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Abstract

We present and empirically evaluate an efficient algorithm that learns to aggre-
gate the predictions of an ensemble of binary classifiers. The algorithm uses the
structure of the ensemble predictions on unlabeled data to yield significant perfor-
mance improvements. It does this without making assumptions on the structure or
origin of the ensemble, without parameters, and as scalably as linear learning. We
empirically demonstrate these performance gains with random forests.

1 Introduction

Ensemble-based learning is a very successful approach to learning classifiers, including well-known
methods like boosting [1], bagging [2], and random forests [3]. The power of these methods has
been clearly demonstrated in open large-scale learning competitions such as the Netflix Prize [4]
and the ImageNet Challenge [5]. In general, these methods train a large number of “base” classifiers
and then combine them using a (possibly weighted) majority vote. By aggregating over classifiers,
ensemble methods reduce the variance of the predictions, and sometimes also reduce the bias [6].

The ensemble methods above rely solely on a labeled training set of data. In this paper we propose
an ensemble method that uses a large unlabeled data set in addition to the labeled set. Our work is
therefore at the intersection of semi-supervised learning [7, 8] and ensemble learning.

This paper is based on recent theoretical results of the authors [9]. Our main contributions here are
to extend and apply those results with a new algorithm in the context of random forests [3] and to
perform experiments in which we show that, when the number of labeled examples is small, our
algorithm’s performance is at least that of random forests, and often significantly better.

For the sake of completeness, we provide an intuitive introduction to the analysis given in [9]. How
can unlabeled data help in the context of ensemble learning? Consider a simple example with six
equiprobable data points. The ensemble consists of six classifiers, partitioned into three “A” rules
and three “B” rules. Suppose that the “A” rules each have error 1/3 and the “B” rules each have error
1/6. 1 If given only this information, we might take the majority vote over the six rules, possibly
giving lower weights to the “A” rules because they have higher errors.

Suppose, however, that we are given the unlabeled information in Table 1. The columns of this table
correspond to the six classifiers and the rows to the six unlabeled examples. Each entry corresponds
to the prediction of the given classifier on the given example. As we see, the main difference between
the “A” rules and the “B” rules is that any two “A” rules disagree with probability 1/3, whereas the
“B” rules always agree. For this example, it can be seen (e.g. proved by contradiction) that the only
possible true labeling of the unlabeled data that is consistent with Table 1 and with the errors of the
classifiers is that all the examples are labeled ’+’.

Consequently, we conclude that the majority vote over the “A” rules has zero error, performing
significantly better than any of the base rules. In contrast, giving the “B” rules equal weight would

1We assume that (bounds on) the errors are, with high probability, true on the actual distribution. Such
bounds can be derived using large deviation bounds or bootstrap-type methods.
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result in an a rule with error 1/6. Crucially, our reasoning to this point has solely used the structure
of the unlabeled examples along with the error rates in Table 1 to constrain our search for the true
labeling.

A classifiers B classifiers
x1 - + + + + +
x2 - + + + + +
x3 + - + + + +
x4 + - + + + +
x5 + + - + + +
x6 + + - - - -

error 1/3 1/3 1/3 1/6 1/6 1/6

Table 1: An example of the utility of unlabeled examples in ensemble learning

By such reasoning alone, we have correctly predicted according to a weighted majority vote. This
example provides some insight into the ways in which unlabeled data can be useful:

• When combining classifiers, diversity is important. It can be better to combine less accurate
rules that disagree with each other than to combine more accurate rules that tend to agree.

• The bounds on the errors of the rules can be seen as a set of constraints on the true labeling.
A complementary set of constraints is provided by the unlabeled examples. These sets of
constraints can be combined to improve the accuracy of the ensemble classifier.

The above setup was recently introduced and analyzed in [9]. That paper characterizes the problem
as a zero-sum game between a predictor and an adversary. It then describes the minimax solution of
the game, which corresponds to an efficient algorithm for transductive learning.

In this paper, we build on the worst-case framework of [9] to devise an efficient and practical semi-
supervised aggregation algorithm for random forests. To achieve this, we extend the framework to
handle specialists – classifiers which only venture to predict on a subset of the data, and abstain
from predicting on the rest. Specialists can be very useful in targeting regions of the data on which
to precisely suggest a prediction.

