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In this section, we provide proofs of the theoretical results presented in the paper.

A Proof of Theorem 1: Algorithm 1 is Incentive Compatible

The proposed payment mechanism satisfies the no-free-lunch condition since the payment is zero
when there are one or more wrong answers. It remains to show that the mechanism is incentive
compatible.

We will first assume that, for every question that the worker does not skip, she selects the answer
which she believes is most likely to be correct. Under this assumption we will show that the worker
is incentivized to skip the questions for which her confidence is smaller than T and attempt if it is
greater than T . Finally, we will show that the mechanism indeed incentivizes the worker to select
the answer which she believes is most likely to be correct for the questions that she doesn’t skip. In
what follows, we will employ the notation  = µT

G.

Let us first consider the case when G = N . Let p1, . . . , pN be the confidences of the worker for to
questions 1, . . . , N respectively. Further, let p(1) � · · · � p(m) > T > p(m+1) � · · · � p(N) be
the ordered permutation of these confidences (for some number m). Let {(1), . . . , (N)} denote the
corresponding permutation of the N questions. If the mechanism is incentive compatible, then the
expected payment received by this worker should be maximized when the worker answers questions
(1), . . . , (m) and skips the rest. Under the mechanism proposed in Algorithm 1, this action fetches
the worker an expected payment of
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where (2) is because
p

i

j

T

 1 8 j > y and holds with equality only when z = y. Inequality (3) is a
result of p(j)

T

� 1 8 j  m and holds with equality only when y = m. It follows that the expected
payment is (strictly) maximized when i1 = (1), . . . , i

z

= (m) as required.

The case of G < N is a direct consequence of the result for G = N , as follows. When G < N , from
a worker’s point of view, the set of G questions is distributed uniformly at random in the superset of
N questions. However, for every set of G questions, the relations (1), (2), (3) and their associated
equality/strict-inequality conditions hold. The expected payment is thus (strictly) maximized when
the worker answers the questions for which her confidence is greater than T and skips those for
which her confidence is smaller than T .

One can see that for every question that the worker chooses to answer, the expected payment in-
creases with an increase in her confidence. Thus, the worker is incentivized to select the answer that
she thinks is most probably correct.

Finally, since  = µT

G

> 0 and T 2 (0, 1), the payment is always non-negative and satisfies the
µ-budget constraint.

B Proof of Theorem 2: Uniqueness of Algorithm 1 under No-free-lunch

The proof is based on the following key lemma, establishing a condition that any incentive-
compatible mechanism must necessarily satisfy. Note that this lemma does not require the no-
free-lunch condition.
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Lemma 4. Any incentive-compatible mechanism f must satisfy, for every i 2 {1, . . . , G} and every
(y1, . . . , yi�1, yi+1, . . . , yG) 2 {�1, 0, 1}G�1,

Tf(y1, . . . , yi�1, 1, yi+1, . . . , yG) + (1� T )f(y1, . . . , yi�1,�1, y

i+1, . . . , yG)

= f(y1, . . . , yi�1, 0, yi+1, . . . , yG) .

The proof of Lemma 4 is provided in Appendix C.

We will first prove that any incentive-compatible mechanism satisfying the no-free-lunch condition
must make a zero payment if one or more answers in the gold standard are incorrect. The proof
proceeds by induction on the number of skipped questions S in the gold standard. Let us assume
for now that in the G questions in the gold standard, the first question is answered incorrectly, the
next (G � 1 � S) questions are answered by the worker and have arbitrary evaluations, and the
remaining S questions are skipped. The proof proceeds by an induction on S. Suppose S = G� 1.
In this case, the only attempted question is the first question and the answer provided by the worker
to this question is incorrect. The no-free-lunch condition necessitates a zero payment in this case,
thus satisfying the base case of our induction hypothesis. Now we prove the hypothesis for some S

under the assumption of it being true when the number of questions skipped in the gold standard is
(S + 1) or more. From Lemma 4 (with i = G� S � 1) we have
Tf(�1, y2, . . . , yG�S�2, 1, 0, . . . , 0) + (1� T )f(�1, y2, . . . , yG�S�2,�1, 0, . . . , 0)

= f(�1, y2, . . . , yG�S�2, 0, 0, . . . , 0)

= 0,

where the final equation is a consequence of our induction hypothesis: The induction hypothesis is
applicable since f(�1, y2, . . . , yG�S�2, 0, 0, . . . , 0) corresponds to the case when the last (S + 1)

questions are skipped and the first question is answered incorrectly. Now, since the payment f must
be non-negative and since T 2 (0, 1), it must be that

f(�1, y2, . . . , yG�S�2, 1, 0, . . . , 0) = 0,

and
f(�1, y2, . . . , yG�S�2,�1, 0, . . . , 0) = 0.

This completes the proof of our induction hypothesis. Furthermore, each of the arguments above
hold for any permutation of the G questions, thus proving the necessity of zero payment when any
one or more answers are incorrect.

