonal decomposi-
tion as a subprocedure for full rank symmetric tensor decomposition. (See Theorem 5.1 of [1].) For
completeness, we include the proof here.

Lemma 11. There are universal constants c1, c2 such that the following holds. Suppose a matrix
M2 and a tensor M3 has the following structure:

M2 =

m�

i=1

πiθi ⊗ θi

M3 =

m�

i=1

πiθi ⊗ θi ⊗ θi

where πi > 0 for all i. And we are given their perturbed version M̂2 and M̂3, such that

�M̂2 −M2� ≤ EP

�M̂3 −M3� ≤ ET

where
EP ≤ σm(Θ)2πmin/2 (11)

c1(
ET

σm(Θ)3
+

EP

σm(Θ)2
)

1

π
3/2
min

≤ 1

m
(12)

where Θ = (θ1, . . . θm) and πmin = mini πi. Then the outputs {θi}mi=1 of Algorithm 3 on input M̂2

and M̂3 satisfies the following. With appropriate setting of parameters (with respect to parameter
η), with probability 1− η, there is a permutation σ : [m] → [m] such that

�θi − θ̂σ(i)� ≤ c2
σ1(Θ)

π2
min

(
EP

σm(Θ)2
+

ET

σm(Θ)3
)
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Proof. 1. We first put Θ into canonical forms by appropriate scaling of its columns. Let Θ̃ =

(θ̃1, . . . , θ̃m) = Θdiag(π)
1
2 , we have

M2 =

m�

i=1

θ̃i ⊗ θ̃i

M3 =

m�

i=1

1√
πi

θ̃i ⊗ θ̃i ⊗ θ̃i

Recall that Ŵ is defined as ÛmD̂
− 1

2
m , where M̂2 = ÛD̂Û�. Hence Ŵ�M̂2Ŵ = Im. Suppose that

Ŵ�M2Ŵ has the following eigendecomposition:

Ŵ�M2Ŵ = AΛA�

Then let W = ŴAΛ− 1
2A�, W is one of the matrices such that W�M2W = Im. Define M =

W�Θ̃, M̂ = Ŵ�Θ̃.

2. If Equation (11) holds, then Ep ≤ σm(Θ)2πmin/2 ≤ σm(M2)/2, then we have the following:

�W�, �Ŵ� ≤ 2

σm(Θ̃)

�W †�, �Ŵ †� ≤ 3σ1(Θ̃)

�W † − Ŵ †� ≤ 6σ1(Θ̃)

σm(Θ̃)2
EP

�ΘΘ† −WW †� ≤ 4EP

σm(Θ̃)

�M�, �M̂� ≤ 2

�M − M̂� ≤ EP

σm(Θ̃)2

3. Define G = M3(W,W,W ) =
�

i
1√
πi
Mi ⊗Mi ⊗Mi, and recall that Ĝ = M̂3(Ŵ , Ŵ , Ŵ ). We

have the following perturbation bound for Ĝ. Define R to be diagnoal tensor
�

i
1√
πi
ei ⊗ ei ⊗ ei.

Note that �R� ≤ 1√
πmin

. Therefore,

�G− Ĝ�
= �M3(W,W,W )− M̂3(Ŵ , Ŵ , Ŵ )�
≤ �(M3 − M̂3)(Ŵ , Ŵ , Ŵ )�+ �M3(W − Ŵ ,W,W )�+ �M3(Ŵ ,W − Ŵ ,W )�+ �M3(Ŵ , Ŵ ,W − Ŵ )�
= �(M3 − M̂3)(Ŵ , Ŵ , Ŵ )�+ �R(M − M̂,M,M)�+ �R(M̂,M − M̂,M)�+ �R(M̂, M̂ ,M − M̂)�
≤ �M3 − M̂3��W�3 + �R��M − M̂��M�2 + �R��M̂��M��M − M̂�+ �R��M̂�2�M − M̂�

≤ 8ET

σm(Θ̃)3
+

12EP√
πminσm(Θ̃)2

:= E (13)

where the first inequality is by triangle inequality, the second inequality is by the fact that
�T (A,B,C)� ≤ �T��A��B��C�, the third inequality is from results of our step 2 and the fact
that �M̂3 −M3� ≤ ET .