The high-level idea of our algorithm is to artificially generate new specialists from the ensemble.
We incorporate these, and the targeted information they carry, into the worst-case framework of [9].
The resulting aggregated predictor inherits the advantages of the original framework:

(A) Efficient: Learning reduces to solving a scalable p-dimensional convex optimization, and
test-time prediction is as efficient and parallelizable as p-dimensional linear prediction.

(B) Versatile/robust: No assumptions about the structure or origin of the predictions or labels.
(C) No introduced parameters: The aggregation method is completely data-dependent.
(D) Safe: Accuracy guaranteed to be at least that of the best classifier in the ensemble.

We develop these ideas in the rest of this paper, reviewing the core worst-case setting of [9] in Section
2, and specifying how to incorporate specialists and the resulting learning algorithm in Section 3.

Then we perform an exploratory evaluation of the framework on data in Section 4. Though the
framework of [9] and our extensions can be applied to any ensemble of arbitrary origin, in this
paper we focus on random forests, which have been repeatedly demonstrated to have state-of-the-
art, robust classification performance in a wide variety of situations [10]. We use a random forest
as a base ensemble whose predictions we aggregate. But unlike conventional random forests, we
do not simply take a majority vote over tree predictions, instead using a unlabeled-data-dependent
aggregation strategy dictated by the worst-case framework we employ.

2 Preliminaries

A few definitions are required to discuss these issues concretely, following [9]. Write [a]+ =
max(0, a) and [n] = {1, 2, . . . , n}. All vector inequalities are componentwise.
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We first consider an ensemble H = {h1, . . . , hp} and unlabeled data x1, . . . , xn on which we wish
to predict. As in [9], the predictions and labels are allowed to be randomized, represented by values
in [−1, 1] instead of just the two values {−1, 1}. The ensemble’s predictions on the unlabeled data
are denoted by F:

F =

h1(x1) h1(x2) · · · h1(xn)
...

...
. . .

...
hp(x1) hp(x2) · · · hp(xn)

 ∈ [−1, 1]p×n (1)

We use vector notation for the rows and columns of F: hi = (hi(x1), · · · , hi(xn))> and xj =
(h1(xj), · · · , hp(xj))>. The true labels on the test data T are represented by z = (z1; . . . ; zn) ∈
[−1, 1]n. The labels z are hidden from the predictor, but we assume the predictor has knowledge of
a correlation vector b ∈ (0, 1]p such that 1

n

∑
j hi(xj)zj ≥ bi, i.e. 1

nFz ≥ b. These p constraints
on z exactly represent upper bounds on individual classifier error rates, which can be estimated from
the training set w.h.p. when all the data are drawn i.i.d., in a standard way also used by empirical
risk minimization (ERM) methods that simply predict with the minimum-error classifier [9].

2.1 The Transductive Binary Classification Game

The idea of [9] is to formulate the ensemble aggregation problem as a two-player zero-sum game
between a predictor and an adversary. In this game, the predictor is the first player, who plays
g = (g1; g2; . . . ; gn), a randomized label gi ∈ [−1, 1] for each example {xi}ni=1. The adversary
then sets the labels z ∈ [−1, 1]n under the ensemble classifier error constraints defined by b. 2 The
predictor’s goal is to minimize the worst-case expected classification error on the test data (w.r.t.
the randomized labelings z and g), which is just 1

2

(
1− 1

nz
>g
)
. This is equivalently viewed as

maximizing worst-case correlation 1
nz
>g. To summarize concretely, we study the following game:

V := max
g∈[−1,1]n

min
z∈[−1,1]n,

1
nFz≥b

1

n
z>g (2)

The minimax theorem ([1], p.144) applies to the game (2), and there is an optimal strategy g∗ such

that min
z∈[−1,1]n,

1
nFz≥b

1

n
z>g∗ ≥ V , guaranteeing worst-case prediction error 1

2 (1− V ) on the n unlabeled

data. This optimal strategy g∗ is a simple function of a particular weighting over the p hypotheses –
a nonnegative p-vector.

Definition 1 (Slack Function). Let σ ≥ 0p be a weight vector overH (not necessarily a distribution).
The vector of ensemble predictions is F>σ = (x>1 σ, . . . ,x

>
n σ), whose elements’ magnitudes are

the margins. The prediction slack function is

γ(σ,b) := γ(σ) := −b>σ +
1

n

n∑
j=1

[∣∣x>j σ∣∣− 1
]
+

(3)

and this is convex in σ. The optimal weight vector σ∗ is any minimizer σ∗ ∈ argmin
σ≥0p

[γ(σ)].