We will now prove that when no answers in the gold standard are incorrect, the payment must be of
the form described in Algorithm 1. Let  be the payment when all G questions in the gold standard
are skipped. Let C be the number questions answered correctly in the gold standard. Since there are
no incorrect answers, it follows that the remaining (G � C) questions are skipped. Let us assume
for now that the first C questions are answered correctly and the remaining (G � C) questions are
skipped. We repeatedly apply Lemma 4, and the fact that the payment must be zero when one or
more answers are wrong, to get
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In order to abide by the budget, we must have the maximum payment as µ = 

1
T

G

. It follows that
 = µT

G. Finally, the arguments above hold for any permutation of the G questions, thus proving
the uniqueness of the mechanism of Algorithm 1.

11



C Proof of Lemma 4: Necessary Condition for any Incentive-compatible
Mechanism

First we consider the case of G = N . In the set {y1, . . . , yi�1, yi+1, . . . , yG}, for some (⌘, �) 2
{0, . . . , G � 1}2, suppose there are ⌘ elements with a value 1, � elements with a value �1, and
(G � 1 � ⌘ � �) elements with a value 0. Let us assume for now that i = ⌘ + � + 1, y1 =

1, . . . , y

⌘
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) 2 (T, 1]

⌘+� for the first (⌘ + �) questions, a
confidence of q 2 (0, 1] for the next question, and confidences smaller than T for the remaining
(G� ⌘ � � � 1) questions. The mechanism must incentivize the worker to answer the first (⌘ + �)

questions and skip the last (G�⌘���1) questions; for question (⌘+�+1), it must incentivize the
worker to answer if q > T and skip if q < T . Supposing the worker indeed attempts the first (⌘+�)

questions and skips the last (G � ⌘ � � � 1) questions, let x = {x1, . . . , x⌘+�

} 2 {�1, 1}⌘+�

denote the the evaluation of the worker’s answers to the first (⌘ + �) questions. Define quantities
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The left hand side of this expression is the expected payment if the worker chooses to answer ques-
tion (⌘+ � +1), while the right hand side is the expected payment if she chooses to skip it. For any
real-valued variable q, and for any real-valued constants a, b and c,

aq
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7
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b ) ac = b .

As a result,
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The left hand side of (4) represents a polynomial in (⌘ + �) variables {r
j

}⌘+�

j=1 which evaluates to
zero for all values of the variables within a (⌘ + �)-dimensional solid Euclidean ball. Thus, the
coefficients of the monomials in this polynomial must be zero. In particular, the constant term must
be zero. The constant term appears when x

j

= 1 8 j in the summations in (4). Setting the constant
term to zero gives
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as desired. Since the arguments above hold for any permutation of the G questions, this completes
the proof for the case of G = N .

Now consider the case G < N . Let g : {�1, 0, 1}N ! R+ represent the expected payment
given an evaluation of all the N answers, when the identities of the gold standard questions are
unknown. Here, the expectation is with respect to the (uniformly random) choice of the G gold
standard questions. If (x1, . . . , xN

) 2 {�1, 0, 1}N are the evaluations of the worker’s answers to
the N questions then the expected payment is

g(x1, . . . , xN

) =
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) . (5)

Notice that when G = N , the functions f and g are identical.

In the set {y1, . . . , yi�1, yi+1, . . . , yG}, for some (⌘, �) 2 {0, . . . , G�1}2 with ⌘+� < G, suppose
there are ⌘ elements with a value 1, � elements with a value �1, and (G� 1� ⌘� �) elements with
a value 0. Let us assume for now that i = ⌘ + � + 1, y1 = 1, . . . , y
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questions, a confidence of q 2 (0, 1] for the next question, and confidences smaller than T for the
remaining (N � ⌘ � � � 1) questions. The mechanism must incentivize the worker to answer the
first (⌘ + �) questions and skip the last (N � ⌘ � � � 1) questions; for the (⌘ + � + 1)

th question,
the mechanism must incentivize the worker to answer if q > T and skip if q < T . Supposing the
worker indeed attempts the first (⌘ + �) questions and skips the last (N � ⌘ � � � 1) questions, let
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Again, applying the fact that for any real-valued variable q and for any real-valued constants a, b

and c, aq
q<c

7
q>c

b ) ac = b, we get that

Tg(x1 = 1, . . . , x

⌘

= 1,�x
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The proof now proceeds via induction on the quantity (G�⌘���1), i.e., on the number of skipped
questions in {y1, . . . , yi�1, yi+1, . . . , yG}. We begin with the case of (G � ⌘ � � � 1) = G � 1

which implies ⌘ = � = 0. In this case (7) simplifies to
Tg(1, 0, . . . , 0) + (1� T )g(�1, 0, . . . , 0) = g(0, 0, . . . , 0) .