4. If Equation (12) holds, then E ≤ C1

m ≤ C1
mini π

−1/2
i

m for C1 required by Theorem 5.1 in [1].
Thus, applying robust tensor power algorithm in [1], with probability at least 1 − η, there exist a
permutation σ : [m] → [m] such that

�Mi − v̂σ(i)� ≤ 8
√
πiE (14)

5. We conclude by providing the reconstruction error bound. For notational simplicity, assume σ(·)
is identity mapping. Define

Zi =
1

M3(WMi,WMi,WMi)
=

1

G(Mi,Mi,Mi)
=

√
πi
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and recall that
Ẑi =

1

M̂3(Ŵ v̂i, Ŵ v̂i, Ŵ v̂i)
=

1

Ĝ(v̂i, v̂i, v̂i)

The recovery formula is

θ̂i =
(Ŵ�)†v̂i

Ẑi

First, | 1
Zi

− 1
Ẑi
| can be bounded as follows:

| 1
Zi

− 1

Ẑi

|

= |G(Mi,Mi,Mi)− Ĝ(v̂i, v̂i, v̂i)|
≤ |(G− Ĝ)(v̂i, v̂i, v̂i)|+ |G(Mi − v̂i, v̂i, v̂i)|+ |G(Mi,Mi − v̂i, v̂i)|+ |G(Mi,Mi,Mi − v̂i)|
≤ �G− Ĝ��Mi�3 + �G��Mi − v̂i��v̂i�2 + �G��Mi − v̂i��v̂i��Mi�+ �G��Mi�2�Mi − v̂i�
≤ E + 3

πi√
πmin

E ≤ 4
πi√
πmin

E

where the first inequality is by triangle inequality, the second inequality is by the fact that �A ·B� ≤
�A��B�, the third inequality is by Equation (13) in step 3 and Equation (14) in step 4, the fourth
inequality is by algebra.

Then the reconstruction error can be bounded as follows:

�θi −
(Ŵ †)�v̂i

Ẑi

�

≤ �θi −
(W †)�Mi

Zi
�+ �W

†(Mi − v̂i)

Zi
�+ � (W

† − Ŵ †)v̂i
Zi

�+ �( 1

Zi
− 1

Ẑi

)Ŵ †v̂i�

≤ �ΘΘ† −WW †��θi�+
�W †�
Zi

�Mi − v̂i�+
�W † − Ŵ †�

Zi
�v̂i�+ | 1

Zi
− 1

Ẑi

|�Ŵ †��v̂i�

≤ �ΘΘ† −WW †� σ1(Θ̃)√
πmin

+
�W †�
Zi

�Mi − v̂i�+
�W † − Ŵ †�

Zi
+ | 1

Zi
− 1

Ẑi

|�Ŵ †�

≤ 4EP

σm(Θ̃)2
σ1(Θ̃)√
πmin

+ 24σ1(Θ̃)E +
6σ1(Θ̃)

σm(Θ̃)2
EP

√
πi +

12√
πmin

E
√
πiσ1(Θ̃)

≤ 46σ1(Θ̃)√
πmin

(
8ET

σm(Θ̃)3
+

12EP√
πminσm(Θ̃)2

)

≤ c2
σ1(Θ)

π2
min

(
EP

σm(Θ)2
+

ET

σm(Θ)3
)

Wher the first inequality is by triangle inequality, the second inequality we use the fact that �A·B� ≤
�A��B� and the fact that Mi = W�θi

√
πi, Zi =

√
πi, ΘΘ†θi = θi, WW † = (W †)�W�, the

third inequality uses the fact that �θi� = �Θ̃ei�/
√
πmin ≤ σ1(Θ̃)/

√
πmin and �v̂i� = 1, in the

fourth inequality we use results in item 2 and item 4, the fifth inequality is from the definiton of
E and algebra, in the sixth inequality we use the fact that σm(Θ) ≤ σm(Θ̃)π

−1/2
min and letting

c2 = 552.

