
Deep learning with Elastic Averaging SGD
(Supplementary Material)

7 Additional theoretical results and proofs

7.1 Quadratic case

We provide here the convergence analysis of the synchronous EASGD algorithm with constant learn-
ing rate. The analysis is focused on the convergence of the center variable to the local optimum. We
discuss one-dimensional quadratic case first, then the generalization to multi-dimensional setting
(Lemma 7.3) and finally to the strongly convex case (Theorem 7.1).

Our analysis in the quadratic case extends the analysis of ASGD in [6]. Assume each of the p local
workers xit ∈ Rn observes a noisy gradient at time t ≥ 0 of the linear form given in Equation 14.

git(x
i
t) = Axit − b− ξit, i ∈ {1, . . . , p}, (14)

where the matrix A is positive-definite (each eigenvalue is strictly positive) and {ξit}’s are i.i.d.
random variables, with zero mean and positive-definite covariance Σ. Let x∗ denote the optimum
solution, where x∗ = A−1b ∈ Rn. In this section we analyze the behavior of the mean squared
error (MSE) of the center variable x̃t, where this error is denoted as E[‖x̃t − x∗‖2], as a function of
t, p, η, α and β, where β = pα. Note that the MSE error can be decomposed as (squared) bias and
variance10: E[‖x̃t − x∗‖2] = ‖E[x̃t − x∗]‖2 + V[x̃t − x∗]. For one-dimensional case (n = 1), we
assume A = h > 0 and Σ = σ2 > 0.
Lemma 7.1. Let x̃0 and {xi0}i=1,...,p be arbitrary constants, then

E[x̃t − x∗] = γt(x̃0 − x∗) +
γt − φt

γ − φ
αu0, (15)

V[x̃t − x∗] =
p2α2η2

(γ − φ)2

(
γ2 − γ2t

1− γ2
+
φ2 − φ2t

1− φ2
− 2

γφ− (γφ)t

1− γφ

)
σ2

p
, (16)

where u0 =
∑p
i=1(xi0−x∗− α

1−pα−φ (x̃0−x∗)), a = ηh+(p+1)α, c2 = ηhpα, γ = 1− a−
√
a2−4c2

2 ,

and φ = 1− a+
√
a2−4c2

2 .

It follows from Lemma 7.1 that for the center variable to be stable the following has to hold
−1 < φ < γ < 1. (17)

It can be verified that φ and γ are the two zero-roots of the polynomial in λ: λ2 − (2− a)λ+ (1−
a+ c2). Recall that φ and λ are the functions of η and α. Thus (see proof in Section 7.1.2)

• γ < 1 iff c2 > 0 (i.e. η > 0 and α > 0).
• φ > −1 iff (2− ηh)(2− pα) > 2α and (2− ηh) + (2− pα) > α.
• φ = γ iff a2 = 4c2 (i.e. ηh = α = 0).

The proof the above Lemma is based on the diagonalization of the linear gradient map (this map is
symmetric due to the relation β = pα). The stability analysis of the asynchronous EASGD algorithm
in the round-robin scheme is similar due to this elastic symmetry.

Proof. Substituting the gradient from Equation 14 into the update rule used by each local worker in
the synchronous EASGD algorithm (Equation 5 and 6) we obtain

xit+1 = xit − η(Axit − b− ξit)− α(xit − x̃t), (18)

x̃t+1 = x̃t +

p∑
i=1

α(xit − x̃t), (19)

10In our notation, V denotes the variance.

10

where η is the learning rate, and α is the moving rate. Recall that α = ηρ and A = h.

For the ease of notation we redefine x̃t and xit as follows:

x̃t , x̃t − x∗ and xit , xit − x∗.
We prove the lemma by explicitly solving the linear equations 18 and 19. Let xt =
(x1
t , . . . , x

p
t , x̃t)

T . We rewrite the recursive relation captured in Equation 18 and 19 as simply

xt+1 = Mxt + bt,

where the drift matrix M is defined as

M =

1− α− ηh 0 ... 0 α

0 1− α− ηh 0 ... α
... 0 ... 0 ...
0 ... 0 1− α− ηh α
α α ... α 1− pα

 ,
and the (diffusion) vector bt = (ηξ1

t , . . . , ηξ
p
t , 0)T .

Note that one of the eigenvalues of matrixM , that we call φ, satisfies (1−α−ηh−φ)(1−pα−φ) =
pα2. The corresponding eigenvector is (1, 1, . . . , 1,− pα

1−pα−φ)T . Let ut be the projection of xt onto
this eigenvector. Thus ut =

∑p
i=1(xit − α

1−pα−φ x̃t). Let furthermore ξt =
∑p
i=1 ξ

i
t . Therefore we

have

ut+1 = φut + ηξt. (20)

By combining Equation 19 and 20 as follows

x̃t+1 = x̃t +

p∑
i=1

α(xit − x̃t) = (1− pα)x̃t + α(ut +
pα

1− pα− φ
x̃t)

= (1− pα+
pα2

1− pα− φ
)x̃t + αut = γx̃t + αut,

where the last step results from the following relations: pα2

1−pα−φ = 1 − α − ηh − φ and φ + γ =

1− α− ηh+ 1− pα. Thus we obtained

x̃t+1 = γx̃t + αut. (21)

Based on Equation 20 and 21, we can then expand ut and x̃t recursively,

ut+1 = φt+1u0 + φt(ηξ0) + . . .+ φ0(ηξt), (22)

x̃t+1 = γt+1x̃0 + γt(αu0) + . . .+ γ0(αut). (23)

Substituting u0, u1, . . . , ut, each given through Equation 22, into Equation 23 we obtain

x̃t = γtx̃0 +
γt − φt

γ − φ
αu0 + αη

t−1∑
l=1

γt−l − φt−l

γ − φ
ξl−1. (24)

To be more specific, the Equation 24 is obtained by integrating by parts,

x̃t+1 = γt+1x̃0 +

t∑
i=0

γt−i(αui)

= γt+1x̃0 +

t∑
i=0

γt−i(α(φiu0 +

i−1∑
l=0

φi−1−lηξl))

= γt+1x̃0 +

t∑
i=0

γt−iφi(αu0) +

t−1∑
l=0

t∑
i=l+1

γt−iφi−1−l(αηξl)

= γt+1x̃0 +
γt+1 − φt+1

γ − φ
(αu0) +

t−1∑
l=0

γt−l − φt−l

γ − φ
(αηξl).