The main result of [9] uses these to describe the minimax equilibrium of the game (2).

Theorem 2 ([9]). The minimax value of the game (2) is V = −γ(σ∗). The minimax optimal
predictions are defined as follows: for all j ∈ [n],

g∗j := gj(σ
∗) =

{
x>j σ

∗
∣∣x>j σ∗∣∣ < 1

sgn(x>j σ
∗) otherwise

2Since b is calculated from the training set and deviation bounds, we assume the problem feasible w.h.p.
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2.2 Interpretation

Theorem 2 suggests a statistical learning algorithm for aggregating the p ensemble classifiers’ pre-
dictions: estimate b from the training (labeled) set, optimize the convex slack function γ(σ) to find
σ∗, and finally predict with gj(σ∗) on each example j in the test set. The resulting predictions are
guaranteed to have low error, as measured by V . In particular, it is easy to prove [9] that V is at least
maxi bi, the performance of the best classifier.

The slack function (3) merits further scrutiny. Its first term depends only on the labeled data and
not the unlabeled set, while the second term 1

n

∑n
j=1

[∣∣x>j σ∣∣− 1
]
+

incorporates only unlabeled
information. These two terms trade off smoothly – as the problem setting becomes fully supervised
and unlabeled information is absent, the first term dominates, and σ∗ tends to put all its weight on
the best single classifier like ERM.

Indeed, this viewpoint suggests a (loose) interpretation of the second term as an unsupervised regu-
larizer for the otherwise fully supervised optimization of the “average” error b>σ. It turns out that
a change in the regularization factor corresponds to different constraints on the true labels z:

Theorem 3 ([9]). Let Vα := max
g∈[−1,1]n

min
z∈[−α,α]n,

1
nFz≥b

1

n
z>g for any α > 0. Then Vα =

minσ≥0p
[
−b>σ + α

n

∑n
j=1

[∣∣x>j σ∣∣− 1
]
+

]
.

So the regularized optimization assumes each zi ∈ [−α, α]. For α < 1, this is equivalent to assum-
ing the usual binary labels (α = 1), and then adding uniform random label noise: flipping the label
w.p. 1

2 (1−α) on each of the n examples independently. This encourages “clipping” of the ensemble
predictions x>j σ

∗ to the σ∗-weighted majority vote predictions, as specified by g∗.

2.3 Advantages and Disadvantages

This formulation has several significant merits that would seem to recommend its use in practical
situations. It is very efficient – once b is estimated (a scalable task, given the labeled set), the
slack function γ is effectively an average over convex functions of i.i.d. unlabeled examples, and
consequently is amenable to standard convex optimization techniques [9] like stochastic gradient
descent (SGD) and variants. These only operate in p dimensions, independent of n (which is� p).
The slack function is Lipschitz and well-behaved, resulting in stable approximate learning.

Moreover, test-time prediction is extremely efficient, because it only requires the p-dimensional
weighting σ∗ and can be computed example-by-example on the test set using only a dot product
in Rp. The form of g∗ and its dependence on σ∗ facilitates interpretation as well, as it resembles
familiar objects: sigmoid link functions for linear classifiers.

Other advantages of this method also bear mention: it makes no assumptions on the structure of H
or F, is provably robust against the worst case, and adds no input parameters that need tuning. These
benefits are notable because they will be inherited by our extension of the framework in this paper.

However, this algorithm’s practical performance can still be mediocre on real data, which is often
easier to predict than an adversarial setup would have us believe. As a result, we seek to add more
information in the form of constraints on the adversary, to narrow the gap between it and reality.

3 Learning with Specialists

To address this issue, we examine a generalized scenario in which each classifier in the ensemble
can abstain on any subset of the examples instead of predicting ±1. It is a specialist that predicts
only over a subset of the input, and we think of its abstain/participate decision being randomized in
the same way as the randomized label on each example. In this section, we extend the framework of
Section 2.1 to arbitrary specialists, and discuss the semi-supervised learning algorithm that results.