Now we apply the above lemma into our symmetrized cooccurence matrices M̂2 and M̂3.
Corollary 2. Suppose N is large enough such that Assumption 3 holds. Then, on event E, with
probability 0.9 over the randomization of D calls of Algorithm 3, for all u ∈ V , the matrices
Θ̂u = (θ̂u1 , . . . , θ̂

u
m) obtained at the end of line 9 are such that there exists a permutation matrix Πu,

�(Ûu)�Ou − Θ̂uΠu� ≤ 2c2
m

(πu
min)

2

�(N, δ)

σmd(PH,H
1,3 )3σm(Ou)3
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Proof. By Assumption 3, we first see that conditioned on event E, by Lemma 9, σm(ÛuTOu

) ≥
σm(Ou)/2. Thus the conditions of Lemma 11 hold, by taking Θ = (Ûu)�Ou, π = πu. We thus
get that with probability greater than 1 − 0.1/D over the randomness of Algorithm 1, there is a
permutation matrix Πu such that for all i = 1, 2, . . . ,m,

�(Ûu)�Ou
i − (Θ̂uΠu)i�

≤ c2
σ1((Û

u)�Ou)

(πu
min)

2
(

�(N, δ)

σmd(PH,H
1,3 )2σm(Ou)2

+
�(N, δ)

σmd(PH,H
1,3 )3σm(Ou)3

)

≤ 2c2

√
m

(πu
min)

2

�(N, δ)

σmd(PH,H
1,3 )3σm(Ou)3

where the second inequality we use the fact that σ1((Û
u)�Ou) = �(Ûu)�Ou� ≤ �Ou� ≤ √

m,
since Ou is a column stochastic matrix. Therefore,

�(Ûu)�Ou − (Θ̂uΠu)�
≤ �(Ûu)�Ou − (Θ̂uΠu)�F
≤ 2c2

m

(πu
min)

2

�(N, δ)

σmd(PH,H
1,3 )3σm(Ou)3

(15)

We conclude the proof by applying union bound over all u ∈ V .

F Putting Everything Together – Proof of Theorem 2

Proof. (Of Theorem 2) (1) We first give the recovery accuracy of observation matri-
ces. The final step of recovery is Ôu = ÛuΘ̂u. Note that if N is at least
Cmax( D2

σ2
2σ

2
3
ln D

δ ,
m

σ2
1σ

2
2
ln D

δ ,
m2

σ6
1σ

6
3π

3
min

ln D
δ ), then Assumption 3 holds, hence conditioned on

event E, we have

�Ûu(Ûu)�Ou −Ou�
= �Ûu(Ûu)�Ou − Ûu(Uu)�Ou�
≤ �Ûu(Ûu)� − Ûu(Uu)���Ou�

≤ 2
√
m�(N, δ)

σm(Pu,u
1,2 )

(16)

where the first inequality is by the fact that �A ·B� ≤ �A��B�, the second inequality follows from
the fact that �Ou� ≤ √

m and item (1) of Lemma 7.

Meanwhile, by Corollary 2, we have

�Ûu(Ûu)�Ou − ÛuΘ̂uΠu�
≤ �(Ûu)�Ou − Θ̂uΠu�

≤ 2c2
m

(πu
min)

2

�(N, δ)

σmd(PH,H
1,3 )3σm(Ou)3

The above two facts let us conclude that provided the size of sample N is at least
Cmax( m

σ2
2σ

8
1�

2 ln
D
δ ,

m2

σ6
3σ

14
1 π4

min�
2 ln

D
δ ) (where we choose C large enough),

�Ou − ÔuΠu�
≤ �Ûu(Ûu)�Ou −Ou�+ �Ûu(Ûu)�Ou − ÛuΘ̂uΠu�

≤ 2
√
m�(N, δ)

σm(Pu,u
1,2 )

+ 2c2
m

(πu
min)

2

�(N, δ)

σmd(PH,H
1,3 )3σm(Ou)3

≤ min
v∈V

σm(Ov)4�/32 (17)

≤ �
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where the first inequality is by triangle inequality, the second inequality is by Equations (15)
and (16), the third inequality follows from the choice of N , in the last inequality we use the fact
that σm(Ou) ≤ 1. Therefore by Equation (17) and Theorem 3,

σm(ÔuΠu) ≥ σm(Ou)−min
v∈V

σm(Ov)4�/32 ≥ σm(Ou)/2 (18)