11

Since the random variables ξl are i.i.d, we may sum the variance term by term as follows

t−1∑
l=0

(
γt−l − φt−l

γ − φ

)2

=

t−1∑
l=0

γ2(t−l) − 2γt−lφt−l + φ2(t−l)

(γ − φ)2

=
1

(γ − φ)2

(
γ2 − γ2(t+1)

1− γ2
− 2

γφ− (γφ)t+1

1− γφ
+
φ2 − φ2(t+1)

1− φ2

)
. (25)

Note that E[ξt] =
∑p
i=1 E[ξit] = 0 and V[ξt] =

∑p
i=1 V[ξit] = pσ2. These two facts, the equality in

Equation 24 and Equation 25 can then be used to compute E[x̃t] and V[x̃t] as given in Equation 15
and 16 in Lemma 7.1.

7.1.1 Visualizing Lemma 7.1

eta

b
e

ta

t=1,p=1

0 1 2
0

1

2

eta

b
e

ta

t=1,p=10

0 1 2
0

1

2

eta

b
e

ta

t=1,p=100

0 1 2
0

1

2

eta

b
e

ta

t=1,p=1000

0 1 2
0

1

2

eta

b
e

ta

t=1,p=10000

0 1 2
0

1

2

eta

b
e

ta

t=2,p=1

0 1 2
0

1

2

eta

b
e

ta

t=2,p=10

0 1 2
0

1

2

eta

b
e

ta

t=2,p=100

0 1 2
0

1

2

eta

b
e

ta

t=2,p=1000

0 1 2
0

1

2

eta

b
e

ta

t=2,p=10000

0 1 2
0

1

2

eta

b
e

ta

t=10,p=1

0 1 2
0

1

2

eta

b
e

ta

t=10,p=10

0 1 2
0

1

2

eta

b
e

ta

t=10,p=100

0 1 2
0

1

2

eta

b
e

ta

t=10,p=1000

0 1 2
0

1

2

eta

b
e

ta

t=10,p=10000

0 1 2
0

1

2

eta

b
e

ta

t=100,p=1

0 1 2
0

1

2

eta

b
e

ta

t=100,p=10

0 1 2
0

1

2

eta

b
e

ta

t=100,p=100

0 1 2
0

1

2

eta

b
e

ta

t=100,p=1000

0 1 2
0

1

2

eta

b
e

ta

t=100,p=10000

0 1 2
0

1

2

eta

b
e

ta

t=inf,p=1

0 1 2
0

1

2

eta

b
e

ta

t=inf,p=10

0 1 2
0

1

2

eta

b
e

ta

t=inf,p=100

0 1 2
0

1

2

eta

b
e

ta

t=inf,p=1000

0 1 2
0

1

2

eta

b
e

ta

t=inf,p=10000

0 1 2
0

1

2

Figure 5: Theoretical mean squared error (MSE) of the center x̃ in the quadratic case, with various
choices of the learning rate η (horizontal within each block), and the moving rate β = pα (vertical
within each block), the number of processors p = {1, 10, 100, 1000, 10000} (vertical across blocks),
and the time steps t = {1, 2, 10, 100,∞} (horizontal across blocks). The MSE is plotted in log scale,
ranging from 10−3 to 103 (from deep blue to red). The dark red (i.e. on the upper-right corners)
indicates divergence.

In Figure 5, we illustrate the dependence of MSE on β, η and the number of processors p over time
t. We consider the large-noise setting where x̃0 = xi0 = 1, h = 1 and σ = 10. The MSE error
is color-coded such that the deep blue color corresponds to the MSE equal to 10−3, the green color
corresponds to the MSE equal to 1, the red color corresponds to MSE equal to 103 and the dark red
color corresponds to the divergence of algorithm EASGD (condition in Equation 17 is then violated).
The plot shows that we can achieve significant variance reduction by increasing the number of local
workers p. This effect is less sensitive to the choice of β and η for large p.

12

7.1.2 Condition in Equation 17

We are going to show that

• γ < 1 iff c2 > 0 (i.e. η > 0 and β > 0).
• φ > −1 iff (2− ηh)(2− β) > 2β/p and (2− ηh) + (2− β) > β/p.

• φ = γ iff a2 = 4c2 (i.e. ηh = β = 0).

Recall that a = ηh+ (p+ 1)α, c2 = ηhpα, γ = 1− a−
√
a2−4c2

2 , φ = 1− a+
√
a2−4c2

2 , and β = pα.
We have

• γ < 1⇔ a−
√
a2−4c2

2 > 0⇔ a >
√
a2 − 4c2 ⇔ a2 > a2 − 4c2 ⇔ c2 > 0.

• φ > −1⇔ 2 > a+
√
a2−4c2

2 ⇔ 4− a >
√
a2 − 4c2 ⇔ 4− a > 0, (4− a)2 > a2 − 4c2 ⇔

4− a > 0, 4− 2a+ c2 > 0⇔ 4 > ηh+ β + α, 4− 2(ηh+ β + α) + ηhβ > 0.

• φ = γ ⇔
√
a2 − 4c2 = 0⇔ a2 = 4c2.

The next corollary is a consequence of Lemma 7.1. As the number of workers p grows, the averaging
property of the EASGD can be characterized as follows
Corollary 7.1. Let the Elastic Averaging relation β = pα and the condition 17 hold, then

lim
p→∞

lim
t→∞

pE[(x̃t − x∗)2] =
βηh

(2− β)(2− ηh)
· 2− β − ηh+ βηh

β + ηh− βηh
· σ

2

h2
.

Proof. Note that when β is fixed, limp→∞ a = ηh+ β and c2 = ηhβ. Then limp→∞ φ = min(1−
β, 1− ηh) and limp→∞ γ = max(1− β, 1− ηh). Also note that using Lemma 7.1 we obtain

lim
t→∞

E[(x̃t − x∗)2] =
β2η2

(γ − φ)2

(
γ2

1− γ2
+

φ2

1− φ2
− 2γφ

1− γφ

)
σ2

p

=
β2η2

(γ − φ)2

(
γ2(1− φ2)(1− φγ) + φ2(1− γ2)(1− φγ)− 2γφ(1− γ2)(1− φ2)

(1− γ2)(1− φ2)(1− γφ)

)
σ2

p

=
β2η2

(γ − φ)2

(
(γ − φ)2(1 + γφ)

(1− γ2)(1− φ2)(1− γφ)

)
σ2

p

=
β2η2

(1− γ2)(1− φ2)
· 1 + γφ

1− γφ
· σ

2

p
.

Corollary 7.1 is obtained by plugining in the limiting values of φ and γ.

The crucial point of Corollary 7.1 is that the MSE in the limit t → ∞ is in the order of 1/p which
implies that as the number of processors p grows, the MSE will decrease for the EASGD algorithm.
Also note that the smaller the β is (recall that β = pα = pηρ), the more exploration is allowed
(small ρ) and simultaneously the smaller the MSE is.