In our formulation, suppose that for a classifier i ∈ [p] and an example x, the classifier decides
to abstain with probability 1 − vi(x). But if the decision is to participate, the classifier predicts
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hi(x) ∈ [−1, 1] as previously. Our only assumption on {vi(x1), . . . , vi(xn)} is the reasonable one
that

∑n
j=1 vi(xj) > 0, so classifier i is not a worthless specialist that abstains everywhere.

The constraint on classifier i is now not on its correlation with z on the entire test set, but on the
average correlation with z restricted to occasions on which it participates. So for some [bS ]i ∈ [0, 1],

n∑
j=1

(
vi(xj)∑n
k=1 vi(xk)

)
hi(xj)zj ≥ [bS ]i (4)

Define ρi(xj) :=
vi(xj)∑n

k=1 vi(xk)
(a distribution over j ∈ [n]) for convenience. Now redefine our

unlabeled data matrix as follows:

S = n

ρ1(x1)h1(x1) ρ1(x2)h1(x2) · · · ρ1(xn)h1(xn)
...

...
. . .

...
ρp(x1)hp(x1) ρp(x2)hp(x2) · · · ρp(xn)hp(xn)

 (5)

Then the constraints (4) can be written as 1
nSz ≥ bS , analogous to the initial prediction game (2).

To summarize, our specialist ensemble aggregation game is stated as

VS := min
z∈[−1,1]n,
1
nSz≥bS

max
g∈[−1,1]n

1

n
z>g (6)

We can immediately solve this game from Thm. 2, with (S,bS) simply taking the place of (F,b).
Theorem 4 (Solution of the Specialist Aggregation Game). The awake ensemble prediction w.r.t.

weighting σ ≥ 0p on example xi is
[
S>σ

]
i
= n

p∑
j=1

ρj(xi)hj(xi)σj . The slack function is now

γS(σ) :=
1

n

n∑
j=1

[∣∣∣[S>σ]
j

∣∣∣− 1
]
+
− b>S σ (7)

The minimax value of this game is VS = maxσ≥0p [−γS(σ)] = −γS(σ∗S). The minimax optimal
predictions are defined as follows: for all i ∈ [n],

[g∗S ]i
.
= gS(σ

∗
S) =

{[
S>σ∗S

]
i

∣∣[S>σ∗S]i∣∣ < 1

sgn(
[
S>σ∗S

]
i
) otherwise

In the no-specialists case, the vector ρi is the uniform distribution ( 1
n , . . . ,

1
n ) for any i ∈ [p], and

the problem reduces to the prediction game (2). As in the original prediction game, the minimax
equilibrium depends on the data only through the ensemble predictions, but these are now of a
different form. Each example is now weighted proportionally to ρj(xi). So on any given example
xi, only hypotheses which participate on it will be counted; and those that specialize the most
narrowly, and participate on the fewest other examples, will have more influence on the eventual
prediction gi, ceteris paribus.

3.1 Creating Specialists for an Algorithm

We can now present the main ensemble aggregation method of this paper, which creates spe-
cialists from the ensemble, adding them as additional constraints (rows of S). The algorithm,
HEDGECLIPPER, is given in Fig. 1, and instantiates our specialist learning framework with a ran-
dom forest [3]. As an initial exploration of the framework here, random forests are an appropriate
base ensemble because they are known to exhibit state-of-the-art performance [10]. Their well-
known advantages also include scalability, robustness (to corrupt data and parameter choices), and
interpretability; each of these benefits is shared by our aggregation algorithm, which consequently
inherits them all.

Furthermore, decision trees are a natural fit as the ensemble classifiers because they are inherently
hierarchical. Intuitively (and indeed formally too [11]), they act like nearest-neighbor (NN) pre-
dictors w.r.t. a distance that is “adaptive” to the data. So each tree in a random forest represents a
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somewhat different, nonparametric partition of the data space into regions in which one of the labels
±1 dominates. Each such region corresponds exactly to a leaf of the tree.

The idea of HEDGECLIPPER is simply to consider each leaf in the forest as a specialist, which
predicts only on the data falling into it. By the NN intuition above, these specialists can be viewed
as predicting on data that is near them, where the supervised training of the tree attempts to define
the purest possible partitioning of the space. A pure partitioning results in many specialists with
[bS ]i ≈ 1, each of which contributes to the awake ensemble prediction w.r.t. σ∗ over its domain, to
influence it towards the correct label (inasmuch as [bS ]i is high).