(2) We now provide guarantees on the accuracy of transition probabilities and initial probabilities.
In particular, we prove �Q̂u −Qu(Πu,Πu,Ππ(u))� ≤ �, the other three inequalities can be handled
similarly. As we have already seen from Equation (17), for all u ∈ V ,

�(Ou)T† − (ÔuΠu)T†�
≤ 2max(�(Ôu)†�2, �(ΠuT (Ou))†�2)�Ou − ÔuΠu�
≤ min

v∈V
σm(Ov)2�/16

where the first inequality is by Theorem 5, the second inequality uses the fact that �(Ôu)†� =

1/σm(Ou), �(ÔuΠu)†� = 1/σm(ÔuΠu) and Equation (18).

Conditioned on event E, by the choice of N , it is also true that the cooccurence tensor P̂u,π(u),u
2,2,1 is

such that
�P̂u,π(u),u

2,2,1 − P
u,π(u),u
2,2,1 � ≤ min

v∈V
σm(Ov)3�/32 (19)

Therefore,

�Qu − Q̂u(Πu,Ππ(u),Πu)�
= �Pu,π(u),u

2,2,1 ((Ou)T†, (Oπ(u))T†, (Ou)T†)− P̂
u,π(u),u
2,2,1 ((ÔuΠu)T†, (Ôπ(u)Ππ(u))T†, (ÔuΠu)T†)�

≤ �(Pu,π(u),u
2,2,1 − P̂

u,π(u),u
2,2,1 )((OuΠu)T†, (Oπ(u)Ππ(u))T†, (OuΠu)T†)�

+�P̂u,π(u),u
2,2,1 ((Ou)T† − (ÔuΠu)T†, (Oπ(u))T†, (Ou)T†)�

+�P̂u,π(u),u
2,2,1 ((ÔuΠu)T†, (Oπ(u))T† − (Ôπ(u)Ππ(u))T†, (Ôu)T†)�

+�P̂u,π(u),u
2,2,1 ((ÔuΠu)T†, (Ôπ(u)Ππ(u))T†, (Ou)T† − (ÔuΠu)T†)�

≤ �(Pu,π(u),u
2,2,1 − P̂

u,π(u),u
2,2,1 )�max

v∈V
�Ov†�3 + �P̂u,π(u),u

2,2,1 � · �(Ou)T† − (ÔuΠu)T†�(max
v∈V

�Ov†�2 +

max
v∈V

�Ov†�max
v∈V

�Ôv†�+max
v∈V

�Ôv†�2)
≤ �

where the first inequality is by triangle inequality, the second inequality is by the fact that
�T (A,B,C)� ≤ �T��A��B��C�, the third inequality is by Equations (19) and (17).

G Matrix Perturbation Lemmas

Theorem 3 (Weyl’s Theorem). If A, E are matrices in Rm×n with m ≥ n. Then,

|σi(A+ E)− σi(A)| ≤ �E�

Theorem 4 (Wedin’s Theorem). If A, E are matrices in Rm×n with m ≥ n. Let A have singular
value decomposition: 


U�
1

U�
2

U�
3


A ( V1 V2 ) =

�
Σ1 0
0 Σ2

0 0

�

Let Ã = A+ E have the singular value decomposition:



Ũ�
1

Ũ�
2

Ũ�
3


 Ã

�
Ṽ1 Ṽ2

�
=




Σ̃1 0

0 Σ̃2

0 0



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If there is δ > 0, α > 0 such that mini σi(Σ̃1) ≥ α+ δ, maxi σi(Σ2) ≤ α, then

� sinΦ� ≤ �E�
δ

where Φ is the matrix of principal angles between range(U1) and range(Ũ1).

Theorem 5. If A, E are matrices in Rm×n with m ≥ n, let Ã = A+ E. Then,

�Ã† −A†� ≤ 2max(�Ã†�2, �A†�2)�E�

H Compressed observation matrices produced by Spectacle-Tree for eight
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(h) NHLF

Figure 3: The compressed observation matrices estimated by Spectacle-Tree for all eight ENCODE
cell types studied, other than GM12878 which is presented in the main manuscript.
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