7.2 Generalization to multidimensional case

The next lemma (Lemma 7.2) shows that EASGD algorithm achieves the highest possible rate of
convergence when we consider the double averaging sequence (similarly to [6]) {z1, z2, . . . } defined
as below

zt+1 =
1

t+ 1

t∑
k=0

x̃k. (26)

Lemma 7.2 (Weak convergence). If the condition in Equation 17 holds, then the normalized double
averaging sequence defined in Equation 26 converges weakly to the normal distribution with zero
mean and variance σ2/ph2,

√
t(zt − x∗) ⇀ N (0,

σ2

ph2
), t→∞. (27)

13

Proof. As in the proof of Lemma 7.1, for the ease of notation we redefine x̃t and xit as follows:

x̃t , x̃t − x∗ and xit , xit − x∗.

Also recall that {ξit}’s are i.i.d. random variables (noise) with zero mean and the same covariance
Σ � 0. We are interested in the asymptotic behavior of the double averaging sequence {z1, z2, . . . }
defined as

zt+1 =
1

t+ 1

t∑
k=0

x̃k. (28)

Recall the Equation 24 from the proof of Lemma 7.1 (for the convenience it is provided below):

x̃k = γkx̃0 + αu0
γk − φk

γ − φ
+ αη

k−1∑
l=1

γk−l − φk−l

γ − φ
ξl−1,

where ξt =
∑p
i=1 ξ

i
t . Therefore

t∑
k=0

x̃k =
1− γt+1

1− γ
x̃0 + αu0

1

γ − µ

(
1− γt+1

1− γ
− 1− φt+1

1− φ

)
+ αη

t−1∑
l=1

t∑
k=l+1

γk−l − φk−l

γ − φ
ξl−1

= O(1) + αη

t−1∑
l=1

1

γ − φ

(
γ

1− γt−l

1− γ
− φ1− φt−l

1− φ

)
ξl−1

Note that the only non-vanishing term (in weak convergence) of 1/
√
t
∑t
k=0 x̃k as t→∞ is

1√
t
αη

t−1∑
l=1

1

γ − φ

(
γ

1− γ
− φ

1− φ

)
ξl−1. (29)

Also recall that V[ξl−1] = pσ2 and

1

γ − φ

(
γ

1− γ
− φ

1− φ

)
=

1

(1− γ)(1− φ)
=

1

ηhpα
.

Therefore the expression in Equation 29 is asymptotically normal with zero mean and variance
σ2/ph2.

The asymptotic variance in the Lemma 7.2 is optimal with any fixed η and β for which Equation 17
holds. The next lemma (Lemma 7.3) extends the result in Lemma 7.2 to the multi-dimensional
setting.
Lemma 7.3 (Weak convergence). Let h denotes the largest eigenvalue of A. If (2− ηh)(2− β) >
2β/p, (2 − ηh) + (2 − β) > β/p, η > 0 and β > 0, then the normalized double averaging
sequence converges weakly to the normal distribution with zero mean and the covariance matrix
V = A−1Σ(A−1)T ,

√
tp(zt − x∗) ⇀ N (0, V), t→∞. (30)

Proof. Since A is symmetric, one can use the proof technique of Lemma 7.2 to prove Lemma 7.3
by diagonalizing the matrix A. This diagonalization essentially generalizes Lemma 7.1 to the mul-
tidimensional case. We will not go into the details of this proof as we will provide a simpler way
to look at the system. As in the proof of Lemma 7.1 and Lemma 7.2, for the ease of notation we
redefine x̃t and xit as follows:

x̃t , x̃t − x∗ and xit , xit − x∗.

Let the spatial average of the local parameters at time t be denoted as yt where yt = 1
p

∑p
i=1 x

i
t,

and let the average noise be denoted as ξt, where ξt = 1
p

∑p
i=1 ξ

i
t . Equations 18 and 19 can then be

reduced to the following

yt+1 = yt − η(Ayt − ξt) + α(x̃t − yt), (31)
x̃t+1 = x̃t + β(yt − x̃t). (32)

14

We focus on the case where the learning rate η and the moving rate α are kept constant over time11.
Recall β = pα and α = ηρ.

Let’s introduce the block notation Ut = (yt, x̃t), Ξt = (ηξt, 0), M = I − ηL and

L =

(
A+ α

η I −αη I
−βη I

β
η I

)
.

From Equations 31 and 32 it follows that Ut+1 = MUt + Ξt. Note that this linear system has a
degenerate noise Ξt which prevents us from directly applying results of [6]. Expanding this recursive
relation and summing by parts, we have

t∑
k=0

Uk = M0U0 +

M1U0 +M0Ξ0 +

M2U0 +M1Ξ0 +M0Ξ1 +

...

M tU0 +M t−1Ξ0 + · · ·+M0Ξt−1.

By Lemma 7.4, ‖M‖2 < 1 and thus

M0 +M1 + · · ·+M t + · · · = (I −M)−1 = η−1L−1.

Since A is invertible, we get

L−1 =

(
A−1 α

βA
−1

A−1 η
β + α

βA
−1

)
,

thus

1√
t

t∑
k=0

Uk =
1√
t
U0 +

1√
t
ηL−1

t∑
k=1

Ξk−1 −
1√
t

t∑
k=1

Mk+1Ξk−1.

Note that the only non-vanishing term (in weak convergence) of 1√
t

∑t
k=0 Uk is

1√
t
(ηL)−1

∑t
k=1 Ξk−1 thus we have

1√
t
(ηL)−1

t∑
k=1

Ξk−1 ⇀ N
((

0
0

)
,

(
V V
V V

))
, (33)

where V = A−1Σ(A−1)T .

Lemma 7.4. If the following conditions hold:

(2− ηh)(2− pα) > 2α

(2− ηh) + (2− pα) > α

η > 0

α > 0

then ‖M‖2 < 1.

Proof. The eigenvalue λ of M and the (non-zero) eigenvector (y, z) of M satisfy

M

(
y
z

)
= λ

(
y
z

)
. (34)

11As a side note, notice that the center parameter x̃t is tracking the spatial average yt of the local parameters
with a non-symmetric spring in Equation 31 and 32. To be more precise note that the update on yt+1 contains
(x̃t−yt) scaled by α, whereas the update on x̃t+1 contains −(x̃t−yt) scaled by β. Since α = β/p the impact
of the center x̃t+1 on the spatial local average yt+1 becomes more negligible as p grows.