Though the idea is complex in concept for a large forest with many arbitrarily overlapping leaves
from different trees, it fits the worst-case specialist framework of the previous sections. So the
algorithm is still essentially linear learning with convex optimization, as we have described.

Algorithm 1 HEDGECLIPPER

Input: Labeled set L, unlabeled set U
1: Using L, grow trees T = {T1, . . . , Tp}

(regularized; see Sec. 3.2)
2: Using L, estimate bS on T and its leaves
3: Using U , (approximately) optimize (7)

to estimate σ∗S
Output: The estimated weighting σ∗S , for

use at test time

Figure 1: At left is algorithm HEDGECLIPPER. At right is a schematic of how the forest structure is related
to the unlabeled data matrix S, with a given example x highlighted. The two colors in the matrix represent ±1
predictions, and white cells abstentions.

3.2 Discussion

Trees in random forests have thousands of leaves or more in practice. As we are advocating adding
so many extra specialists to the ensemble for the optimization, it is natural to ask whether this erodes
some of the advantages we have claimed earlier.

Computationally, it does not. When ρj(xi) = 0, i.e. classifier j abstains deterministically on xi,
then the value of hj(xi) is irrelevant. So storing S in a sparse matrix format is natural in our setup,
with the accompanying performance gain in computing S>σ while learning σ∗ and predicting with
it. This turns out to be crucial to efficiency – each tree induces a partitioning of the data, so the set
of rows corresponding to any tree contains n nonzero entries in total. This is seen in Fig. 1.

Statistically, the situation is more complex. On one hand, there is no danger of overfitting in the
traditional sense, regardless of how many specialists are added. Each additional specialist can only
shrink the constraint set that the adversary must follow in the game (6). It only adds information
about z, and therefore the performance VS must improve, if the game is solved exactly.

However, for learning we are only concerned with approximately optimizing γS(σ) and solving the
game. This presents several statistical challenges. Standard optimization methods do not converge
as well in high ambient dimension, even given the structure of our problem. In addition, random
forests practically perform best when each tree is grown to overfit. In our case, on any sizable test
set, small leaves would cause some entries of S to have large magnitude, � 1. This can foil an
algorithm like HEDGECLIPPER by causing it to vary wildly during the optimization, particularly
since those leaves’ [bS ]i values are only roughly estimated.

From an optimization perspective, some of these issues can be addressed by e.g. (pseudo)-second-
order methods [12], whose effect would be interesting to explore in future work. Our implementation
opts for another approach – to grow trees constrained to have a nontrivial minimum weight per leaf.
Of course, there are many other ways to handle this, including using the tree structure beyond the
leaves; we just aim to conduct an exploratory evaluation here, as several of these areas remain ripe
for future research.
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4 Experimental Evaluation

We now turn to evaluating HEDGECLIPPER on publicly available datasets. Our implementation uses
minibatch SGD to optimize (6), runs in Python on top of the popular open-source learning package
scikit-learn, and runs out-of-core (n-independent memory), taking advantage of the scalabil-
ity of our formulation. 3 The datasets are drawn from UCI/LibSVM as well as data mining sites
like Kaggle, and no further preprocessing was done on the data. We refer to “Base RF” as the forest
of constrained trees from which our implementation draws its specialists. We restrict the train-
ing data available to the algorithm, using mostly supervised datasets because these far outnumber
medium/large-scale public semi-supervised datasets. Unused labeled examples are combined with
the test examples (and the extra unlabeled set, if any is provided) to form the set of unlabeled data
used by the algorithm. Further information and discussion on the protocol is in the appendix.

Class-imbalanced and noisy sets are included to demonstrate the aforementioned practical advan-
tages of HEDGECLIPPER. Therefore, AUC is an appropriate measure of performance, and these
results are in Table 2. Results are averaged over 10 runs, each drawing a different random subsam-
ple of labeled data. The best results according to a paired t-test are in bold.

We find that the use of unlabeled data is sufficient to achieve improvements over even traditionally
overfitted RFs in many cases. Notably, in most cases there is a significant benefit given by unlabeled
data in our formulation, as compared to the base RF used. The boosting-type methods also perform
fairly well, as we discuss in the next section.

