A Proofs

In order to prove Lemma 1, we use the following result which is a modification of [11]. In particular,
the following lemma is a generalization of Theorem 5.1 from [11], and its proof (omitted here)
follows from generalizing the proof of that theorem.

Lemma 4. Suppose U, - - , 1, : R* — R are random functions drawn iid from a distribution. Let
P =E ] and Q : R? — R be another function. Let

0= argmingc g Z i (0), and 0" = argmingc g P(0).

Assume:

1. (Convexity of 1): Assume that 1) is convex (with probability one),

2. (Smoothness of 1): Assume that 1) is smooth in the following sense: the first, second and
third derivatives exist at all interior points of S (with probability one),

3. (Regularity conditions): Suppose

(a) S is compact,

(b) 0* is an interior point of S,

(c) VQP(G*) is positive definite (and hence invertible),
(d) VQ(6*) =0,

(e) There exists a neighborhood B of 0* and a constant Z; such that (with probability
one), V21 (0) and V>Q(0) are L3 Lipschitz, namely

|(92P@) ™ (v2600) - v20(@)) (V2PO") | < Lo 10— 0'llgapipe » and
|(72Q07) ™ (v2Q(0) - v2Q(@)) (v2Q0") ™*| < Lsllo = 'l
for6,0' € B,
4. (Concentration at 0 ) Suppose ||V9(0%)[| g2 pg-) -1 < Ly and
|(72P@) 2 w2) (viPer) | < I

hold with probability one.

of [—. |plogd
€nd:fC(L1L3+ L2) P Of: n,

where € is an appropriately chosen constant. Let ¢ be another appropriately chosen constant. If n

is large enough so that 1/ P1%849" < @ min{ - L, diamerer(B) \ 1y op -
n Vi Lils’ L

Choose p > 2 and define

(-T2 < B[ad) - Q@) < (14 6T + R0 O Q)
where
2 g [ [ SR [V ves00)] | Pty Qe P

.3

The following lemma is a fundamental result relating the variance of the gradient of the log likeli-
hood to Fisher information matrix for a large class of probability distributions [17].
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Lemma 5. Suppose L satisfies the regularity conditionsin Assumptions 1 and 2. Then, for any
example x, we have:

Epyieor) [VL(Y]2,0) VLY |2,0%) ] = V2L,(67).
We now prove Lemma 1.

(Proof of Lemma 1). We first define
v;(0) =L(Y|X,0),

where X ~Tand Y ~ p(Y|X,0%) fori =1,--- ,ms and Q(6) &f Ly (). Using the notation of
Lemma 4, this means that

V2P(0*) = Ir(0*) and V2Q(0*) = Iy (6%).

Using the regularity conditions from Section 4 and the hypothesis that I (6*) = cIy(6*), we see
that this satisfies the hypothesis of Lemma 4 with constants

(L1, La, Ly) = (L1/v/e, La /e, Ly /¢*?)
We now apply Lemma 4 to conclude that for large enough ms, we have:

Lt 5 R
2 1 . )
(17€m2)7_ /m27 cmg/Z §E|:LU (9) 7LU (0 )} < (1+€m2)’7' /m2+m712),

_O<(L1L3+\/7>\/m>:(’)< (L1L3+\/>)\/@> and

w2 ST (B [VPO)VPE) | 1) 1)) ) = T (1n(0) ().

using Lemma 5 in the last step. O

where

We now prove Lemma 2.

(Proof of Lemma 2). Define

def
vi(0) = L(Y]X,0),

where X ~ UandY ~ p(Y|X,0%)fori=1,--- ,my and Q() &f 10 — 6)*||2 Using the regularity

conditions from Section 4, we see that this satisfies the hypothesis of Lemma 4 with constants

o 1
(L1,Lo, Lg) = (L1, Ly, max (L37 \/m)))

We now apply Lemma 4 to conclude that

diameter(©
(101~ 0°12] < (1 e )72y + RO

1
et 0 (s (1 ) VT )
w2 7 (B [VLo(0)VLu(0) | 1u(0) ) = Te (1u(6) ).
using Lemma 5 in the last step. By the choice of m, we have that
E (16, - 072 < 2% /ma.

Markov’s inequality then tells us that with probability at least 1 — §, we have:

272 1
0 — 0|3 < —— < ——.
|| 1 ||2 — 5m1 — BQLZ
Using Assumption 2 on point-wise self concordancy of I(x, §) now finishes the proof. O
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(Proof of Theorem 1). The proof is a careful combination of Lemmas 1, 2 and 3.

Lower Bound: For any I that satisfies It (6*) > ¢l (0*), we can apply Lemma 1 to write:

E {LU (/9\1“) — Ly (9*)} >(1—em,) Tr (e (67) "y (67)) — L%Q

mo cms

The lower bound follows.

Upper Bound: We begin by showing that if Assumptions 1 and 2 are satisfied, then, from Lemma 2,
we have that with probability > 1 — 4, it holds that:

%I(ax,@*) < I, 00) < %I(m,&*) VreU
with probability > 1 — 4. This means that the following hold for distributions I';, I'* and U
ﬂ/; L, 0%) < 1n, (01) < I (0, 5)
%fpw*) < I (0) < 2 I (6°), and ©)
55%(@*) < Iy () = ﬂZIIU(f)*)- )

SinceI' = aI'1 + (1 — &)U, we have that Ix(6*) = oI, (6*) which further implies that I(6*) ! <
L1r,(6*)~'. Similarly, since I5(6*) = (1 — a)I/(6*), we can apply Lemma 1 on T to get:

E[Ly (2) — Ly (09)] < (1 Jranz)Tr (IT(Q*L_IIU((Q*)) + 7R2 < l(1 +€mz)Tr Ur, (0" v (@)
2 my « mo
<(1 +Em2)Tr (IanilIU(g*)) + 752,

where . s = O (1 (Iaa+ VIa) /25825 ) = 0 ((Laa + V) Y273 ).
2

From (5) and (7), the right hand side is at most:

= BH1,Te(Ir, (01) ' Tu(61) | R
1 -
( +6m2)([371) Mo +m%
By definition of I'y, this is at most:
- B—i— 1 2TI' (Irw(gl)ilIU(Ql)) R
1 . —
(1+¢ 2)([3—1) ma +m§

Finally, applying (6) and (7), we get that this is at most:

BT (Ie- (%) Iy (0%) R
L +én —
(142 '2)(ﬂ—1) Mo +m%
The upper bound follows. O
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