15

Recall that

M = I − ηL =

(
I − ηA− αI αI

βI I − βI

)
. (35)

From the Equations 34 and 35 we obtain{
y − ηAy − αy + αz = λy
βy + (1− β)z = λz . (36)

Since (y, z) is assumed to be non-zero, we can write z = βy/(λ + β − 1). Then the Equation 36
can be reduced to

ηAy = (1− α− λ)y +
αβ

λ+ β − 1
y. (37)

Thus y is the eigenvector of A. Let λA be the eigenvalue of matrix A such that Ay = λAy. Thus
based on Equation 37 it follows that

ηλA = (1− α− λ) +
αβ

λ+ β − 1
. (38)

Equation 38 is equivalent to

λ2 − (2− a)λ+ (1− a+ c2) = 0, (39)

where a = ηλA + (p + 1)α, c2 = ηλApα. It follows from the condition in Equation 17 that
−1 < λ < 1 iff η > 0, β > 0, (2 − ηλA)(2 − β) > 2β/p and (2 − ηλA) + (2 − β) > β/p.
Let h denote the maximum eigenvalue of A and note that 2− ηλA ≥ 2− ηh. This implies that the
condition of our lemma is sufficient.

As in Lemma 7.2, the asymptotic covariance in the Lemma 7.3 is optimal, i.e. meets the Fisher
information lower-bound. The fact that this asymptotic covariance matrix V does not contain any
term involving ρ is quite remarkable, since the penalty term ρ does have an impact on the condition
number of the Hessian in Equation 2.

7.3 Strongly convex case

We now extend the above proof ideas to analyze the strongly convex case, in which the noisy gradient
git(x) = ∇F (x)− ξit has the regularity that there exists some 0 < µ ≤ L, for which µ ‖x− y‖2 ≤
〈∇F (x)−∇F (y), x− y〉 ≤ L ‖x− y‖2 holds uniformly for any x ∈ Rd, y ∈ Rd. The noise
{ξit}’s is assumed to be i.i.d. with zero mean and bounded variance E[

∥∥ξit∥∥2
] ≤ σ2.

Theorem 7.1. Let at = E
∥∥∥ 1
p

∑p
i=1 x

i
t − x∗

∥∥∥2

, bt = 1
p

∑p
i=1 E

∥∥xit − x∗∥∥2
, ct = E ‖x̃t − x∗‖2,

γ1 = 2η µL
µ+L and γ2 = 2ηL(1− 2

√
µL

µ+L). If 0 ≤ η ≤ 2
µ+L (1− α), 0 ≤ α < 1 and 0 ≤ β ≤ 1 then(

at+1

bt+1

ct+1

)
≤

(
1− γ1 − γ2 − α γ2 α

0 1− γ1 − α α
β 0 1− β

)(
at
bt
ct

)
+

η2 σ2

p

η2σ2

0

 .

Proof. The idea of the proof is based on the point of view in Lemma 7.3, i.e. how close the center
variable x̃t is to the spatial average of the local variables yt = 1

p

∑p
i=1 x

i
t. To further simplify the

notation, let the noisy gradient be ∇f it,ξ = git(x
i
t) = ∇F (xit) − ξit , and ∇f it = ∇F (xit) be its

deterministic part. Then EASGD updates can be rewritten as follows,

xit+1 = xit − η∇f it,ξ − α(xit − x̃t), (40)

x̃t+1 = x̃t + β(yt − x̃t). (41)

We have thus the update for the spatial average,

yt+1 = yt − η
1

p

p∑
i=1

∇f it,ξ − α(yt − x̃t). (42)

16

The idea of the proof is to bound the distance ‖x̃t − x∗‖2 through ‖yt − x∗‖2 and
1
p

∑p
i

∥∥xit − x∗∥∥2
. W start from the following estimate for the strongly convex function [31],

〈∇F (x)−∇F (y), x− y〉 ≥ µL

µ+ L
‖x− y‖2 +

1

µ+ L
‖∇F (x)−∇F (y)‖2 .

Since∇f(x∗) = 0, we have〈
∇f it , xit − x∗

〉
≥ µL

µ+ L

∥∥xit − x∗∥∥2
+

1

µ+ L

∥∥∇f it∥∥2
. (43)

From Equation 40 the following relation holds,∥∥xit+1 − x∗
∥∥2

=
∥∥xit − x∗∥∥2

+ η2
∥∥∇f it,ξ∥∥2

+ α2
∥∥xit − x̃t∥∥2

− 2η
〈
∇f it,ξ, xit − x∗

〉
− 2α

〈
xit − x̃t, xit − x∗

〉
+ 2ηα

〈
∇f it,ξ, xit − x̃t

〉
. (44)

By the cosine rule (2 〈a− b, c− d〉 = ‖a− d‖2 − ‖a− c‖2 + ‖c− b‖2 − ‖d− b‖2), we have

2
〈
xit − x̃t, xit − x∗

〉
=
∥∥xit − x∗∥∥2

+
∥∥xit − x̃t∥∥2 − ‖x̃t − x∗‖2 . (45)

By the Cauchy-Schwarz inequality, we have〈
∇f it , xit − x̃t

〉
≤
∥∥∇f it∥∥ ∥∥xit − x̃t∥∥ . (46)

Combining the above estimates in Equations 43, 44, 45, 46, we obtain∥∥xit+1 − x∗
∥∥2 ≤

∥∥xit − x∗∥∥2
+ η2

∥∥∇f it − ξit∥∥2
+ α2

∥∥xit − x̃t∥∥2

− 2η

(
µL

µ+ L

∥∥xit − x∗∥∥2
+

1

µ+ L

∥∥∇f it∥∥2
)

+ 2η
〈
ξit, x

i
t − x∗

〉
− α

(∥∥xit − x∗∥∥2
+
∥∥xit − x̃t∥∥2 − ‖x̃t − x∗‖2

)
+ 2ηα

∥∥∇f it∥∥ ∥∥xit − x̃t∥∥ − 2ηα
〈
ξit, x

i
t − x̃t

〉
. (47)

Choosing 0 ≤ α < 1, we can have this upper-bound for the terms α2
∥∥xit − x̃t∥∥2−α

∥∥xit − x̃t∥∥2
+

2ηα
∥∥∇f it∥∥ ∥∥xit − x̃t∥∥ = −α(1 − α)

∥∥xit − x̃t∥∥2
+ 2ηα

∥∥∇f it∥∥ ∥∥xit − x̃t∥∥ ≤ η2α
1−α

∥∥∇f it∥∥2
by

applying −ax2 + bx ≤ b2

4a with x =
∥∥xit − x̃t∥∥. Thus we can further bound Equation 47 with∥∥xit+1 − x∗

∥∥2 ≤ (1− 2η
µL

µ+ L
− α)

∥∥xit − x∗∥∥2
+ (η2 +

η2α

1− α
− 2η

µ+ L
)
∥∥∇f it∥∥2

− 2η2
〈
∇f it , ξit

〉
+ 2η

〈
ξit, x

i
t − x∗

〉
− 2ηα

〈
ξit, x

i
t − x̃t

〉
(48)