Figure 2: Class-conditional “awake ensemble prediction” (x>σ∗) distributions, on SUSY. Rows (top to bot-
tom): {1K, 10K, 100K} labels. Columns (left to right): α = {1.0, 0.3, 3.0}, and the base RF.

The awake ensemble prediction values x>σ on the unlabeled set are a natural way to visualize and
explore the operation of the algorithm on the data, in an analogous way to the margin distribution in
boosting [6]. One representative sample is in Fig. 2, on SUSY, a dataset with many (5M) examples,
roughly evenly split between ±1. These plots demonstrate that our algorithm produces much more
peaked class-conditional ensemble prediction distributions than random forests, suggesting margin-
based learning applications. Changing α alters the aggressiveness of the clipping, inducing a more
or less peaked distribution. The other datasets without dramatic label imbalance show very similar
qualitative behavior in these respects, and these plots help choose α in practice (see appendix).

Toy datasets with extremely low dimension seem to exhibit little to no significant improvement
from our method. We believe this is because the distinct feature splits found by the random forest
are few in number, and it is the diversity in ensemble predictions that enables HEDGECLIPPER to
clip (weighted majority vote) dramatically and achieve its performance gains.

On the other hand, given a large quantity of data, our algorithm is able to learn significant structure,
the minimax structure appears appreciably close to reality, as evinced by the results on large datasets.

5 Related and Future Work

This paper’s framework and algorithms are superficially reminiscent of boosting, another paradigm
that uses voting behavior to aggregate an ensemble and has a game-theoretic intuition [1, 15]. There
is some work on semi-supervised versions of boosting [16], but it departs from this principled struc-
ture and has little in common with our approach. Classical boosting algorithms like AdaBoost [17]
make no attempt to use unlabeled data. It is an interesting open problem to incorporate boosting
ideas into our formulation, particularly since the two boosting-type methods acquit themselves well

3It is possible to make this footprint independent of d as well by hashing features [13], not done here.
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Dataset #
training HEDGECLIPPER

Random
Forest Base RF AdaBoost

Trees
MART

[14]
Logistic

Regression

kagg-prot
10 0.567 0.509 0.500 0.520 0.497 0.510

100 0.714 0.665 0.656 0.681 0.666 0.688

ssl-text
10 0.586 0.517 0.512 0.556 0.553 0.501

100 0.765 0.551 0.542 0.596 0.569 0.552

kagg-cred
100 0.558 0.518 0.501 0.528 0.542 0.502
1K 0.602 0.534 0.510 0.585 0.565 0.505

10K 0.603 0.563 0.535 0.586 0.566 0.510

a1a
100 0.779 0.619 0.525 0.680 0.682 0.725
1K 0.808 0.714 0.655 0.734 0.722 0.768

w1a
100 0.543 0.510 0.505 0.502 0.513 0.509
1K 0.651 0.592 0.520 0.695 0.689 0.671

covtype
100 0.735 0.703 0.661 0.709 0.732 0.515
1K 0.764 0.761 0.715 0.730 0.761 0.524

10K 0.809 0.822 0.785 0.759 0.788 0.515

ssl-secstr
10 0.572 0.574 0.535 0.563 0.557 0.557

100 0.656 0.645 0.610 0.643 0.637 0.629
1K 0.687 0.682 0.646 0.690 0.689 0.683

SUSY
1K 0.776 0.769 0.764 0.747 0.771 0.720

10K 0.785 0.787 0.784 0.787 0.789 0.759
100K 0.799 0.797 0.797 0.797 0.796 0.779

epsilon 1K 0.651 0.659 0.645 0.718 0.726 0.774

webspam-uni
1K 0.936 0.928 0.920 0.923 0.928 0.840

10K 0.967 0.970 0.957 0.945 0.953 0.901

Table 2: Area under ROC curve for HEDGECLIPPER vs. supervised ensemble algorithms.

in our results, and can pack information parsimoniously into many fewer ensemble classifiers than
random forests.

There is a long-recognized connection between transductive and semi-supervised learning, and our
method bridges these two settings. Popular variants on supervised learning such as the transductive
SVM [18] and graph-based or nearest-neighbor algorithms, which dominate the semi-supervised
literature [8], have shown promise largely in data-poor regimes because they face major scalability
challenges. Our focus on ensemble aggregation instead allows us to keep a computationally inex-
pensive linear formulation and avoid considering the underlying feature space of the data. Largely
unsupervised ensemble methods have been explored especially in applications like crowdsourcing,
in which the method of [19] gave rise to a plethora of Bayesian methods under various conditional
independence generative assumptions on F [20]. Using tree structure to construct new features has
been applied successfully, though without guarantees [21].