Applying the expansion of function g in terms of function f from (5) gives
T (c1f(1, 0, . . . , 0) + c2f(0, 0, . . . , 0)) + (1� T ) (c1f(�1, 0, . . . , 0) + c2f(0, 0, . . . , 0))

= (c1f(0, 0, . . . , 0) + c2f(0, 0, . . . , 0))

for constants c1 > 0 and c2 > 0 that respectively denote the probabilities that the first question is
picked and not picked in the set of G gold standard questions. Cancelling out the common terms on
both sides of the equation, we get the desired result

Tf(1, 0, . . . , 0) + (1� T )f(�1, 0, . . . , 0) = f(0, 0, . . . , 0) .
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Next, we consider the case when (G � ⌘ � � � 1) questions are skipped in the gold standard,
and assume that the result is true when more than (G � ⌘ � � � 1) questions are skipped in the
gold standard. In (7), the functions g decompose into a sum of the constituent f functions. These
constituent functions f are of two types: the first where all of the first (⌘ + � + 1) questions are
included in the gold standard, and the second where one or more of the first (⌘ + � + 1) questions
are not included in the gold standard. The second case corresponds to situations where there are
more than (G� ⌘ � � � 1) questions skipped in the gold standard and hence satisfies our induction
hypothesis. The terms corresponding to these functions thus cancel out in the expansion of (7). The
remainder comprises only evaluations of function f for arguments in which the first (⌘ + � + 1)

questions are included in the gold standard: since the last (N � ⌘� � � 1) questions are skipped by
the worker, the remainder evaluates to

Tc3f(y1, . . . , y⌘+�

, 1, 0, . . . , 0) + (1� T )c3f(y1, . . . , y⌘+�

,�1, 0, . . . , 0)

= c3f(y1, . . . , y⌘+�

, 0, 0, . . . , 0)

for some constant c3 > 0. Dividing throughout by c3 gives the desired result.

Finally, the arguments above hold for any permutation of the first G questions, thus completing the
proof.

D Proof of Theorem 3: Minimum Payment to Spammers

Part A (Distributional). Let m denote the number of options in each question. One can verify
that under the mechanism of Algorithm 1, a worker who skips A questions and answers the rest
uniformly at random will get a payment of µT

A

m

G�A

in expectation. This expression arises due to the
fact that Algorithm 1 makes a zero payment if any of the attempted answers are incorrect, and a
payment of µTA if the worker skips A questions and answers the rest correctly. Under uniformly
random answers, the probability of the latter event is 1

m

G�A

.

Now consider any other mechanism, and denote it as f 0. Let us suppose without loss of generality
that the worker attempts the first (G � A) questions. Since the payment must be non-negative, a
repeated application of Lemma 4 gives

f

0
(1, . . . , 1| {z }

G�A

, 0, . . . , 0) � Tf

0
(1, . . . , 1| {z }
G�A+1

, 0, . . . , 0) (8)

...

� T

A

f

0
(1, . . . , 1)

= T

A

µ, (9)

where (9) is a result of the µ-budget constraint. Since there is a 1
m

G�A

chance of the (G � A)

attempted answers being correct, the expected payment under any other mechanism f

0 must be at
least µT

A

m

G�A

.

We will now show that if any mechanism f

0 achieves the bound (9) with equality, then the mecha-
nism must be identical to Algorithm 1. We split the proof of this part into two cases, depending on
the value of the parameter A.

Case I (A < G): In order to achieve the bound (9) with equality, the mechanism must make a zero
payment if any of the (G�A) attempted questions are answered incorrectly, that is, it must satisfy

f

0
(y1, . . . , yG�A

, 0, . . . , 0) = 0 8(y1, . . . , yG�A

) 2 {�1, 1}G�A\{1}G�A

.

A repeated application of Lemma 4 then implies

f

0
(�1, 0, . . . , 0) = 0. (10)

Note that so far we considered the case when the worker attempts the first (G � A) questions. The
arguments above hold for any choice of the (G � A) attempted questions, and consequently the
results shown so far in this proof hold for all permutations of the arguments to f

0. In particular,
the mechanism f

0 must make a zero payment when any (G � 1) questions in the gold standard
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are skipped and the remaining question is answered incorrectly. Another repeated application of
Lemma 4 to this result gives

f

0
(y1, . . . , yG) = 0 8(y1, . . . , yG) 2 {0,�1}G\{0}G.

This condition is precisely the no-free-lunch axiom, and in Theorem 2 we had shown that Algo-
rithm 1 is the only incentive-compatible mechanism that satisfies this axiom. It follows that our
mechanism, Algorithm 1 strictly minimizes the expected payment in the setting under considera-
tion.

Case II (A = G): In order to achieve the bound (9) with equality, the mechanism f

0 must also
achieve the bound (8) with equality. Noting that we have A = G in this case, it follows that the
mechanism f

0 must satisfy

f

0
(�1, 0, . . . , 0) = 0.

This condition is identical to (10) established for Case I earlier, and the rest of the argument now
proceeds in a manner identical to the subsequent arguments in Case I.

Part B (Deterministic). Algorithm 1 makes a payment of zero when one or more of the answers to
questions in the gold standard are incorrect. Consequently, for every value of parameter B 2 (0, 1],
Algorithm 1 makes a zero payment when a fraction B or more of the attempted answers are incorrect.
Any other mechanism doing so must satisfy the no-free-lunch axiom. In Theorem 2 we had shown
that Algorithm 1 is the only incentive-compatible mechanism that satisfies this axiom. It follows
that our mechanism, Algorithm 1 strictly minimizes the payment in the event under consideration.
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