+ η2
∥∥ξit∥∥2

+ α ‖x̃t − x∗‖2 (49)

As in Equation 48 and 49, the noise ξit is zero mean (Eξit = 0) and the variance of the noise ξit is
bounded (E

∥∥ξit∥∥2 ≤ σ2), if η is chosen small enough such that η2 + η2α
1−α −

2η
µ+L ≤ 0, then

E
∥∥xit+1 − x∗

∥∥2 ≤ (1− 2η
µL

µ+ L
− α)E

∥∥xit − x∗∥∥2
+ η2σ2 + αE ‖x̃t − x∗‖2 . (50)

Now we apply similar idea to estimate ‖yt − x∗‖2. From Equation 42 the following relation holds,

‖yt+1 − x∗‖2 = ‖yt − x∗‖2 + η2

∥∥∥∥∥1

p

p∑
i=1

∇f it,ξ

∥∥∥∥∥
2

+ α2 ‖yt − x̃t‖2

− 2η

〈
1

p

p∑
i=1

∇f it,ξ, yt − x∗
〉
− 2α 〈yt − x̃t, yt − x∗〉

+ 2ηα

〈
1

p

p∑
i=1

∇f it,ξ, yt − x̃t

〉
. (51)

17

By
〈

1
p

∑p
i=1 ai,

1
p

∑p
j=1 bj

〉
= 1

p

∑p
i=1 〈ai, bi〉 −

1
p2

∑
i>j 〈ai − aj , bi − bj〉, we have〈

1

p

p∑
i=1

∇f it , yt − x∗
〉

=
1

p

p∑
i=1

〈
∇f it , xit − x∗

〉
− 1

p2

∑
i>j

〈
∇f it −∇f

j
t , x

i
t − x

j
t

〉
. (52)

By the cosine rule, we have

2 〈yt − x̃t, yt − x∗〉 = ‖yt − x∗‖2 + ‖yt − x̃t‖2 − ‖x̃t − x∗‖2 . (53)

Denote ξt = 1
p

∑p
i=1 ξ

i
t , we can rewrite Equation 51 as

‖yt+1 − x∗‖2 = ‖yt − x∗‖2 + η2

∥∥∥∥∥1

p

p∑
i=1

∇f it − ξt

∥∥∥∥∥
2

+ α2 ‖yt − x̃t‖2

− 2η

〈
1

p

p∑
i=1

∇f it − ξt, yt − x∗
〉
− 2α 〈yt − x̃t, yt − x∗〉

+ 2ηα

〈
1

p

p∑
i=1

∇f it − ξt, yt − x̃t

〉
. (54)

By combining the above Equations 52, 53 with 54, we obtain

‖yt+1 − x∗‖2 = ‖yt − x∗‖2 + η2

∥∥∥∥∥1

p

p∑
i=1

∇f it − ξt

∥∥∥∥∥
2

+ α2 ‖yt − x̃t‖2

− 2η

(
1

p

p∑
i=1

〈
∇f it , xit − x∗

〉
− 1

p2

∑
i>j

〈
∇f it −∇f

j
t , x

i
t − x

j
t

〉)
(55)

+ 2η 〈ξt, yt − x∗〉 − α(‖yt − x∗‖2 + ‖yt − x̃t‖2 − ‖x̃t − x∗‖2)

+ 2ηα

〈
1

p

p∑
i=1

∇f it − ξt, yt − x̃t

〉
. (56)

Thus it follows from Equation 43 and 56 that

‖yt+1 − x∗‖2 ≤ ‖yt − x∗‖2 + η2

∥∥∥∥∥1

p

p∑
i=1

∇f it − ξt

∥∥∥∥∥
2

+ α2 ‖yt − x̃t‖2

− 2η
1

p

p∑
i=1

(
µL

µ+ L

∥∥xit − x∗∥∥2
+

1

µ+ L

∥∥∇f it∥∥2
)

+ 2η
1

p2

∑
i>j

〈
∇f it −∇f

j
t , x

i
t − x

j
t

〉
+ 2η 〈ξt, yt − x∗〉 − α(‖yt − x∗‖2 + ‖yt − x̃t‖2 − ‖x̃t − x∗‖2)

+ 2ηα

〈
1

p

p∑
i=1

∇f it − ξt, yt − x̃t

〉
. (57)

Recall yt = 1
p

∑p
i=1 x

i
t, we have the following bias-variance relation,

1

p

p∑
i=1

∥∥xit − x∗∥∥2
=

1

p

p∑
i=1

∥∥xit − yt∥∥2
+ ‖yt − x∗‖2 =

1

p2

∑
i>j

∥∥∥xit − xjt∥∥∥2

+ ‖yt − x∗‖2 ,

1

p

p∑
i=1

∥∥∇f it∥∥2
=

1

p2

∑
i>j

∥∥∥∇f it −∇f jt ∥∥∥2

+

∥∥∥∥∥1

p

p∑
i=1

∇f it

∥∥∥∥∥
2

. (58)

18

By the Cauchy-Schwarz inequality, we have

µL

µ+ L

∥∥∥xit − xjt∥∥∥2

+
1

µ+ L

∥∥∥∇f it −∇f jt ∥∥∥2

≥ 2
√
µL

µ+ L

〈
∇f it −∇f

j
t , x

i
t − x

j
t

〉
. (59)

Combining the above estimates in Equations 57, 58, 59, we obtain

‖yt+1 − x∗‖2 ≤ ‖yt − x∗‖2 + η2

∥∥∥∥∥1

p

p∑
i=1

∇f it − ξt

∥∥∥∥∥
2

+ α2 ‖yt − x̃t‖2

− 2η

(
µL

µ+ L
‖yt − x∗‖2 +

1

µ+ L

∥∥∥∥∥1

p

p∑
i=1

∇f it

∥∥∥∥∥
2)

+ 2η

(
1− 2

√
µL

µ+ L

)
1

p2

∑
i>j

〈
∇f it −∇f

j
t , x

i
t − x

j
t

〉
+ 2η 〈ξt, yt − x∗〉 − α(‖yt − x∗‖2 + ‖yt − x̃t‖2 − ‖x̃t − x∗‖2)

+ 2ηα

〈
1

p

p∑
i=1

∇f it − ξt, yt − x̃t

〉
. (60)

Similarly if 0 ≤ α < 1, we can have this upper-bound for the terms α2 ‖yt − x̃t‖2−α ‖yt − x̃t‖2 +