Learning with specialists has been studied in an adversarial online setting as in the work of Freund
et al. [22]. Though that paper’s setting and focus is different from ours, the optimal algorithms it
derives also depend on each specialist’s average error on the examples on which it is awake.

Finally, we re-emphasize the generality of our formulation, which leaves many interesting questions
to be explored. The specialists we form are not restricted to being trees; there are other ways of
dividing the data like clustering methods. Indeed, the ensemble can be heterogeneous and even
incorporate other semi-supervised methods. Our method is complementary to myriad classification
algorithms, and we hope to stimulate inquiry into the many research avenues this opens.
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A Additional Information on Experiments

A.1 Datasets

Information on the datasets used:

Dataset Data sizes
(m/)n

Dim. d Comments

kagg-prot 3751 1776 Kaggle challenge [23]
ssl-text 1500 11960 [7]
kagg-cred 150000 10 Kaggle challenge [24]
a1a 1605 / 30956 123 LibSVM
w1a 2477 / 47272 300 LibSVM
covtype 581012 54 LibSVM
ssl-secstr 83679 (unla-

beled:1189472)
315 [7]

SUSY 5000000 18 UCI
HIGGS 11000000 28 UCI
epsilon 500000 2000 PASCAL Large Scale Learning Challenge 2008
webspam-uni 350000 254 LibSVM

All data from the challenges (e.g. kagg-cred) lacked test labels, so the results reported are aver-
aged over 10 random splits of the training data.

A.2 Algorithms

In all cases, the random forests were grown with default parameters for the feature and data splits
(bootstrap data sample of input data size, and∼

√
d features considered per split), and 100 trees was

standard. Varying these changes the induced diversity of the trees/partitions and may fundamentally
affect the output of our algorithm, but exploration of such aspects is left to future work. All the
comparator algorithms were also run with scikit-learn’s default parameters – in many cases like
RFs, they are fairly insensitive to parameter choice.

To overcome the statistical issues discussed in Sec. 3.2, we found we needed to enforce some
regularization on the tree used. We chose to impose a constraint on the minimum number of training
examples in any leaf of the tree. This constraint was imposed as a parameter to grow the forest;
thereafter, we could use all resulting leaves as specialists. To avoid any leaf specialist weights
being too large but still collect as many leaf specialists as possible, we set the minimum number of
examples per leaf to 10 with ≥ 1K labeled examples, and to 4 otherwise.

We also tried an alternative way of avoiding small specialists: to simply grow an unregularized forest
and then filter out leaves, selecting only large enough leaves as specialists. This generally performed
comparably or worse, consistent with the intuition that the diversity in unregularized tree predictions
often manifests largely on small leaves.

As pointed out in the paper, estimating b is an important step in an implementation. Accordingly,
we used a bootstrap sample to do so; this performed comparably to holding out a validation set
from a constant fraction of the labeled data. We observe throughout that it seems to matter far less
how well the ensemble is trained, and more how well b is estimated; so we elected to only keep a
modicum of labeled data for actually training the ensemble, and most for estimation.

A notable issue we encountered is the setting of the “noise” rescaling factor α. We found
HEDGECLIPPER to be relatively insensitive to the precise choice of α, so it essentially sufficed
for our experiments to try three choices: {0.3, 1.0, 3.0}. The last is > 1.0, and therefore does not
have an interpretation in terms of uniform label noise, but it is certainly a valid computational tool.

Which of these three αs to choose? Generally, we found that choosing α = 0.3 does not hurt
performance, because our performance goals are often met best by separating the class-conditional
peaks as much as possible. This is dangerous for more class-unbalanced datasets like kagg-cred,
however, for which the default α = 1.0 works best. A useful heuristic which we used to choose α
is simply to look at the class-conditional awake ensemble prediction distribution as plotted in Fig.
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2; the distribution can be roughly estimated and plotted on the fly, and we can quickly ascertain
sensible choices of parameters like α. These choices appear to matter less at larger scale.
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