2ηα
∥∥∥ 1
p

∑p
i=1∇f it

∥∥∥ ‖yt − x̃t‖ ≤ η2α
1−α

∥∥∥ 1
p

∑p
i=1∇f it

∥∥∥2

by applying −ax2 + bx ≤ b2

4a with x =

‖yt − x̃t‖. Thus we have the following bound for the Equation 60

‖yt+1 − x∗‖2 ≤ (1− 2η
µL

µ+ L
− α) ‖yt − x∗‖2 + (η2 +

η2α

1− α
− 2η

µ+ L
)

∥∥∥∥∥1

p

p∑
i=1

∇f it

∥∥∥∥∥
2

− 2η2

〈
1

p

p∑
i=1

∇f it , ξt

〉
+ 2η 〈ξt, yt − x∗〉 − 2ηα 〈ξt, yt − x̃t〉

+ 2η

(
1− 2

√
µL

µ+ L

)
1

p2

∑
i>j

〈
∇f it −∇f

j
t , x

i
t − x

j
t

〉
+ η2 ‖ξt‖2 + α ‖x̃t − x∗‖2 . (61)

Since 2
√
µL

µ+L ≤ 1, we need also bound the non-linear term
〈
∇f it −∇f

j
t , x

i
t − x

j
t

〉
≤ L

∥∥∥xit − xjt∥∥∥2

.

Recall the bias-variance relation 1
p

∑p
i=1

∥∥xit − x∗∥∥2
= 1

p2

∑
i>j

∥∥∥xit − xjt∥∥∥2

+ ‖yt − x∗‖2.

The key observation is that if 1
p

∑p
i=1

∥∥xit − x∗∥∥2
remains bounded, then larger variance∑

i>j

∥∥∥xit − xjt∥∥∥2

implies smaller bias ‖yt − x∗‖2. Thus this non-linear term can be compensated.

Again choose η small enough such that η2 + η2α
1−α −

2η
µ+L ≤ 0 and take expectation in Equation 61,

E ‖yt+1 − x∗‖2 ≤ (1− 2η
µL

µ+ L
− α)E ‖yt − x∗‖2

+ 2ηL

(
1− 2

√
µL

µ+ L

)(
1

p

p∑
i=1

E
∥∥xit − x∗∥∥2 − E ‖yt − x∗‖2

)
+ η2σ

2

p
+ αE ‖x̃t − x∗‖2 . (62)

As for the center variable in Equation 41, we apply simply the convexity of the norm ‖·‖2 to obtain

‖x̃t+1 − x∗‖2 ≤ (1− β) ‖x̃t − x∗‖2 + β ‖yt − x∗‖2 . (63)

19

Combing the estimates from Equations 50, 62, 63, and denote at = E ‖yt − x∗‖2, bt =
1
p

∑p
i=1 E

∥∥xit − x∗∥∥2
, ct = E ‖x̃t − x∗‖2, γ1 = 2η µL

µ+L , γ2 = 2ηL(1− 2
√
µL

µ+L), then(
at+1

bt+1

ct+1

)
≤

(
1− γ1 − γ2 − α γ2 α

0 1− γ1 − α α
β 0 1− β

)(
at
bt
ct

)
+

η2 σ2

p

η2σ2

0

 ,

as long as 0 ≤ β ≤ 1, 0 ≤ α < 1 and η2 + η2α
1−α −

2η
µ+L ≤ 0, i.e. 0 ≤ η ≤ 2

µ+L (1− α).

8 Additional pseudo-codes of the algorithms

8.1 DOWNPOUR pseudo-code

Algorithm 3 captures the pseudo-code of the implementation of the DOWNPOUR used in this paper.

Algorithm 3: DOWNPOUR: Processing by worker i and the master
Input: learning rate η, communication period τ ∈ N
Initialize: x̃ is initialized randomly, xi = x̃, vi = 0, ti = 0
Repeat

if (τ divides ti) then
x̃ ← x̃ + vi

xi ← x̃
vi ← 0

end
xi ← xi − ηgiti(x

i)
vi ← vi − ηgiti(x

i)
ti ← ti + 1

Until forever

8.2 MDOWNPOUR pseudo-code

Algorithms 4 and 5 capture the pseudo-codes of the implementation of momentum DOWNPOUR
(MDOWNPOUR) used in this paper. Algorithm 4 shows the behavior of each local worker and
Algorithm 5 shows the behavior of the master.

Algorithm 4: MDOWNPOUR: Processing by worker i

Initialize: xi = x̃
Repeat

Receive x̃ from the master: xi ← x̃
Compute gradient gi = gi(xi)
Send gi to the master

Until forever

Algorithm 5: MDOWNPOUR: Processing by the master
Input: learning rate η, momentum term δ
Initialize: x̃ is initialized randomly, vi = 0,
Repeat

Receive gi
v ← δv − ηgi
x̃← x̃+ δv

Until forever

20

9 Experiments - additional material

9.1 Data preprocessing

For the ImageNet experiment, we re-size each RGB image so that the smallest dimension is 256
pixels. We also re-scale each pixel value to the interval [0, 1]. We then extract random crops (and
their horizontal flips) of size 3× 221× 221 pixels and present these to the network in mini-batches
of size 128.

For the CIFAR experiment, we use the original RGB image of size 3 × 32 × 32. As before, we
re-scale each pixel value to the interval [0, 1]. We then extract random crops (and their horizontal
flips) of size 3× 28× 28 pixels and present these to the network in mini-batches of size 128.

The training and test loss and the test error are only computed from the center patch (3 × 28 × 28)
for the CIFAR experiment and the center patch (3× 221× 221) for the ImageNet experiment.

9.2 Data prefetching (Sampling the dataset by the local workers)

We will now explain precisely how the dataset is sampled by each local worker as uniformly and
efficiently as possible. The general parallel data loading scheme on a single machine is as fol-
lows: we use k CPUs, where k = 8, to load the data in parallel. Each data loader reads from the
memory-mapped (mmap) file a chunk of c raw images (preprocessing was described in the previous
subsection) and their labels (for CIFAR c = 512 and for ImageNet c = 64). For the CIFAR, the
mmap file of each data loader contains the entire dataset whereas for ImageNet, each mmap file of
each data loader contains different 1/k fractions of the entire dataset. A chunk of data is always
sent by one of the data loaders to the first worker who requests the data. The next worker request-
ing the data from the same data loader will get the next chunk. Each worker requests in total k
data chunks from k different data loaders and then process them before asking for new data chunks.
Notice that each data loader cycles through the data in the mmap file, sending consecutive chunks
to the workers in order in which it receives requests from them. When the data loader reaches
the end of the mmap file, it selects the address in memory uniformly at random from the interval
[0, s], where s = (number of images in the mmap file modulo mini-batch size), and uses this
address to start cycling again through the data in the mmap file. After the local worker receives the
k data chunks from the data loaders, it shuffles them and divides it into mini-batches of size 128.

9.3 Learning rates

In Table 1 we summarize the learning rates η (we used constant learning rates) explored for each
method shown in Figure 2. For all values of τ the same set of learning rates was explored for each
method.

Table 1: Learning rates explored for each method shown in Figure 2 (CIFAR experiment).

η
EASGD {0.05, 0.01, 0.005}

EAMSGD {0.01, 0.005, 0.001}
DOWNPOUR

ADOWNPOUR {0.005, 0.001, 0.0005}
MVADOWNPOUR

MDOWNPOUR {0.00005, 0.00001, 0.000005}
SGD, ASGD, MVASGD {0.05, 0.01, 0.005}

MSGD {0.001, 0.0005, 0.0001}

In Table 2 we summarize the learning rates η (we used constant learning rates) explored for each
method shown in Figure 3. For all values of p the same set of learning rates was explored for each
method.

In Table 3 we summarize the initial learning rates η we use for each method shown in Figure 4. For
all values of p the same set of learning rates was explored for each method. We also used the rule
of the thumb to decrease the initial learning rate twice, first time we divided it by 5 and the second
time by 2, when we observed that the decrease of the online predictive (training) loss saturates.

21

Table 2: Learning rates explored for each method shown in Figure 3 (CIFAR experiment).

η
EASGD {0.05, 0.01, 0.005}

EAMSGD {0.01, 0.005, 0.001}
DOWNPOUR {0.005, 0.001, 0.0005}

MDOWNPOUR {0.00005, 0.00001, 0.000005}
SGD, ASGD, MVASGD {0.05, 0.01, 0.005}

MSGD {0.001, 0.0005, 0.0001}

Table 3: Learning rates explored for each method shown in Figure 4 (ImageNet experiment).

η
EASGD 0.1

EAMSGD 0.001
DOWNPOUR for p = 4: 0.02

for p = 8: 0.01

SGD, ASGD, MVASGD 0.05
MSGD 0.0005

9.4 Comparison of SGD, ASGD, MVASGD and MSGD

50 100 150

0.5

1

1.5

2

wallclock time (min)

tr
ai

n
in

g
 lo

ss
 (

n
ll)

SGD
ASGD
MVASGD
MSGD

50 100 150

1

1.5

2

wallclock time (min)

te
st

 lo
ss

 (
n

ll)

50 100 150
20

30

40

50

60

70

80

90

wallclock time (min)

te
st

 e
rr

o
r

(%
)

50 100 150
17

18

19

20

21

22

wallclock time (min)

te
st

 e
rr

o
r

(%
)

Figure 6: Convergence of the training and test loss (negative log-likelihood) and the test error (orig-
inal and zoomed) computed for the center variable as a function of wallclock time for SGD, ASGD,
MVASGD and MSGD (p = 1) on the CIFAR experiment.

0 50 100 150

2

3

4

5

6

wallclock time (hour)

tr
ai

n
in

g
 lo

ss
 (

n
ll)

SGD
ASGD
MVASGD
MSGD

0 50 100 150

3

4

5

6

wallclock time (hour)

te
st

 lo
ss

 (
n

ll)

0 50 100 150

50

60

70

80

90

wallclock time (hour)

te
st

 e
rr

o
r

(%
)

0 50 100 150
42

44

46

48

50

52

54

wallclock time (hour)

te
st

 e
rr

o
r

(%
)

Figure 7: Convergence of the training and test loss (negative log-likelihood) and the test error (orig-
inal and zoomed) computed for the center variable as a function of wallclock time for SGD, ASGD,
MVASGD and MSGD (p = 1) on the ImageNet experiment.

Figure 6 shows the convergence of the training and test loss (negative log-likelihood) and the test
error computed for the center variable as a function of wallclock time for SGD, ASGD, MVASGD and
MSGD (p = 1) on the CIFAR experiment. For all CIFAR experiments we always start the averaging
for the ADOWNPOUR and ASGD methods from the very beginning of each experiment. For all
ImageNet experiments we start the averaging for the ASGD at the same time when we first reduce
the initial learning rate.

Figure 7 shows the convergence of the training and test loss (negative log-likelihood) and the test
error computed for the center variable as a function of wallclock time for SGD, ASGD, MVASGD
and MSGD (p = 1) on the ImageNet experiment.

22

9.5 Dependence of the learning rate

This section discusses the dependence of the trade-off between exploration and exploitation on the
learning rate. We compare the performance of respectively EAMSGD and EASGD for different
learning rates η when p = 16 and τ = 10 on the CIFAR experiment. We observe in Figure 8 that
higher learning rates η lead to better test performance for the EAMSGD algorithm which potentially
can be justified by the fact that they sustain higher fluctuations of the local workers. We conjecture
that higher fluctuations lead to more exploration and simultaneously they also impose higher reg-
ularization. This picture however seems to be opposite for the EASGD algorithm for which larger
learning rates hurt the performance of the method and lead to overfitting. Interestingly in this ex-
periment for both EASGD and EAMSGD algorithm, the learning rate for which the best training
performance was achieved simultaneously led to the worst test performance.

50 100 150

0.5

1

1.5

2

wallclock time (min)

tr
ai

n
in

g
 lo

ss
 (

n
ll)

EAMSGD

0.01
0.005
0.001

50 100 150
16

18

20

22

24

26

28

wallclock time (min)

te
st

 e
rr

o
r

(%
)

EAMSGD

50 100 150

0.5

1

1.5

2

wallclock time (min)

tr
ai

n
in

g
 lo

ss
 (

n
ll)

EASGD

0.05
0.01
0.005

50 100 150
16

18

20

22

24

26

28

wallclock time (min)

te
st

 e
rr

o
r

(%
)

EASGD

Figure 8: Convergence of the training loss (negative log-likelihood, original) and the test error
(zoomed) computed for the center variable as a function of wallclock time for EAMSGD and EASGD
run with different values of η on the CIFAR experiment. p = 16, τ = 10.

9.6 Dependence of the communication period

This section discusses the dependence of the trade-off between exploration and exploitation on the
communication period. We have observed from the CIFAR experiment that EASGD algorithm ex-
hibits very similar convergence behavior when τ = 1 up to even τ = 1000, whereas EAMSGD can
get trapped at worse energy (loss) level for τ = 100. This behavior of EAMSGD is most likely due to
the non-convexity of the objective function. Luckily, it can be avoided by gradually decreasing the
learning rate, i.e. increasing the penalty term ρ (recall α = ηρ), as shown in Figure 9. In contrast,
the EASGD algorithm does not seem to get trapped at all along its trajectory. The performance of
EASGD is less sensitive to increasing the communication period compared to EAMSGD, whereas for
the EAMSGD the careful choice of the learning rate for large communication periods seems crucial.

Compared to all earlier results, the experiment in this section is re-run three times with a new ran-
dom12 seed and with faster cuDNN13 package14. All our methods are implemented in Torch15. The
Message Passing Interface implementation MVAPICH216 is used for the GPU-CPU communication.

50 100 150 200 250 300

0.5

1

1.5

2

wallclock time (min)

tr
ai

n
in

g
 lo

ss
 (

n
ll)

EASGD

τ=1,γ=0
τ=10,γ=0
τ=100,γ=0
τ=1000,γ=0

50 100 150 200 250 300
16

18

20

22

24

26

28

wallclock time (min)

te
st

 e
rr

o
r

(%
)

EASGD

50 100 150

0.5

1

1.5

2

2.5

wallclock time (min)

tr
ai

ni
ng

 lo
ss

 (
nl

l)

EAMSGD

τ=10,γ=0
τ=100,γ=0
τ=100,γ=1e−4

50 100 150
16

18

20

22

24

26

28

wallclock time (min)

te
st

 e
rr

o
r

(%
)

EAMSGD

Figure 9: Convergence of the training loss (negative log-likelihood, original) and the test error
(zoomed) computed for the center variable as a function of wallclock time for EASGD and EAMSGD
(p = 16, η = 0.01, β = 0.9, δ = 0.99) on the CIFAR experiment with various communication
period τ and learning rate decay γ. The learning rate is decreased gradually over time based each
local worker’s own clock t with ηt = η/(1 + γt)0.5.

12To clarify, the random initialization we use is by default in Torch’s implementation.
13https://developer.nvidia.com/cuDNN
14https://github.com/soumith/cudnn.torch
15http://torch.ch
16http://mvapich.cse.ohio-state.edu

23

https://developer.nvidia.com/cuDNN
https://github.com/soumith/cudnn.torch
http://torch.ch
http://mvapich.cse.ohio-state.edu

9.7 Breakdown of the wallclock time

In addition, we report in Table 4 the breakdown of the total running time for EASGD when τ =
10 (the time breakdown for EAMSGD is almost identical) and DOWNPOUR when τ = 1 into
computation time, data loading time and parameter communication time. For the CIFAR experiment
the reported time corresponds to processing 400 × 128 data samples whereas for the ImageNet
experiment it corresponds to processing 1024 × 128 data samples. For τ = 1 and p ∈ {8, 16}
we observe that the communication time accounts for significant portion of the total running time
whereas for τ = 10 the communication time becomes negligible compared to the total running time
(recall that based on previous results EASGD and EAMSGD achieve best performance with larger τ
which is ideal in the setting when communication is time-consuming).

p = 1 p = 4 p = 8 p = 16
τ = 1 12/1/0 11/2/3 11/2/5 11/2/9

τ = 10 NA 11/2/1 11/2/1 12/2/1

p = 1 p = 4 p = 8
τ = 1 1248/20/0 1323/24/173 1239/61/284

τ = 10 NA 1254/58/7 1266/84/11

Table 4: Approximate computation time, data loading time and parameter communication time [sec]
for DOWNPOUR (top line for τ = 1) and EASGD (the time breakdown for EAMSGD is almost
identical) (bottom line for τ = 10). Left time corresponds to CIFAR experiment and right table
corresponds to ImageNet experiment.

9.8 Time speed-up

In Figure 10 and 11, we summarize the wall clock time needed to achieve the same level of the test
error for all the methods in the CIFAR and ImageNet experiment as a function of the number of local
workers p. For the CIFAR (Figure 10) we examined the following levels: {21%, 20%, 19%, 18%}
and for the ImageNet (Figure 11) we examined: {49%, 47%, 45%, 43%}. If some method does not
appear on the figure for a given test error level, it indicates that this method never achieved this level.
For the CIFAR experiment we observe that from among EASGD, DOWNPOUR and MDOWNPOUR
methods, the EASGD method needs less time to achieve a particular level of test error. We observe
that with higher p each of these methods does not necessarily need less time to achieve the same
level of test error. This seems counter intuitive though recall that the learning rate for the methods is
selected based on the smallest achievable test error. For larger p smaller learning rates were selected
than for smaller p which explains our results. Meanwhile, the EAMSGD method achieves significant
speed-up over other methods for all the test error levels. For the ImageNet experiment we observe
that all methods outperform MSGD and furthermore with p = 4 or p = 8 each of these methods
requires less time to achieve the same level of test error. The EAMSGD consistently needs less time
than any other method, in particular DOWNPOUR, to achieve any of the test error levels.

 1 4 8 16
0

50

100

150

p

w
al

lc
lo

ck
 t

im
e

(m
in

)

level 21%

MSGD
EAMSGD
EASGD
DOWNPOUR
MDOWNPOUR

 1 4 8 16
0

50

100

150

level 20%

p

w
al

lc
lo

ck
 t

im
e

(m
in

)

 1 4 8 16
0

50

100

150

level 19%

p

w
al

lc
lo

ck
 t

im
e

(m
in

)

 1 4 8 16
0

50

100

150

level 18%

p

w
al

lc
lo

ck
 t

im
e

(m
in

)

Figure 10: The wall clock time needed to achieve the same level of the test error thr as a
function of the number of local workers p on the CIFAR dataset. From left to right: thr =
{21%, 20%, 19%, 18%}. Missing bars denote that the method never achieved specified level of
test error.

.

1 4 8
0

50

100

150

p

w
al

lc
lo

ck
 t

im
e

(h
o

u
r)

level 49%

MSGD
EAMSGD
EASGD
DOWNPOUR

1 4 8
0

50

100

150

level 47%

p

w
al

lc
lo

ck
 t

im
e

(h
o

u
r)

1 4 8
0

50

100

150

level 45%

p

w
al

lc
lo

ck
 t

im
e

(h
o

u
r)

1 4 8
0

50

100

150

level 43%

p

w
al

lc
lo

ck
 t

im
e

(h
o

u
r)

Figure 11: The wall clock time needed to achieve the same level of the test error thr as a func-
tion of the number of local workers p on the ImageNet dataset. From left to right: thr =
{49%, 47%, 45%, 43%}. Missing bars denote that the method never achieved specified level of
test error.

.

24

	Additional theoretical results and proofs
	Quadratic case
	Visualizing Lemma 7.1
	Condition in Equation 17

	Generalization to multidimensional case
	Strongly convex case

	Additional pseudo-codes of the algorithms
	DOWNPOUR pseudo-code
	MDOWNPOUR pseudo-code

	Experiments - additional material
	Data preprocessing
	Data prefetching (Sampling the dataset by the local workers)
	Learning rates
	Comparison of SGD, ASGD, MVASGD and MSGD
	Dependence of the learning rate
	Dependence of the communication period
	Breakdown of the wallclock time
	Time speed-up

